
A data-driven car sharing simulator for inferring latent

demand
Technical report

Evan Fields, Carolina Osorio, Tianli Zhou

September 18, 2017

1 Introduction

Forthcoming papers by Tianli Zhou, Carolina Osorio, and Evan Fields [1, 2] make use
of a novel car sharing simulator. Those papers contain detailed literature reviews and
problem formulations, but brevity and page limits constrain them to include only high
level information about our novel simulator. This document, in contrast, gives technical
and implementation details about the simulator and is organized as follows: section
2 gives brief motivation of why we developed a new simulator and the main design
considerations. Section 3 describes the simulator at an intuitive level, and the remaining
sections provide deep details on our mechanisms for generating desired reservations,
attempting desired reservations, and calibrating the simulator.

2 Motivating problem

This section briefly outlines the motivating problem which spurred the development
of our simulator. For more details, especially on existing literature, please see our
forthcoming papers [1, 2]. In our research and this simulator, we consider round-trip
station based car sharing. In this car sharing model, users reserve a specific vehicle
at a specific station for a pre-specified amount of time, and the user must return the
vehicle to that station by the end of the reservation period. A car sharing operator
(CSO) generally has data on historical reservations: which cars were used, when the
vehicle was used, which user used the vehicle, etc. However, a CSO does not have data
on the latent demand—which reservations users wanted to make—and critically, the
actually made reservations are an imperfect representation of the desired reservations.
This happens for many reasons, but the two most important are (i) a user wanting
a reservation may find no perfect reservation available, and thus make a less-desired
reservation; (ii) a user wanting a reservation may find no perfect or even acceptable
reservation available, make no reservation, and thus leave no record in the historical
reservation data.

When making operational decisions such as assigning vehicles to stations or planning
new stations, a CSO would like to know the amount of latent demand at each station
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or potential station. Existing research used one of three strategies for estimating latent
demand:

1. Use the observed demand (utilization) as a proxy for latent demand.

2. Use discrete choice models to predict or infer demand for car sharing across a large
region, such as an entire city. These methods do not give geographically granular
(per-station) estimates of latent demand.

3. Use complicated and computationally expensive meso- or micro-scopic traffic simu-
lators which include a car sharing component. Once properly calibrated—a highly
nontrivial task—these simulators can provide demand estimates.

Our industry partner Zipcar (the largest CSO in the United States) wanted a simple
tool which could provide actionable insights about latent demand with per-station gran-
ularity. The goal of this tool was not to infer latent demand with extreme precision
but rather to assist Zipcar in making operational decisions. In particular, the design
considerations of the simulator included:

1. Latent demand trends: The primary purpose of our simulator was to estimate
latent demand and in particular to capture which stations had relatively high or
low latent demand.

2. Simplicity: The simulator must be simple enough to be explained to Zipcar em-
ployees and incorporated into Zipcar’s decision making process.

3. Data-driven: Zipcar has rich historical data and we agreed the simulator should
rely as much as possible on data rather than models of demand and user behavior.

4. Consistent with expert knowledge: Zipcar has extensive car sharing experience
and knowledge, and it was desireable to embed this knowledge in the simulator,
especially if doing so could reduce the difficulty of calibrating the simulator.

3 Key simulator ideas

Our simulator takes as input a study period T , network supply information consisting
of the location of each station and the vehicles assigned to each station during period T ,
and the latent demand di of each station i, which is measured in expected reservation-
hours wanted per day. The full output of our simulator is station-wise lists of which
simulated reservations were made at that station, but the most important outputs
(which can easily be computed from the full output) are the station-wise utilizations ûi,
also measured in reservation-hours per day. The central idea of our simulator is that we
can infer latent demand through an iterative process of hypothesizing what the latent
demand for each station might be, simulating the stations under these hypothesized
demands, comparing the simulated utilizations ûi to the known historical utilizations
ui, and updating our estimates of di. This method of inferring latent demands {di} is
summarized in figure 1.
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Figure 1: Process for estimating demands {di}

Note that we model each station as having a constant demand for the entire period
T , though the way we sample historical reservations accounts for both time-of-day and
day-of-week effects. Thus T should not be so long that season-of-year effects vary
significantly over T ; typically T could be one month. Seasonal effects can be learned by
inferring separate demands for each month of the year.
Simulation has three major steps:

1. Generate desired reservations. The latent demands {di} tell us, in expectation,
how many reservations to generate for each station i: enough that the expected
reservation-hours wanted per day at station i is di. By carefully sampling from
the historical data (section 4), we can account for location-dependent patterns
in desired reservations, day-of-week effects, and even seasonal effects. A desired
reservation is a triple r = (l(r), t(r), c(r)), respectively the location the user wants
a vehicle, the time interval the user wants a vehicle, and the time the user cre-
ates the reservation. Because Zipcar assigns vehicles in a first-come-first-served
manner, the creation time indicates which desired reservation can proceed when
multiple desired reservations compete for a vehicle.

