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Abstract. This paper formulates an analytical stochastic network loading model. It is a

stochastic formulation of the link transmission model (LTM), which itself is an opera-

tional formulation of Newell’s simplified theory of kinematic waves. The proposed model

builds on an existing initial model. It proposes a formulation with enhanced scalability. In

particular, compared with the initial model, it has a complexity that is linear rather than

cubic in the link’s space capacity. This makes it suitable for large-scale network analysis.

The model is validated versus a simulation-based implementation of the stochastic LTM.

The proposed model yields significant gains in computational efficiency while preserving

accuracy. The validation experiments illustrate how computational run times of the pro-

posed model increase linearly with the link’s space capacity, while the initial model has

an exponential increase in run times. The proposed model yields accurate distributional

approximations of the link’s boundary conditions. It is used to address a probabilistic

formulation of a citywide signal control problem. The model is shown to be robust to the

quality of the initial signal plans. It yields signal plans that systematically outperform both

initial plans, as well as a plan derived by widely used commercial signal control software.

The model is suitable for large-scale network optimization.
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dation [Grant CMMI-1562912].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2017.0804.
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1. Introduction
This paper focuses on the formulation of stochastic

(i.e., probabilistic) network loading models of road

traffic. The vast majority of the literature in the field

of traffic flow theory has focused on the develop-

ment of deterministic traffic models. There has been a

recently renewed interest in the development of ana-

lytical stochastic models that is, arguably, triggered

by both (i) the interest of major transportation agen-

cies around the world in estimating and improving the

robustness and reliability of their networks (Transport

for London 2010, U.S. Department of Transportation

2008) and (ii) the availability of high-resolution traf-

fic data, which enable the validation of more detailed

models.

In a transportation network, there are sources of

uncertainty both in supply (e.g., weather) and in

demand (e.g., spatial and temporal distribution of

travel demand, heterogeneous population of travel-

ers). Studies that have reviewed sources and modeling

approaches to demand and supply uncertainty include

Sumalee et al. (2011) and Lam, Shao, and Sumalee

(2008). For instance, in the field of microscopic travel

demand modeling, a variety of probabilistic models

have been developed to account for uncertainties in

various travel choices such as departure time, mode,

route, etc. In the field of macroscopic modeling, the

variability (or scatter) in the fundamental diagrams has

led the community to develop probabilistic models to

better interpret and fit field data. A review of recent

approaches to model, or account for, the variability in

fundamental diagrams is given in Sumalee et al. (2011)

and in Jabari, Zheng, and Liu (2014). For instance, the

work of Heidemann (2001) uses a probabilistic nonsta-

tionary (i.e., transient) traffic model to interpret hys-

teresis loops, and the case study in Sumalee et al.

(2011) uses a probabilistic model to improve the fit of a

fundamental diagram with high scatter. Nonetheless,

there is a lack of probabilistic traffic models that are

both (i) consistent with mainstream traditional deter-

ministic traffic flow theoretic models and (ii) tractable

enough to enable the efficient analysis and optimiza-

tion of large-scale networks. The main contribution of

this paper is to formulate a probabilistic link model that is
both (i) consistent with mainstream deterministic traffic flow
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theory and (ii) computationally tractable to enable large-scale
network analysis.
Jabari (2012) and Laval and Chilukuri (2014) pro-

vide reviews of stochastic traffic flow theoretic mod-

els. Recent formulations include those derived from

the variational theory of Daganzo (2005) (e.g., Deng,

Lei, and Zhou 2013; Laval and Chilukuri 2014; Laval

and Castrillón 2015). The most popular approach

to stochastic traffic modeling is the formulation of

stochastic cell-transmission models (CTMs; e.g., Boel

and Mihaylova 2006, Jabari and Liu 2012, Sumalee

et al. 2011). The approach of Boel and Mihaylova

(2006) is an example of the most common approach to

stochastic CTMs in that it adds Gaussian noise terms

to the deterministic formulation. This contributes to

model tractability yet does not guarantee expected

(i.e., average) traffic dynamics consistent with the CTM

dynamics. The implications of this are further dis-

cussed in Jabari and Liu (2012). The model of Jabari

and Liu (2012) considers stochastic vehicle headways.

It allows for a variety of headway distributions and

has a fluid limit approximation that is consistent with

the CTM. Boel and Mihaylova (2006) and Jabari and

Liu (2012) are sampling-based approaches, which can

become computationally intensive for large-scale net-

works. Jabari and Liu (2013) propose a second-order

Gaussian approximation of the model of Jabari and

Liu (2012) that can be evaluated without sampling. The

CTM is a space-discretized approximation of the kine-

maticwavemodel (KWM; Lighthill andWhitham 1955,

Richards 1956); hence a stochastic CTM formulation

does not guarantee consistency with the KWM.

The recent work of Osorio and Flötteröd (2015) ex-

tends the model of Osorio, Flötteröd, and Bierlaire

(2011) and proposes a linkmodel that is a stochastic for-

mulation of the deterministic link transmission model

of Yperman, Tampere, and Immers (2007), which itself

is an operational formulation of Newell’s simplified

theory of kinematic waves (Newell 1993). The model

considers an isolated link and derives an analytical

description of the transient (i.e., time-dependent) dis-

tribution of link’s boundary conditions. It yields the

joint distribution of the link’s upstream and down-

stream boundary conditions. Hence, it provides a

higher-order (i.e., beyond first-order) description of

within-link dependencies. The model represents the

link as a set of three finite space capacity stochastic

queues. For a link with space capacity l, the dimension

of the state space of the joint distribution is
1

6
(l +1)(l2 +

2l + 6). In other words, the model complexity is in the

order of O(l3).
This paper formulates a link model with a complex-

ity that is linear rather than cubic in the link’s space

capacity; that is, the proposed model has O(l) complex-

ity. It is therefore scalable and appropriate for large-

scale network analysis. The proposed model is derived

from the model of Osorio and Flötteröd (2015). It is

therefore a stochastic formulation of Newell’s simpli-

fied theory of kinematic waves (Newell 1993).

Section 2 formulates the proposedmodel. Themodel

is validated in Section 3 and used to address a large-

scale signal control problem in Section 4. Conclusions

and a discussion of ongoing work are presented in

Section 5. The online appendices contain additional

numerical validation results.

2. Link Model Formulation
2.1. Multivariate Link Model
We outline here the main ideas of the model of Osorio

and Flötteröd (2015). Hereafter, we refer to the Osorio

and Flötteröd (2015) model as the multivariate (link)
model. For a description of how this model relates

to Newell’s simplified theory of kinematic waves or

to the operational formulation of Yperman, Tampere,

and Immers (2007), we refer the reader to Osorio and

Flötteröd (2015). Consider a link with a triangular

fundamental diagram, free-flow velocity v, backward

wave speed w (negative), flow capacity q̂, jam den-

sity ρ̂, and link length L. The process that vehicular

traffic flow goes through within the link is described

as follows. Upon entrance into the link, a vehicle is

delayed by L/v time units. It is then ready for depar-

ture and enters the physical vehicular queue down-

stream, if one exists. Upon departure from the link, the

vehicle experiences an additional delay of L/|w | before
the newly available space becomes available upstream

of the link. This delay represents the time it takes

a kinematic backward wave to traverse the link. The

multivariate model is a continuous space discrete-time

model, where L/v (respectively, L/|w |) is rounded to

the integer kfwd

(respectively, kbwd

).