2. Attempt desired reservations. We simulate users attempting to create each desired
reservation ordered by the reservation creation times. Full details are in section 5,
but the process can be intuitively summarized: if the desired reservation is avail-
able, the user takes that reservation. Otherwise, if an acceptable replacement is
available, the user will take a replacement reservation. If no acceptable reservation
is available, the user exits without creating a reservation.

3. Compute post-simulation statistics, notably the simulated utilization ûi of each
station i.
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4 Simulator details: generating desired reservations

Desired reservations are generated independently for each station s to be simulated.
Here we describe the algorithm for generating desired reservations for station s with
demand ds over period T . In our simulations, the period T is always one or more
consecutive calendar days. Let t1, . . . , tk be the calendar days composing T , that is,
∪ki=1ti = T .

1. Let R be all historical reservations which occurred geographically close to station
s. We typically consider reservations from the postal code of station s as this con-
veniently captures the notion of all reservations which occurred “nearby” station
s. When deciding which historical reservations to use to generate demand at sta-
tion s, there are two competing requirements. On the one hand, we should use as
specific data as possible so that the data used best represents the usage patterns
of station s; we may even wish to limit to data happening in the same month of
the year, etc. On the other hand, we want to use as much data as possible so
that when sampling historical reservations, we are sampling from the full breadth
of reservations that users wanted and we limit the chance of sampling the same
historical reservation multiple times. Empirically, we find these considerations are
well balanced by considering all historical reservations from the same postal code
as station s, but other definitions are possible.

2. Assign a weight w(r) to each reservation r ∈ R. In practice, these weights are al-
ways pre-computed for all historical reservations, but they could also be computed
on the fly as necessary. Section gives details on (pre-)computing the weights w(r).

3. For i = 1, . . . , k, let ci be the number of reservations in R which started on the
same weekday as ti. For example, if ti is a Wednesday, then ci is the number of
reservations in R which started on a Wednesday.

4. Let l̄ =
∑

r∈Rw(r)|t(r)|/
∑

r∈Rw(r) be the weighted average reservation length
in R. Choose n, the number of reservations to generate for station s, by n ∼
Pois

(
k·ds
l̄

)
.

5. Initialize A, the list of generated reservations, to be empty. Repeat the following
n times (each iteration generates a single desired reservation):

(a) Choose a day ti from {t1, . . . , tk} where each day ti is sampled with proba-
bility proportional to ci. The generated reservation will start on day ti.

(b) Choose a historical reservation r from {r ∈ R : r starts on the same weekday as ti}.
(c) Let r′ be a reservation with location l(r′) = s, start time of day (e.g. 3:30pm)

the same as reservation r’s start time of day, length |t(r′)| = |t(r)|, start day
ti, and start time c(r′) such that the interval between c(r′) and t(r′) matches
the interval between c(r) and t(r). For example, if historical reservation r
was created 3 hours before the reservation time, r′ should also have creation
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time 3 hours before the start of its reservation time. Intuitively, we have
made a “copy” of r at location s and day ti. Add r′ to A.

6. Return A, which now contains n desired reservations.

Observe that by limiting the historical reservations to those reservations near station s,
we have captured geographic trends in demand. And by first sampling a day in T and
then considering historical reservations from the same weekday, we capture day of week
effects.

4.1 Choosing weights w

As mentioned in section 2, the historical reservation data represents a truncated sample
of users’ first-choice reservation preferences. If we sample uniformly at random from
the historical data to generated desired reservations in simulation, then the simulated
successful reservations will actually represent a twice truncated sample of users’ first
choice preferences.

An example is illustrative: suppose that users who want long reservations often
have difficulty finding a vehicle matching their needs, primarily because a single short
reservation can block a user from reserving an otherwise-available vehicle for a long
reservation. Further suppose that users who want short reservations can usually find
a vehicle; their first choice location-time preference may not be available, but if a user
just wants a car for an hour, there’s likely a vehicle nearby which is available. Then the
historical reservation data will include most of the short reservations that users wanted
but fewer of the long reservations. When sampling reservations from the historical
data to serve as simulated desired reservations, we should sample the observed long
reservations with slightly higher probability than the observed short reservations.