This process is summarized in Figure 1. During time

interval k, the link has an expected inflow (respectively,

outflow) denoted by qin(k) (respectively, qout(k)). The
delay incurred upon entrance to the link is represented

by the lagged inflow queue, denoted by LI. In discrete

time, LI can be thought of as a set of kfwd

cells. One can

think of this delay as if the flow traveled sequentially

from the first until the kfwd

th cell of LI. This last cell of
LI is denoted by LLI in Figure 1. This cell configuration

of LI is a mere representation; the multivariate model

describes LI aggregately (i.e., it is not decomposed into

individual cells). After this delay, the flow enters the

downstream queue, denoted by DQ. The departure of

flow from the link triggers two events: the flow departs

DQ (in a network setting, it would enter a downstream

link), and it enters the lagged outflow queue, denoted
by LO. The purpose of LO is to capture the kinematic

backward wave delay. One can think of this delay as

if the newly available space traveled sequentially from

the first until the kbwd

th cell of LO. This last cell of LO
is denoted by LLO in Figure 1. The multivariate link
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Figure 1. Link Dynamics of the Multivariate Link Model

q in(k) Downstream queue (DQ ) qout(k)

Lagged outflow queue (LO )
(lag of L /|w | time units)

kbwd … … 2 1

LLO

Lagged inflow queue (LI )
(lag of L /v time units)

1 2 … … k fwd

LLI

model accounts for stochasticity in the link’s arrival

and departure processes. Time-dependent (i.e., inho-

mogeneous, nonhomogeneous) finite-state birth-death

processes are assumed. This leads to stochastic link

flows, to stochastic cumulative flows both upstream

and downstream of the link, and hence, to a stochastic

description of link states.

The multivariate model jointly tracks the dynam-

ics between the three queues LI, DQ, and LO. It also

defines the upstream queue, UQ, as

UQ� LI +DQ+LO. (1)

More specifically, the model is a discrete-time model.

We denote LI(t; k) (respectively, DQ(t; k), LO(t; k), and
UQ(t; k)) as the number of vehicles in LI (respec-

tively, DQ, LO, and UQ) at continuous time t within

discrete-time interval k of duration δ. Themodel yields

the joint distribution of P(LI(t; k),DQ(t; k),LO(t; k),
UQ(t; k)). The linear equality (1) implies that this four-

dimensional joint distribution can be obtained by track-

ing three of the four variables. The model implementa-

tion of Osorio and Flötteröd (2015) tracks LI ,DQ, and

LO. For a given link with space capacity l (which is

defined as a rounded version of ρ̂L), the state space is

defined by {(li , dq, lo) ∈ {0, . . . , l}3: li + dq+ lo ≤ l}. The
state space dimension is

1

6
(l + 1)(l2 + 2l + 6).

In this paper, we propose a formulation with a state

space dimension that is linear instead of cubic in the

space capacity while still providing a detailed repre-

sentation of thewithin-link dependencies. This enables

its use for the efficient analysis and optimization of

large-scale networks.

2.2. Univariate Link Models
Hereafter, unless necessary, we drop the time depen-

dency notation and use LI or LI(k) to denote LI(t; k).
We do the same forDQ,LO, andUQ. Themain insights

of the multivariate model that underlie the newly pro-

posed formulation are the following: UQ provides a

detailed description of the link’s upstream boundary

conditions, while DQ provides a detailed description

of the link’s downstream boundary conditions. One

approach would be to propose a model that jointly

describes (UQ,DQ). This would improve model scal-

ability by going from a three- to a two-dimensional

state space. The idea considered in this paper goes even

further: it proposes a univariate (i.e., one-dimensional)

state space, which leads to a scalable formulation.

We consider the following two independent univariate

models.

• Onemodel ofUQ: Its purpose is to accurately cap-

ture the link’s upstream boundary conditions.

• Onemodel ofDQ: Its purpose is to accurately cap-

ture the link’s downstream boundary conditions.

The proposed model is then defined as a mixture

of these two independent univariate models. There

is significant dependency between the upstream and

the downstream boundary conditions of a link, as

illustrated by Equation (1). In other words, there is

dependency between the dynamics of UQ and of DQ.

The numerical case studies in Osorio and Flötteröd

(2015) analyze this dependency in more detail. The

main challenge addressed in this paper is therefore to

develop independent univariate models of UQ and of

DQ while still capturing the dependency between the

link’s upstream and downstreamboundary conditions.

Consider an isolated link with space capacity l, an
inhomogeneous Poisson arrival process with exoge-

nous arrival rate λ(k) (time is indexed by k), and expo-

nentially distributed service times at the downstream

end of the link with exogenous downstream bottleneck

flow capacity µ(k). For this isolated link, Section 2.3

(respectively, 2.4) formulates a univariate model that

tracks the distribution of UQ (respectively, DQ) over
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time. Section 2.5 then formulates the proposedmixture

model, which combines the UQ and the DQmodels.

2.3. Univariate Upstream Queue Model
This section formulates a univariate model of UQ. Fol-

lowing the approach in Osorio and Flötteröd (2015),

UQ is modeled as a birth-death process with a finite

state space defined by uq ∈ {0, . . . , l}. For time interval

k of duration δ, the transient probability distribution

of UQ satisfies a system of linear differential equations

with a solution defined by (see, for instance, Reibman

1991 for details)

P(UQ(t; k))� P(UQ(0; k))e tQUQ(k) ∀ t ∈ [0, δ], (2)

where P(UQ(0; k)) are the initial conditions at the be-

ginning of time interval k, and QUQ(k) is the transition
rate matrix of UQ.

The initial conditions are given by ensuring continu-

ity at the start of the time interval

P(UQ(0; k))� P(UQ(δ; k − 1)). (3)

Let P(UQ(k)) denote the UQ distribution at the end

of time interval k; that is, it is a simplified notation for

P(UQ(δ; k)). Equations (2) and (3) can be combined to

obtain the equation that yields the distribution of UQ
at the end of the time interval

P(UQ(k))� P(UQ(k − 1))eδQUQ(k). (4)

Equation (4) states that to approximate the transient

distribution of UQ, we need to approximate the transi-

tion rate matrix QUQ(k). Table 1 defines the nondiago-

nal and nonnull elements of the transition rate matrix.

This table considers for an arbitrary initial state uq of

UQ (displayed in the first column), the feasible instan-

taneous transitions that can take place to new states

(the second column), the rate at which the transitions

take place (the third column), and the conditions on

the initial states needed for the transitions to be feasi-

ble (the fourth column). For UQ, there are two types

of events that trigger state changes. The first is flow

arrival to the link. This is described in the first row of

the table. This row states that arrivals to the link lead

to an increase in the state of UQ (i.e., the new state

is uq + 1); this occurs with rate λ(k) and can occur as

long as UQ is not full (i.e., there is available space at

the upstream end of the link: uq < l). The second type

of event is flow departure from UQ; these departures

are described by the second row of the table. They

occur at rate µUQ(uq; k) and can occur as long as UQ is

not empty (i.e., uq > 0). The diagonal elements of the

transition rate matrix, QUQ(k)ss , are derived from the

nondiagonal elements by

QUQ(k)ss �−
∑
j,s

QUQ(k)s j . (5)

Table 1. Transition Rate Table of UQ

Initial state New state Rate Condition

uq uq+ 1 λ(k) uq < l
uq uq− 1 µUQ(uq; k) uq > 0

Table 1 states that the univariate model of UQ de-

pends on two rates: (i) λ(k), which for an isolated link

is an exogenous rate, and (ii) µUQ(uq; k). The latter is

referred to as the service rate of UQ. It is an endoge-

nous rate. We now formulate its approximation.

2.3.1. Service Rate of UQ. Recall from Section 2.1 and

Figure 1 that departures from UQ correspond to flow

that leaves the last cell of LO. In Figure 1, this last cell

is the kbwd

th cell denoted by LLO. Therefore, the num-

ber of departures from UQ during time interval k is a

random variable, and it can be expressed as LLO(k) |
UQ(k) � uq. Let E[Tm(k)] denote the expected interde-

parture time fromUQ conditional on there being a total

of m departures during time interval k. By definition,

the service rate is the inverse of expected time between

consecutive departures. The service rate of UQ condi-

tional on UQ � uq, µUQ(uq; k), can be approximated as

follows:

µUQ(uq; k)≈
uq∑

m�1

1

E[Tm]
P(LLO(k)�m |UQ(k)�uq). (6)

Equation (6) approximates µUQ(uq; k) as the mean in-

verse of expected interdeparture time from UQ condi-

tional on there being a total of m departures during

time interval k. To approximate E[Tm(k)] for m > 0, we

use the following property. For a Poisson process, given

that a total number of m arrivals have occurred dur-

ing a time interval of duration δ, then the unordered

arrival times are independently, uniformly distributed

over the time interval of interest (see, for instance,

section 2.12.3 of Larson and Odoni 1981). Hence, the

expected interarrival time is δ/m. We approximate the

departure process of UQ as a Poisson process. There-

fore, given a total of m departures from UQ during

time interval k, the expected time between consecutive

departures is approximated with δ/m. Equation (6)

becomes

µUQ(uq; k) ≈
uq∑

m�1

m
δ

P(LLO(k)� m | UQ(k)� uq) (7)

�
1

δ

uq∑
m�0

mP(LLO(k)� m | UQ(k)� uq) (8)

�
1

δ
E[LLO(k) | UQ(k)� uq], (9)

where E[LLO(k) | UQ(k) � uq] represents the expected

outflow from UQ during time interval k, given that

UQ is in state uq. The expression for this conditional

expectation is derived as follows.
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First, assume UQ to be a Poisson process with rate

qUQ(k)�
k−1∑
r�0

qin(r) −
k−kbwd−1∑

r�0

qout(r), (10)

where qin(k) (respectively, qout(k)) denotes the instan-

taneous link inflow (respectively, outflow) rates at the

end of time interval k. As in the multivariate model

(as well as in its deterministic counterpart model of

Yperman, Tampere, and Immers 2007), we use these

instantaneous link inflow and outflow rates to approx-

imate the expected inflow to (respectively, outflow

from) the link during time interval k. In other words,

these instantaneous rates qin(k) and qout(k) are held

constant throughout the time interval k of duration δ.
Equation (10) approximates the rate of the Poisson pro-

cess UQ as the difference between (i) all flow that has

entered the link from time interval 0 until the end of

time interval k − 1 (this is represented by the first sum-

mation) and (ii) all flow that has left the link from time

interval 0 until the end of time interval k− kbwd−1 (this

is represented by the second summation). Recall that

kbwd

represents the number of time intervals needed for

a kinematic backward wave to traverse the link. There-

fore, this second summation accounts for this kine-

matic backwardwave delay by considering all flow that

has left the LO queue and, hence, has left UQ.

Second, assume LLO and {UQ−LLO} to be two inde-

pendent Poisson processes. This simplifying indepen-

dence assumption neglects the temporal dependency

between LLO and {UQ− LLO}. The numerical valida-

tion results of Section 3 highlight the small effect this

has on the final model’s accuracy. The rate of LLO is

given by

qLLO(k)� qout(k − kbwd). (11)

The term qout(k − kbwd) represents the expected flow

that has left the link during time interval k − kbwd

. This

leads to UQ being a sum of two independent Pois-

son processes: LLO and {UQ − LLO}. Therefore, the
conditional distribution of LLO(k) given {UQ(k) � uq}
is binomial with parameters (uq, qLLO(k)/qUQ(k)) (see,
for instance, section 2.12.4 of Larson and Odoni 1981).

Hence, the expected number of departures from UQ
during time interval k is approximated by

E[LLO(k) | UQ(k)� uq] ≈ uq
qLLO(k)
qUQ(k) . (12)

The accuracy of this approximation depends on the

dependency between LLO and {UQ− LLO}. In partic-

ular, we expect it to decrease as the congestion level

increases.

In summary, given the rates that fully define the tran-

sition rate matrix, λ(k) (an exogenous rate for an iso-

lated link) and µUQ(uq; k) (given by Equation (9)), the

transient probability distribution of UQ is obtained by

evaluating Equation (4).

2.3.2. Expected Link Inflow and Outflow. Given the

univariate model of UQ, we now describe how it can

be used to compute the expected inflow and expected

outflow of the link during time interval k. An arrival

may enter the link as long as there is space at the

upstream end of the link. This happens with proba-

bility P(UQ(k) < l). Hence, the expected inflow to the

link is

qin(k)� λ(k)P(UQ(k) < l). (13)

Note that in a full network model (i.e., if we com-

bine the link model with a node model), a vehicle in

an upstream link that cannot enter its desired down-

stream link because it is full would wait at its current

location until an available space downstream is allo-

cated to it. In other words, spillbacks occur with prob-

ability P(UQ(k) � l). In this paper we consider a sin-

gle link model; hence vehicles that wish to enter the

link while it is full are considered lost demand. If a

model with no losses is desired, then an infinite space-

capacity queue can be inserted upstream of the link to

capture vehicles that are waiting to enter the link.

Similarly, the probability that there are vehicles

ready to leave the link is P(DQ(k) > 0). Thus, the ex-

pected outflow from the link is

qout(k)� µ(k)P(DQ(k) > 0). (14)

From Equation (4), we obtain the distribution of UQ
at the end of time interval k, which allows us to com-

pute qin(k) through Equation (13). To compute qout(k),
we need to compute P(DQ(k) > 0). Nonetheless, in this

univariate UQ model, we do not track DQ directly. Let

us now describe how it is approximated.

We proceed as above, where we approximate UQ as

a sum of independent Poisson processes and approxi-

mate the distribution ofDQ given {UQ� uq} as a bino-
mial with parameters (uq, qDQ(k)/qUQ(k)), where

qDQ(k)�
k−kfwd−1∑

r�0

qin(r) −
k−1∑
r�0

qout(r). (15)

Equation (15) considers the expected flow inDQ as the

difference between (i) the sum of all of the expected

inflows into the link from time 0 to time k− kfwd−1 (i.e.,

omitting the flows that are still in LI) and (ii) the sum

of all expected outflows out of the link (i.e., outflow

from time 0 to time k − 1).

We obtain P(DQ(k) > 0) as follows:

P(DQ(k) > 0)� 1−P(DQ(k)� 0) (16)

� 1−
l∑

n�0

P(DQ(k)� 0 | UQ(k)� n)P(UQ(k)� n) (17)

≈ 1−
l∑

n�0

(
1−

qDQ(k)
qUQ(k)

)n

P(UQ(k)� n), (18)
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where the binomial probability mass function was

used to derive the last expression. This approximation

is accurate when the dependencies among LI,DQ, and

LO is weak (e.g., uncongested link).

2.3.3. Marginal Distribution ofDQ. The univariateUQ
model can be used to approximate the entire marginal

distribution of DQ by proceeding similarly as in the

derivation of Equation (18). For all i ∈ {0, . . . , l},

P(DQ(k)� i)

�

l∑
n�i

P(DQ(k)� i |UQ(k)� n)P(UQ(k)� n) (19)

≈
l∑

n�i

(
n
i

) (
qDQ(k)
qUQ(k)

) i (
1−

qDQ(k)
qUQ(k)

)n−i

P(UQ(k)� n), (20)

where

(n
i

)
denotes the binomial coefficient. Equa-

tion (20) is obtained by approximating P(DQ(k) |UQ(k)
� n) as a binomial distribution with parameters

(uq, qDQ(k)/qUQ(k)).
2.3.4. Algorithm. Algorithm 1 summarizes the numer-

ical evaluation of the UQ model. In the algorithm, we

omit the computation of the marginal distribution of

DQ at each time interval k. However, all the parameters

in Equation (20) are stored, and thus the distribution of

DQ for any time interval k can be computed if needed.