The method of sampling from the historical data according to weights w(·) on each
reservation should be seen as a detruncation method. For full details on this detrunca-
tion method, including a literature review and validation experiments, please see [1].

From our conversations with car sharing stakeholders, we believe that the length
of a desired reservation is one of the most important factor determining whether that
reservation can be realized. Further, we observe that if we set all weights w(r) = 1
(i.e. sample uniformly from historical data) that the average length |̄t|sim of simulated
successful reservations is about 15 minutes shorter than the average length |̄t|data of
historical reservations. Therefore, we choose weights w(r) = 1 + α · |t(r)| where |t(r)|
is the length of reservation r. To choose the parameter α, we solve the following one-
dimensional simulation based optimization problem:

minimize
α

E
[
|̄t|data − |̄t|

w
sim

]2
subject to w(ri) = 1 + α · l(ri) ∀ri ∈ R

w(ri) ≥ 0 ∀ri ∈ R

(1)

where |̄t|wsim is the average simulated reservation length under weights w. Because the
problem is one-dimensional and E

[
|̄t|wsim

]
is monotonically increasing in α, we can solve
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this problem with a simple line search or binary search and find that a value of α = .0016
works well. This may seem like a tiny value, but it means that a 24-hour reservation is
about 4% more likely to be sampled than a 1-hour reservation, and under this weighting
scheme the average simulated reservation length matches the average historical reserva-
tion length.

5 Simulator details: attempting a reservation

This section describes the algorithm we use to capture the intuitive notion that when
a customer wants a reservation, they take their first-choice reservation if it is available,
otherwise they search for an acceptable substitute, and if no acceptable substitute can
be found, they exit the system.

For a reservation r = (l(r), t(r), c(r)), let S(r) = {r′ : |t(r)| = |t(r′)| and c(r) =
c(r′)}. That is, S(r) is the set of all possible substitute reservations for r which we
define as reservations with the same length and creation time as r; we allow substitute
reservations for r to differ from r only in location and start time. We define a distance
δ : S(r) × S(r) → Z≥0 on the space of substitute reservations, and let p ∈ (0, 1) be a
user choice parameter representing users’ willingness to accept substitute reservations.
Note that we keep p constant across all users and desired reservations. See section 6 for
how p and δ are chosen. Then the algorithm for a user attempting a desired reservation
r is

1. If one or more vehicles are available at location l(r) for time period t(r), the user
selects one of the vehicles uniformly at random and reserves that vehicle for period
t(r). The algorithm then exits.

2. Otherwise, let ε = 0 and xε = −1. While xε < p:

(a) Let Sε = {r′ ∈ S(r) : r′ is available and starts no more than 30 minutes before c(r)}.
Sε is the set of available substitutes for first-choice reservation r at distance
ε from r and that can be created at creation time c(r). Note that we allow
reservations which begin slightly in the past; e.g. at 4:05pm a reservation
starting at 4pm can be created, but a reservation starting at 2pm could not
be created.

(b) If Sε is nonempty, choose r′ uniformly at random from Sε. Because r′ is
available, at least one vehicle at location l(r′) is available over period t(r′).
The user chooses one of these vehicles uniformly at random and reserves this
vehicle for period t(r′), and the algorithm exits.

(c) Otherwise, the user decides whether to consider more dissimilar substitute
reservations. Let ε = ε+ 1 and xε ∼ Unif(0, 1).

3. The user was unable to find an acceptable substitute reservation, so the algorithm
exits without any reservation being made.

This process is summarized visually in figure 2.
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Figure 2: Attempting a reservation r

6 Simulator details: calibrating user choice parameters

As input, our simulator requires station-wise demands {di} as well as two parameters
p and δ which describe user behavior when choosing a possible substitute reservation
when the first-choice reservation is unavailable. In theory both the demands and user
choice parameters could be jointly calibrated using simulation based optimization, by
matching the simulated utilizations {ûi} to the historically observed utilizations {ui}.
However, there are at least three problems with this approach:

1. Our industry partner Zipcar has extensive experience with and data on user be-
havior, including from observational studies and user surveys. Calibrating the user
choice parameters solely by simulation based optimization forgoes this important
knowledge. The calibration formulation could include a regularization term which
nudges the calibrated user choice parameters towards the prior knowledge, but any
reasonable weight on the regularization term would be so large that the calibrated
user choice parameters could not strongly differ from the prior knowledge.