Algorithm 1 (Algorithm of the univariate upstream queue
model)

1. set exogenous parameters ρ̂, v ,w , l, and δ
2. set arrival and service rate over time λ(k) and µ(k)

for ∀ k � 1, 2, . . .
3. compute kfwd � dl/(ρ̂v)e and kfwd � dl/(ρ̂ |w |)e
4. set exogenous initial link conditions: qin(0), qout(0),

P(UQ(0)), qUQ(0), qLLO(0), and qDQ(0)
5. set qin(r)� 0 and qout(r)� 0 for r < 0

6. repeat the following for time intervals k � 1, 2, . . .
(a) compute qUQ(k), qLLO(k), and qDQ(k) according

to Equations (10), (11), and (15), respectively

(b) for uq� 0, 1, . . . , l, compute µUQ(uq; k)
according to Equation (9)

(c) form the transition rate matrix QUQ(k) defined
in Table 1

(d) compute P(UQ(k)) according to Equation (4)

(e) compute P(DQ(k) > 0) according to

Equation (18)

(f) compute qin(k) and qout(k) according to

Equations (13) and (14)

2.4. Univariate Downstream Queue Model
The approach to formulate the univariate DQ model

is similar to that used for the univariate UQ model

of Section 2.3. We model DQ as a birth-death pro-

cess with finite state space defined by dq ∈ {0, . . . , l}.
Just as for the UQ model, the transient distribution

of DQ, P(DQ(k)), satisfies an equation of the form (4)

Table 2. Transition Rate Table of DQ

Initial state New state Rate Condition

dq dq+ 1 λDQ(k) dq < l
dq dq− 1 µ(k) dq > 0

with initial conditions P(DQ(k − 1)) and transition rate

matrix QDQ(k). The nondiagonal and nonnull elements

of the transition rate matrix of DQ, QDQ(k) are given

in Table 2. The first row of Table 2 describes the event

of arrivals to DQ—that is, flow that transitions from

LI to DQ (see Figure 1). The second row describes the

event of flow departing DQ (i.e., departing the link).

The corresponding rate µ(k) is the downstream bottle-

neck flow capacity and is considered exogenous for an

isolated link. The diagonal elements of the transition

rate matrix are computed following equations as in (5).

Table 2 indicates that the transition rate matrix of

DQ is defined by two rates: (i) an endogenous arrival

rate λDQ(k) and (ii) an exogenous service rate µ(k). This
table is simpler than that of theUQmodel (see Table 1)

because both rates are state independent (i.e., neither

depends on the state dq). In Table 1, the service rate

of UQ is state dependent; that is, µUQ(uq; k) depends
on uq.

For a finite capacity birth-death process with state-

independent rates, Morse (1958, equation (6.13), chap-

ter 6) provides a closed-form expression to Equa-

tion (4), which avoids the need to numerically evaluate

the matrix exponential. For time interval k of length δ,
the DQ distribution at the end of time interval k,
P(DQ(k)), is given by

P(DQ(k)� n)�
l∑

m�0

P(DQ(k − 1)� m)Pm
n (δ)

for n � 0, . . . , l, (21a)

Pm
n (δ)� Pn(k)+

2ρ(k)(n−m)/2

l + 1

l∑
s�1

µ(k)
γs(k)

·
[
sin

(
smπ
l + 1

)
−

√
ρ(k) sin

(
s(m + 1)π

l + 1

)]
·
[
sin

(
snπ
l + 1

)
−

√
ρ(k) sin

(
s(n + 1)π

l + 1

)]
e−γs (k)δ

, (21b)

γs(k)� λDQ(k)+ µ(k) − 2

√
λDQ(k)µ(k) cos

(
sπ

l + 1

)
for s � 1, 2, . . . , l, (21c)

Pn(k)�
(

1− ρ(k)
1− ρ(k)l+1

)
ρ(k)n , (21d)

ρ(k)� λDQ(k)
µ(k) . (21e)

Equation (21a) states that the distribution of DQ at

the end of time interval k can be obtained by a convex

combination of distributions Pm
n (δ), each of which is
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defined in Equation (21b) as the sum of (i) the station-

ary probability of being in state n, which is denoted by

Pn(k) and defined by Equation (21d), and (ii) a time-

dependent term with exponential decay. The exponen-

tial decay is parameterized by γs(k), which is defined

by Equation (21c) and is referred to in the queuing liter-

ature as the inverse of the relaxation time. In summary,

the distribution of DQ is given by System of Equa-

tions (21), which depends on two rates: (i) an exoge-

nous service rate µ(k) and (ii) an endogenous arrival

rate λDQ(k). We now describe howwe approximate this

endogenous arrival rate.

2.4.1. Arrival Rate of DQ. The distribution of DQ at

the end of time interval k is given by the System of

Equations (21), which depends on the endogenous rate,

λDQ(k). To approximate this rate, we observe that for

a queue with finite space capacity l and arrival rate λ,
the expected inflow to the queue is given by λP(N < l),
where N represents the number of vehicles in the

queue. We use this property to obtain the following

expression for the arrival rate to DQ:

λDQ(k) ≈
qin(k − kfwd)

P(DQ(k − 1) < l) . (22)

The numerator qin(k − kfwd) represents the expected

inflow to the link during time interval k − kfwd

; that is,

this is the flow that is expected to leave the last cell of

LI (denoted by LLI in Figure 1) and enter DQ during

time interval k. The denominator P(DQ(k − 1) < l) is
based on theDQ distribution at the end of time interval

k − 1, which is the DQ distribution at the beginning of

time interval k.

2.4.2. Expected Link Inflow and Outflow. Given the

univariate model of DQ, we now describe how it can

be used to compute the expected inflow and expected

outflow of the link during time interval k. Recall their
definition given in (13) and (14). The System of Equa-

tions (21) yields the marginal distribution ofDQ; hence

the expected outflow qout(k) (defined by Equation (14))

can be directly computed.

To compute the expected inflow qin(k) (defined by

Equation (13)), we need P(UQ(k) < l). Nonetheless, in

this univariateDQmodel, we do not trackUQ directly.

Let us now describe how it is approximated.

We express P(UQ(k) < l) as a function of the condi-

tional distribution of {UQ−DQ} given DQ:

P(UQ(k) < l)� 1−P(UQ(k)� l) (23)

� 1−
l∑

n�0

P(UQ(k)� l | DQ(k)� n)P(DQ(k)� n) (24)

� 1−
l∑

n�0

P(UQ(k) −DQ(k)� l − n | DQ(k)� n)

· P(DQ(k)� n) (25)

≈ 1−
l∑

n�0

p
1
(k)l−nP(DQ(k)� n). (26)

Equation (25) is obtained from (24) by observing that

P(UQ(k) � l | DQ(k) � n) equals P(UQ(k) −DQ(k) � l −
n | DQ(k) � n). Equation (26) is obtained by approx-

imating the conditional distribution of {UQ − DQ}
given {DQ� n}with a binomial distributionwith para-

meters (l − n , p
1
(k)).

The first parameter of this distribution l − n is

derived by observing that the random variable {UQ−
DQ} given {DQ � n} can only take values in {0, . . . ,
l − n}. Let us elaborate this. Equation (1) implies UQ−
DQ ≥ 0. Additionally, by definition, UQ ≤ l. Thus, con-
ditional on DQ� n, we have UQ−DQ ≤ l − n.

Let us now approximate the second parameter of this

binomial distribution, p
1
(k):

E[UQ(k)]� E[DQ(k)]+E[UQ(k) −DQ(k)] (27)

� E[DQ(k)]+E[E[UQ(k) −DQ(k) | DQ(k)]] (28)

� E[DQ(k)]+
l∑

n�0

E[UQ(k) −DQ(k) | DQ(k)� n]

· P(DQ(k)� n) (29)

≈ E[DQ(k)]+
l∑

n�0

(l − n)p
1
(k)P(DQ(k)� n) (30)

� E[DQ(k)]+ p
1
(k)(l −E[DQ(k)]). (31)

Equation (27) is obtained by adding and subtracting

E[DQ(k)] on the right-hand side. The law of total

expectation is used in (28) and rewritten in more detail

in (29). Since {UQ −DQ} conditional on {DQ � n} is
approximated as a binomial distribution with param-

eters (l − n , p
1
(k)), then E[UQ − DQ | DQ � n] equals

(l−n)p
1
(k), which leads to (30). The summation is sim-

plified to obtain (31), which itself can be rearranged to

obtain the approximation for p
1
(k)

p
1
(k) ≈ E[UQ(k)] −E[DQ(k)]

l −E[DQ(k)] . (32)

To evaluate Equation (32), E[DQ(k)] can be com-

puted from the marginal distribution of DQ (system of

Equations (21)) as

E[DQ(k)]�
l∑

n�0

nP(DQ(k)� n), (33)

and E[UQ(k)] can be obtained from the approximation

of UQ as a Poisson process with rate defined by Equa-

tion (10), and thus

E[UQ(k)] ≈ qUQ(k) · δ �
( k−1∑

r�0

qin(r) −
k−kbwd−1∑

r�0

qout(r)
)
· δ.
(34)

In summary, P(UQ(k) < l) is approximated by Equa-

tion (26), with p
1
(k) given by Equation (32) and

P(DQ(k)� n) given by the System of Equations (21).
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2.4.3. Marginal Distribution ofUQ. The univariateDQ
model can be used to approximate the entire marginal

distribution of UQ by proceeding similarly as in the

derivation of Equation (26). For all i ∈ {0, . . . , l},

P(UQ(k)� i)

�

i∑
n�0

P(UQ(k)� i | DQ(k)� n)P(DQ(k)� n) (35)

�

i∑
n�0

P(UQ(k) −DQ(k)� i − n | DQ(k)� n)

· P(DQ(k)� n) (36)

≈
i∑

n�0

(
l − n
i − n

)
p

1
(k)i−n(1− p

1
(k))l−iP(DQ(k)� n), (37)

where P(DQ(k) � n) is given by the System of Equa-

tions (21), and p
1
(k) is given by Equation (32). Equa-

tion (37) is obtained by approximating P(UQ(k) −
DQ(k) | DQ(k) � n) as a binomial distribution with

parameters (l − n , p
1
(k)).

2.4.4. Algorithm. Algorithm 2 summarizes the numer-

ical evaluation of the DQ model. In the algorithm, we

omit the computation of the marginal distribution of

UQ at each time interval k. However, all the parameters

in Equation (37) are stored, and thus the distribution of

UQ for any time interval k can be computed if needed.

Algorithm 2 (Algorithm of the univariate downstream
queue model)

1. set exogenous parameters ρ̂, v ,w , l, and δ
2. set arrival and service rate over time λ(k) and µ(k)

for ∀ k � 1, 2, . . .
3. compute kfwd � dl/(ρ̂v)e and kfwd � dl/(ρ̂ |w |)e
4. set exogenous initial link conditions: qin(0), qout(0),

P(DQ(0)), qUQ(0), and qLLI(0)
5. set qin(r)� 0 and qout(r)� 0 for r < 0

6. repeat the following for time intervals k � 1, 2, . . .
(a) compute qUQ(k) according to Equation (10)

(b) compute λDQ(k) according to Equation (22)

(c) compute P(DQ(k)) according to the

System of Equations (21)

(d) compute E[UQ(k)] according to Equation (34)

(e) compute E[DQ(k)] according to Equation (33)

(f) compute p
1
(k) according to Equation (32)

(g) compute P(UQ(k) < l) according to

Equation (26)

(h) compute qin(k) and qout(k) according to

Equations (13) and (14)

2.5. Mixture Model
Recall that, by design, the role of UQ is to capture the

link’s upstream boundary conditions, while that ofDQ
is to capture the link’s downstream boundary condi-

tions. To capture both the link’s upstream and down-

stream boundary conditions, while ensuring a model

suitable for large-scale network analysis, we propose

a link model that is a mixture of the univariate UQ
model (formulated in Section 2.3) and of the univariate

DQ model (formulated in Section 2.4). The proposed

model is given by

P(UQ(k))� w̃PUQ(UQ(k))+ (1− w̃)PDQ(UQ(k)), (38)

P(DQ(k))� w̃PUQ(DQ(k))+ (1− w̃)PDQ(DQ(k)), (39)

where the following notation is used:

PUQ(UQ(k)) UQ distribution from the UQmodel

(Equation (4)),

PDQ(UQ(k)) UQ distribution from the DQmodel

(Equation (37)),

PUQ(DQ(k)) DQ distribution from the UQmodel

(Equation (20)),

PDQ(DQ(k)) DQ distribution from the DQmodel

(System of Equations (21)).

An analytical expression for the weight parameter,

w̃, is derived through insights obtained from a variety

of numerical experiments. Its expression is given by

w̃(l , µ, kfwd)� e−l2/(70µkfwd). (40)

The experiments compared the performance of the

proposed mixture model to that of a discrete-event

simulation model used in Osorio and Flötteröd (2015),

which implements the stochastic link transmission

model. It samples individual vehicles. The forward

and backward lags are explicitly implemented on each

vehicle. A total of 180 experiments were conducted

considering combinations of l ∈ {5, 10, 15, . . . , 100}; ρ �
λ/µ ∈ {0.25, 0.5, 0.75}; and µ ∈ {0.2, 0.4, 0.6}. A more

detailed description of the derivation of weight param-

eter, w̃, is given in Online Appendix A.

For the mixture model, the expected inflow and

outflow—that is, qin(k) and qout(k)—are obtained ac-

cording to Equations (13) and (14), where P(UQ(k) < l)
and P(DQ(k) > 0) are given by (38) and (39), respec-

tively. Algorithm 3 summarizes the mixture model

approach. Notice that steps 7 and 8 in the algorithm

can be run simultaneously and independently to fur-

ther enhance the run time.

Algorithm 3 (Algorithm of the mixture model)

1. set exogenous parameters ρ̂, v ,w , l, and δ
2. set arrival and service rate over time λ(k) and µ(k)

for ∀ k � 1, 2, . . .
3. compute kfwd � dl/(ρ̂v)e and kfwd � dl/(ρ̂ |w |)e
4. compute w̃ according to Equation (40)

5. set exogenous initial link conditions: qin(0), qout(0),
P(UQ(0)), P(DQ(0)), qUQ(0), qLLO(0), qLLI(0),
and qDQ(0)

6. set qin(r)� 0 and qout(r)� 0 for r < 0

7. run step 6 of Algorithm 1, this yields PUQ(UQ(k))



Lu and Osorio: A Probabilistic Traffic-Theoretic Network Loading Model
Transportation Science, 2018, vol. 52, no. 6, pp. 1509–1530, ©2018 INFORMS 1517

for all k � 1, 2 . . .
8. run step 6 of Algorithm 2, this yields PDQ(DQ(k))

for all k � 1, 2 . . .
9. for any time interval k,

(a) compute PUQ(DQ(k)) according to

Equation (20)

(b) compute PDQ(UQ(k)) according to

Equation (37)

(c) compute P(UQ(k)) according to Equation (38)

(d) compute P(DQ(k)) according to Equation (39)

(e) compute qin(k) and qout(k) according to

Equations (13) and (14)

3. Validation
In this section we validate the model. We evaluate

and compare both in terms of computational run

time and accuracy. First, we compare the computa-

tional run times of the proposed model to those of

the multivariate model (Osorio and Flötteröd 2015).