2. The combination of demands {di} and user choice parameters which minimize
the calibration error may be non-unique. In particular, to reproduce a given
historical utilization u in simulation, a high demand d is needed if customers have
rigid preferences and tend to leave the system if their first-choice reservation is
unavailable, and conversely a lower demand d will suffice if customers are highly
flexible. This dependency between demands and choice parameters complicates
both solving the calibration problem and interpreting the results.
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3. Jointly calibrating demands and choice parameters introduces extra dependency
between demand parameters. In general if the choice parameters p and δ are
fixed, the demands for two stations i and j which are geographically far from one
another will have negligible impact on one another. That is, knowing demand
di neither constrains nor provides information about demand dj . However, if the
choice parameters are not fixed then there is direct dependency between each
demand and the choice parameters and thus “second-order” dependency between
different demand parameters. This prevents any kind of geographic partitioning
into subproblems. (See section 7.)

In light of these reasons, we use stakeholder expert knowledge to choose the user
choice parameters p and δ. This is especially appropriate in that our simulator is
designed primarily to learn trends in latent demand. So, for example, if we choose too
high a value of p (customers are modeled as too flexible), the inferred demands di will
tend to be too low—but this will be true for every station, and we’ll still capture the
patterns of which stations are net sources and attractors of spillover demand.

p and δ are chosen so that the reservation choice behavior in the simulator matches
the choice behavior of real customers. From conversations with Zipcar personnel and
from Zipcar user surveys we know that customers dislike walking more than half a
kilometer to reach a vehicle, but we also know that distances of less than 100 meters
are seen as no problem. So p and δ should be chosen so that few simulated customers
would accept a reservation at a station one kilometer from their desired station and
most would accept a reservation 50 meters from their desired station.

The reservation dissimilarity function δ must include both spatial and temporal
distance between two reservations. We combine these in the simplest way possible:
by adding the spatial and temporal distances between two reservations; δ = δspatial +
δtemporal. Let us first consider reservations with the same location but different times. In
our data, all reservations start on an hour or half-hour, leading to the natural definition
that δtemporal between two reservations is the number of half-hour blocks separating
their start times.

From this we can estimate a reasonable spillover probability p. Consider a customer
choosing between reservations at that customer’s desired locations but varying times.
Typical customers will accept a reservation around one and a half hours offset from
their desired reservation, suggesting a spillover probability p = 3

4 .
We can similarly choose δspatial. Given that customers have negligible aversion to

very short spatial distance and high aversion to long distances, δspatial should be convex.
We choose a simple quadratic, δspatial = d2/100, 000, rounded to the nearest integer,
where d is the crow-flies distance in meters between two stations. This captures the
notion that distances on the order of 100 meters are generally insignificant but distances
above half a kilometer are untenable for most customers. The reservation attempt
algorithm in section 5 requires integer dissimilarities δ between reservations, so we
round δspatial to the nearest integer; by construction, δtemporal is already integer valued.
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7 Simulator details: inferring demands di

Our simulator, which is implemented in Julia, is fairly efficient: on average, around
9000 station-days can be simulated per second. In a large study region (we use the
Boston, United States metropolitan region as our case study), there may be hundreds or
thousands of stations. Thus simulating the entire study region for a period of a month
takes around two seconds. When inferring the station-wise demands {di}, however,
the relative efficiency of the simulator is offset by the high number of demands to
learn. In Boston there are approximately 500 different stations, so using a basic finite
difference approach (analytic derivatives are not available) to estimating the gradient of
a network-wide objective function with respect to station demands would take on the
order of 1000 seconds, which is quite problematic. Instead of relying on complicated
cutting-edge simulation based optimization techniques, we take advantage of problem
structure which encourages a natural geographic decomposition into smaller problems.

Intuitively, two stations have little effect on each other if they are far apart. As an
extreme, consider two stations 10km from each other on different islands. The demand
at one station will have no effect on the other; no users wanting a reservation at one
station will instead take a reservation at the other station separated by 10km and a body
of water. The demand for each of these stations can be learned independently: rather
than solving one calibration problem for two stations, we can solve two problems for one
station each. The same intuition applies in more realistic cases. If two stations are far
apart, they have little impact on each other, and what impact they do have is carried
through intermediate stations. As an example, suppose stations a, b, c are arrayed in a
line such that the distance from a to b and from b to c are both one kilometer. A small
amount of demand can spill from a to b and b to c, but no almost no demand will spill
directly from a to c. So when simulating station a, it’s sufficient to simulate just station
b to catch and generate spillover demand; station c is not necessary.