We consider a single-lane link with parameters shown

in Table 3. The link configuration is the same as

that used in Osorio and Flötteröd (2015) except for

the service rate. The service rate of the link is fixed

at 0.4 vehicles per second (veh/sec) for all experi-

ments. The experiments consider different arrival rates

and link lengths (and hence, different space capaci-

ties, forward lags, and backward lags). We consider

a set of three different arrival rates (λ ∈ {0.1, 0.2, 0.3}
veh/sec) and seven different space capacities (l ∈
{10, 20, 30, 40, 60, 80, 100}). The combination of these

values leads to a total of 21 experiments. The consid-

ered space capacity values correspond to link lengths

L ∈ {50, 100, 150, 200, 300, 400, 500} (inmeters), forward

lags kfwd ∈ {5, 10, 15, 20, 30, 40, 50} (in seconds), and

backward lags kbwd ∈ {10, 20, 30, 40, 60, 80, 100} (in sec-

onds). Each experiment starts with an empty link at

time 0 and runs for 250 seconds, at which point the

link is ensured to have reached a stationary regime.

All experiments are carried out on a standard laptop

machine with Intel Core i7-4700HQ CPU running at

2.40 GHz.

Figure 2 compares the run times of the mixture

model (circles) and of the multivariate model (aster-

isks). The x axis considers the space capacity values l.

Table 3. Link Parameters

Parameter Value

v 0.01 km/sec

w −0.005 km/sec

ρ̂ 200 veh/km

q̂ 2,400 veh/h = 0.67 veh/sec

δ 0.1 sec

µ(k) 1,440 veh/h = 0.4 veh/sec

λ(k) Varies by experiment

l, L, kfwd

, kbwd

Varies by experiment

Figure 2. Model Run Time Comparison
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The y axis displays the average computational run time

(in minutes). The average is computed over the three

experiments with three different arrival rate values.

The y axis is plotted on a logarithmic scale. The max-

imum run time for evaluating an experiment is set

to be 40 hours. If an experiment has not concluded

within 40 hours, it is terminated. For l � 30, the aver-

age run time of the multivariate model is already 2,366

minutes (≈ 39 hours). Hence, for experiments where

l > 30, themultivariate model is not evaluated. Figure 2

illustrates that the run time of the multivariate model

increases exponentially with l, while for the mixture

model, the increase appears linear. For the mixture

model, the average run time over all 21 experiments

is 0.05 minutes. The maximum average run time is

obtained for l � 100 and is 0.11 minutes. Thus, com-

pared with the multivariate model, the mixture model

achieves significant improvements in computational

complexity both theoretically and numerically.

We now compare the multivariate model and the

mixture model in terms of their accuracy. To evaluate

the accuracy of each of these analytical models, we use

a discrete-event simulator of the stochastic link trans-

mission model. The simulator is the same as that used

for validation inOsorio and Flötteröd (2015). It samples

individual vehicles and implements for each vehicle

exact forward and backward lags. The arrival process

is a Poisson process. For vehicles at the downstream

end of the link, interdeparture times are independent

and identically distributed exponential random vari-

ables. The simulated estimates are obtained from 10
6

replications.

First, we consider two experiments with temporal

variations in demand and evaluate the ability of the

analytical models to approximate the transient distri-

butions ofUQ and ofDQ. For both experiments, l � 10.

Experiment 1 has an arrival rate of 0.1 veh/sec dur-

ing time [0, 125] seconds, an arrival rate of 0.5 veh/sec
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during time [125, 175] seconds, and an arrival rate of

0.3 veh/sec during time [175, 300] seconds. This exper-
iment corresponds to step changes from uncongested

to highly congested (i.e., λ(k) > µ(k)) and then to con-

gested traffic conditions. Experiment 2 considers first

an arrival rate of 0.3 veh/sec during time [0, 100] sec-
onds, of 0.1 veh/sec during time [100, 200] seconds,
and then of 0.5 veh/sec during time [200, 300] seconds.
This experiment corresponds to step changes from con-

gested to uncongested and then to highly congested

traffic conditions. The two experiments are designed

such that during the highly congested period (where

λ(k) > µ(k)), the period is not long enough in experi-

ment 1 for the transient distribution to converge to its

stationary counterpart, while in experiment 2, it is a

long enough period.

Figure 3 considers experiment 1. Each plot of Fig-

ure 3(a) considers a given time T (in seconds) and dis-

plays the distribution of UQ, P(UQ(T)), at time T as

proposed by the mixture model (red squares), the mul-

tivariate model (blue diamonds), and the simulated

estimates (black crosses). The different plots consider

different times: T ∈ {1, 30, 60, 90, 120, 150, 180, 210, 240,
270} seconds. Similarly, each plot of Figure 3(b) dis-

plays the distribution of DQ, P(DQ(T)), at time T. The
simulated estimates are displayedwith 95% confidence

intervals. These are barely visible.

Recall that for this experiment, there is a sharp

increase in demand at time T � 125 sec and a sharp

decrease at time T � 175 sec. The changes in the dis-

tributions of UQ and DQ after time T � 125 seconds

and T � 175 seconds are visible for all models. Dur-

ing time [125, 175], states with higher values of UQ
(respectively,DQ) have higher probabilities. After time

T � 175, states with higher values of UQ (respectively,

DQ) have comparably lower probabilities. Figures 3(a)

and 3(b) show that the dynamics of the simulator are

well approximated by both the mixture and the mul-

tivariate models. Additionally, both analytical models

converge, both before T � 125 seconds and after T � 175

seconds, to stationary distributions that approximate

well the simulated distribution.

The left and right plots of Figure 3(c) display, respec-

tively, E[UQ(T)] and E[DQ(T)] as a function of time T.
The sharp increase in expectation after time T � 125

seconds and the sharp decrease after time T � 175 sec-

onds are well approximated by both analytical models.

The stationary values before T � 125 seconds and after

T � 175 seconds are also well approximated.

Note also that for all three models considered here

(mixture, multivariate, and simulator) their arrival

process and their departure process are stochastic.

Hence, spillback may occur even when µ(k) > λ(k).
More specifically, the spillback probability is given by

P(UQ(T)� l). For instance, in the rightmost plot of the

second row of Figure 3(a), the spillback probability is

nonzero (i.e., P(UQ(T)� l) > 0).

Experiment 2 considers a sharp decrease in demand

at T � 100 seconds and a sharp increase in demand

at T � 200. Figures 4(a) and 4(b) display, respectively,

the distributions of UQ and of DQ as a function of

time (i.e., P(UQ(T)) and P(DQ(T))). In this experiment,

we observe a shift in probability mass to states with

smaller values of UQ and DQ during time [100, 200]
seconds and a shift in probability mass to states with

larger values of UQ and DQ after time T � 200 sec-

onds. In this experiment, both analytical models con-

verge to the stationary distribution after each change

in demand. The conclusions here are the same as for

the previous experiment: both the stationary and the

transient distributions are well approximated by the

analytical models. The time-dependent expectations

E[UQ(T)] and E[DQ(T)] are displayed in Figure 4(c).

Again, the dynamics are well captured by both analyt-

ical models. In summary, for Experiments 1 and 2, the

approximations of both the mixture and the multivari-

ate models are good. The transient and the stationary

distributions are well approximated by both models.

We now evaluate the accuracy of the mixture model

over a larger set of experiments. We consider the

21 experiments mentioned above. The main goal is to

evaluate the loss of accuracy of themixturemodel com-

pared with the (less scalable but more accurate) mul-

tivariate model. To evaluate the accuracy of a given

distribution (UQ orDQ), we evaluate its distance to the

distribution estimated via simulation with the stochas-

tic LTM simulator described previously and used

for validation in Osorio and Flötteröd (2015). Recall

that this simulator is an exact implementation of the

stochastic LTM. The distance between an analytical dis-

tribution (mixture or multivariate) and the simulated

distribution is evaluated with the Jensen–Shannon

divergence (JSD) metric (Endres and Schindelin 2003).

For a pair of distributions P
1
and P

2
, the JSD metric is

defined by

JSD(P
1
‖ P

2
)� 1

2
D(P

1
‖M)+ 1

2
D(P

2
‖M), (41)

D(P
1
‖ P

2
)�

∑
i

P
1
(i) log

P
1
(i)

P
2
(i) , (42)

where D(P
1
‖ P

2
) is the Kullback–Leibler divergence

(KLD) (Kullback and Leibler 1951) and M �
1

2
(P

1
+P

2
).

Unlike the KLD, the JSD is both symmetric and upper

bounded by 1. The lower the JSD value, the smaller the

distance between the two distributions (i.e., the higher

the accuracy). We define the time-average JSD over the

entire time period (i.e., 250 seconds) as the temporal

mean of the JSD values; that is, (1/250)∑250

T�1
JSD(P

1
(T) ‖

P
2
(T)), where P

1
(T) and P

2
(T) are the distributions

evaluated at time T.
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Figure 3. (Color online) Experiment 1: Impact of the Temporal Variation of Demand on the Distributions, as Well as the

Expected Values, of UQ and of DQ
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Figure 4. (Color online) Experiment 2: Impact of the Temporal Variation of Demand on the Distributions, as Well as the

Expected Values, of UQ and of DQ
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Since the main goal is to evaluate the accuracy loss

of the mixture model compared with the multivariate

model, we will compare the time-average JSD values

of the mixture model (i.e., the time-average JSD dis-

tance between the distribution approximated by the

mixture model and the simulated distribution) and

the time-average JSD values of the multivariate model

(i.e., the time-average JSD distance between the distri-

bution approximated by the multivariate model and

the simulated distribution). To guide us in the inter-

pretation of the magnitude of the JSD metric, we

provide three additional models to compare the pro-

posed model with (i) the deterministic LTM (denoted

by DetDet, which stands for deterministic arrivals

and deterministic departures); (ii) a simulation-based

instance of the LTM with deterministic arrivals and

independent exponentially distributed interdeparture

times (denoted byDetExp), and (iii) a simulation-based

instance of the LTM with independent, exponentially

distributed interarrival times and deterministic inter-

departure times (denoted by ExpDet). Since DetDet is
a deterministic traffic model, for a given experiment

and a given time, it generates a unique link state (i.e.,

the distribution has all the probability mass concen-

trated in a single state). For the simulation-based mod-

els, the distributional estimates are obtained from 10
6

simulation replications. In summary, for a given exper-

iment (of the 21 experiments), a given model (mixture,

multivariate, DetDet, DetExp, and ExpDet), and a given

distribution (UQ or DQ), we evaluate its distance to

the simulated distribution using the time-average JSD

metric.

As described above, the simulator consists of the

deterministic LTM yet with a probabilistic arrival pro-

cess and a probabilistic departure process. Hence, the

underlying distributions (of UQ and of DQ) it yields

are expected to differ from those of the purely deter-

ministic LTM. Thus, the time-average JSD values of

DetDet can be interpreted as the effect of extending

the LTM with a given probabilistic arrival process

and a given probabilistic departure process. Similarly,

the time-average JSD values of ExpDet (respectively,

DetExp) can be interpreted as the effect of extending

the LTMwith a given probabilistic arrival (respectively,

departure) process.

Figure 5 displays the time-average JSD values for the

21 experiments described above. The top (respectively,

bottom) row plots consider the UQ (respectively, DQ)

distribution. The first column of plots considers the

experiments with arrival rate λ(k) � 0.1 veh/sec. The

second and third columns consider arrival rate values

of 0.2 and 0.3 veh/sec, respectively. Each plot compares

five models: the mixture model (circles), the multivari-

ate model (asterisks), DetDet (square), ExpDet (trian-
gle), and DetExp (cross). Each plot displays the time-

average JSD metric (y axis) as a function of the space

capacity (x axis). Recall that for themultivariatemodel,

the run times for the experiments with l > 30 exceed

40 hours and are hence not computed. Figure 6 con-

siders a zoomed-in version of Figure 5. It displays only

the mixture, the multivariate, and the ExpDet models,

which are those with the lowest error values (i.e., their

curves mostly overlap along the x axis in Figure 5).

For all plots of Figure 5, the time-average JSD val-

ues of DetDet and DetExp are significantly higher than

those of the other models. In particular, the curves

of the three other models (mixture, multivariate, and

ExpDet) are barely visible along the x axis. Figure 6

presents in more detail the curves of these three mod-

els. For P(UQ(T)) (i.e., top row plots), the time-average

JSD values of the mixture model are higher than

those of the multivariate and of ExpDet. Yet the val-

ues remain very small. For P(DQ(T)) (i.e., bottom row

plots), the time-average JSD values of the ExpDetmodel

are higher than those of the mixture and of the mul-

tivariate model. For space capacities l ≥ 30, the curve

of the mixture model overlaps with the x axis; it is

barely visible. This indicates very high accuracy. Recall

also that for l > 30, the computation time for the mix-

ture model exceeds 40 hours and is hence not evalu-

ated. Overall, these experiments indicate that the loss

of accuracy of the mixture model compared with the

multivariate model is not significant. The numerical

time-average JSD values displayed in Figure 5 are pro-

vided, for all experiments, in Tables 1 and 2 of Online

Appendix B.

In summary, for experiments with both constant and

time-varying demand, the mixture model performs

comparably with the multivariate model while being

significantly faster to evaluate. The gain in computa-

tional run time increases with the space capacity. In

particular, for medium-dimensional state spaces (i.e.,

medium-sized links), the evaluation of the mixture

model remains instantaneous (i.e., in the order of sec-

onds), while that of the multivariate model increases

exponentially.

4. Network Analysis
In this section, the proposed mixture model is used

to address a traffic signal control problem for the

city of Lausanne, Switzerland. Section 4.1 formulates

the problem and describes the case study. Section 4.2

presents the numerical results, and Section 4.3 com-

pares the performance of the resulting signal plans to

that of a signal plan derived by commercial signal con-

trol software.

4.1. City-Scale Signal Control
We consider the city of Lausanne, Switzerland. The

city map is shown in Figure 7, and the area of con-

sideration is delimited in white. The network model

of a stochastic microscopic simulator is displayed in
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Figure 7. (Color online) Lausanne City Road Network

Source. Adapted from Dumont and Bert (2006).

Figure 8. The network consists of 603 links, 902 lanes,

and 231 intersections. We consider a problem where

we determine the signal plans of 17 intersections dis-

tributed throughout the city. These 17 intersections

are depicted as squares in Figure 8. We consider a

fixed-time signal control problem. For a review of traf-

fic signal control terminology and formulations, see

Appendix A of Osorio (2010). A fixed-time signal plan,

also called time-of-day or pretimed plan, is an off-line

predetermined plan that is periodical during a spe-

cific time of day (e.g., evening peak). Fixed-time plans

are appropriate for networks with sparse or unreliable

real-time data. They are also commonly used by major

cities with high and uniformly distributed congestion

levels, such as New York City (Osorio et al. 2015).

We consider a fixed-time signal control problem for

the 5:00–5:30 p.m. evening peak. The signal plans of the

17 intersections are determined jointly. The decision

variables are the green splits (i.e., normalized green

times) of the phases of the different intersections. All

other traditional control variables (e.g., cycle times, off-

sets, stage structure) are assumed fixed. This leads to a

total of 99 endogenous signal phase variables; that is,

the dimension of the decision vector is 99.