Let T be the study period (for which we have historical data), typically 2-8 weeks
long. Let L be the set of stations for which we want to infer demands {di} for period T .
Let L1, . . . , Ln partition L, and for each Li, let L̄i be the union of Li and the k stations
closest to Li which are not in Li. In practice we typically take k = 10. If the partition
of L into Li is well chosen, then the k stations in L̄i \ Li serve as “boundary stations”
which manage the interaction between Li and the rest of the network. We solve a
simulation-based calibration problem to learn the demands for each L̄i independently,
and from each we record the inferred demands for the non-boundary stations in Li.
Note that in general a given station may be a boundary station in multiple L̄i, but
because the {Li} partition L, each station will be in exactly one Li and thus we will
learn a single demand ds for each station s. To infer demands for stations s within a
single L̄, we use the following coordinate descent inspired algorithm:

1. For each s ∈ L̄, initialize ds to an initial guess as follows:

(a) Let η > 0 be an integer; we typically use 10. Let dmin = 0, dmax =
100, dstep = 1.
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(b) Let x = dmin, dmin + dstep, dmin + 2dstep, . . . , dmax.

(c) For each xi ∈ x, let yi = 1
η

∑η
j=1 û

j
s where ûjs is the simulated utilization of

station s on the j-th simulation run, simulating only station s.

(d) Fit a second order local polynomial regression to data (x,y). We use the
Julia package Loess.jl. Denote by f this regression, i.e. f(xi) ≈ yi.

(e) If f(dmax) ≥ us, the actual historical utilization of station s, then continue.
Otherwise double dmax and dstep and go to step (b).

(f) Let ds = min{x ∈ dmin, dmin + 0.01, dmin + 0.02, . . . , dmax : f(x) ≥ u}, that
is, the smallest (to a granularity of .01 reservation-hours per day) demand
which we simulate as producing a utilization at least as high as the historically
observed utilization.

The intuition behind this initialization procedure is to capture the correct demand
for each station if spillover between stations did not occur. This should give an
order of magnitude correct estimate for each station, even in the presence of
spillover.

2. We then adjust for spillover. Let mmax > 0 be the maximum number of iterations;
we typically use 5. Let ε > 0 be a convergence tolerance; we use .1

√
|L̄|. For

m = 1, . . . ,mmax do the following:

(a) Let σ be chosen uniformly at random from all permutations of 1, 2, . . . , |L̄|.
(b) Let η = dm/2e.
(c) For s ∈ σ(1), . . . , σ(|L̄|):

i. Let x = .5ds, .65ds, .8ds, . . . , 2ds. For each xi ∈ x, let

yi = ‖1

η

η∑
j=1

ûj − u‖22 (2)

where ûj is the vector of simulated utilizations of all stations in L̄ on the
j-th simulation run, and similarly u is the vector of historical utilizations
of each station in L̄ over period T .

ii. Fit a second order local polynomial regression to data (x,y). Call this
regression f .

iii. Update ds to

argmin{f(.5ds), f(.5ds + .01), . . . , f(2ds)}

Informally speaking, the second step repeatedly performs single coordinate line searches.
The cumulative effect of these single-coordinate adjustments is to adjust for the effects
of demand spilling from one station to another. Note that in the calibration objective
(equation 2), we match average simulated utilization over period T to historical utiliza-
tion over period T . Under any given set of demands {di}, the simulated utilizations û
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have high variance, and thus we average multiple simulation runs. This does mean that
if the historical utilizations u contain some atypical values due to inherent randomness
in the car sharing system, the demands {di} will be chosen so as to in expectation
reproduce these atypical values. This effect could be reduced via some regularization
or prior belief on the station-wise demands {di}, but we do not use such techniques in
this work.

A Notation

Symbol Meaning

di latent demand at station i, measured in reservation-hours per day
ui historical utilization at station i, measured in reservation-hours per day
ûi simulated utilization at station i, measured in reservation-hours per day
l(r) location of reservation r
t(r) time interval of reservation r
c(r) creation time of reservation r
S(r) reservations substitutable for desired reservation r
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