To formulate the problem, we introduce the follow-

ing notation:

bd Ratio of available cycle time to total cycle time

for intersection d.
x Vector of green splits.

x( j) Green split of signal phase j.
xLB Vector of lower bounds for green splits.

D Set of intersection indices.

PD(d) Set of endogenous signal phase indices of
intersection d.

Figure 8. (Color online) Lausanne Network Model

L Set of all lanes.

˜T Total number of one-minute time intervals.

N Number of lanes (i.e., cardinality of L).

The problem is formulated as follows:

min

x
f (x)� 1

˜TN

∑
i∈L

˜T∑̂
t�1

P(UQi(t̂; x)� li) (43)

subject to ∑
j∈PD (d)

x( j)� bd , ∀ d ∈D, (44)

x ≥ xLB . (45)

The decision vector, x, denotes the green splits of

the signal controlled lanes. The linear equality con-

straints (44) ensure that, for each intersection, the sum

of green times equals the available cycle time. Con-

straint (45) ensures lower bounds for the green splits.

This objective function averages, over time and over

all lanes, the spillback probability of each lane. This

spillback probability is represented by P(UQi(t̂; x)� li),
which denotes the probability of UQ being full at inte-

ger time t̂ under signal plan x. This problem formula-

tion minimizes the spatial and temporal occurrence of

spillbacks.

The above signal control problem has a probabilistic

formulation, which is naturally addressed with prob-

abilistic traffic models. Given the high computation

times of the multivariate model (see Section 3), the

above problem is only solved with the proposed mix-

ture model.

Implementation Details
The values of the main exogenous parameters of the

mixture model are displayed in Table 4. The decision

variables of this problem (the green splits of the signal

plans) determine the downstream flow capacity of the
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Table 4. Parameters for Lausanne Case Study

Parameter Value

˜T 30 one-minute intervals

N 902 lanes

δ 0.1 sec

xLB 4 sec

v 50 km/h

w −15 km/h

ρ̂ 200 veh/km

s 1,800 veh/h

µ Varies by signal plans

λ Calculated from Equation (47)

l, γ, pi j , ei , bd Exogenous values obtained from

Osorio (2010, chapter 4)

kfwd kfwd �
⌈
l/(ρ̂v)

⌉
kbwd kbwd �

⌈
l/(ρ̂ |w |)

⌉
underlying lanes. More specifically, for a signal con-

trolled lane i, its flow capacity is given by

µi −
∑

j∈PI (i)
x( j)s � ei s , ∀ i ∈ ˜L, (46)

where s represents the saturation flow, ei represents

the ratio of fixed green time to cycle time of signalized

lane i, PI(i) represents the set of endogenous signal

phases of lane i, and ˜L denotes the set of signal con-

trolled lanes.

This paper formulates a link model. It can be cou-

pled with a probabilistic node model to formulate a

full network model. As is discussed in Section 5, the

formulation of probabilistic traffic-theoretic nodemod-

els is part of ongoing work. To limit this case study to

the use of the link model (rather than link and node

models), we assume link demand to be exogenous; that

is, it does not vary with signal plans. Hence, the mix-

ture model is used to design signal plans that improve

within-link traffic dynamics. Across-link dynamics—

or more generally, changes in traffic assignment—are

not accounted for in this formulation. The results of

this case study show that evenwith the use of such sim-

plifying assumptions (e.g., the lack of an endogenous

node model), the link model identifies signal plans

with good network-wide performance.

The exogenous arrival rate (or demand rate) for lane i
at time interval k, denoted by λi(k), is computed, prior

to optimization, by solving the following linear system

of equations:

λi(k)� γi +
∑

j
p jiλ j(k), ∀ i ∈L, (47)

where γi denotes an external arrival rate (i.e., rate of

trips that start at lane i), and p ji is a turning probabil-

ity from lane j to lane i. Both γi and p ji are exogenous

and time independent; hence λ is also exogenous and

time independent. Equation (47) states that the arrival

rate of lane i is the sum of the external arrival rate γi

to lane i and of the demand that arises from upstream

lanes. Problem (43)–(45) is solved using the active-set
algorithm of the fmincon routine of MATLAB (MAT-

LAB 2016).

4.2. Numerical Analysis
We solve problem (43)–(45) considering four differ-

ent initial points. Each point is drawn uniformly ran-

domly from the feasible space (Equations (44) and

(45)). The uniform sampling is conducted using the

code of Stafford (2006). The use of four different ini-

tial points leads to four optimal solutions. To evalu-

ate the performance of the various signal plans (initial

and optimal), we use a microscopic traffic simulation

model of Lausanne (Dumont and Bert 2006), which is

calibrated for the evening peak period demand and

implemented with the Aimsun simulator (Transport

Simulation Systems 2014). Each signal plan is embed-

ded within the simulator; 50 simulation replications

are run. We then compare the cumulative distribution

(obtained over these 50 replications) of the main net-

work performance measures. Each simulation replica-

tion consists of a 15-minute warm-up period, followed

by a 30-minute (5:00–5:30 p.m.) simulation period. For a

given simulation replication, the objective function (43)

is estimated as the average (over all lanes) proportion

of time a lane is full.

Each plot of Figure 9 considers one random initial

point. Each plot displays two cumulative distribution

curves: one for the initial signal plan and one for the

optimal plan of problem (43)–(45). Each curve is the

cumulative distribution function (cdf) of the average

proportion of time a lane is full. More specifically, the

x axis displays the average proportion of time a lane is

full. For a given value of x, the y axis displays the pro-

portion of simulation replications (out of 50) that have

the average proportion of time a lane is full smaller

than x. Therefore, the more a cdf curve is shifted to

the left, the better the performance of the correspond-

ing signal plan. The solid curves correspond to the

cdf of the initial signal plans, and the dashed curves

represent that of the optimal signal plans of prob-

lem (43)–(45). As shown in Figures 10(a)–10(d), all the

cdf curves of the optimal signal plan are to the left

of the corresponding initial plan. In other words, the

model yields solutions that have a lower average pro-

portion of time a lane is full.

Figures 10 and 11 have a similar figure structure as

Figure 9. Figure 10 analyzes the performance of the

signal plans in terms of the average lane queue length

(in vehicles). This average is computed over time and

over lanes. The x axis displays the average lane queue

length. For a given value of x, the y axis displays the

proportion of simulation replications (out of 50) that

have an average lane queue length smaller than x. As

before, the more these curves are shifted to the left,
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Figure 9. Cumulative Distribution Functions of the Average Proportion of Time a Lane Is Full, Considering Different Initial

Signal Plans
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the better the performance of the corresponding signal

plans. The four plots of Figure 10 indicate that, for all

initial points, the proposed optimal signal plans yields

a lower average lane queue length. Figure 11 analyzes

the performance of the signal plans in terms of the

average trip travel times (in minutes). The x axis dis-

plays the average trip travel time. For a given value of x,
the y axis displays the proportion of simulation repli-

cations (out of 50) that have average trip travel times

smaller than x. For all initial points, the proposed opti-

mal signal plans yield lower average trip travel times.

4.3. Comparison to Signal Plans Derived by
Commercial Signal Control Software

In this section, we compare the performance of the

optimal signal plans with that of a signal plan obtained

from widely used commercial signal control software

(Synchro Trafficware 2011). For details on how the sig-

nal plan for the city of Lausanne is obtained from Syn-

chro, we refer the reader to Section 5.3 of Osorio and

Chong (2015). Note that Synchro, which is a signal

control optimization software based on a determin-

istic macroscopic traffic model, does not solve prob-

lem (43)–(45).

Figures 12–14 consider the same performance met-

rics as before: average proportion of time a lane is

full, average lane queue length, and average trip travel

time. Each figure displays nine cdf curves. The four

dashed (respectively, solid thin) curves correspond to

the four initial (respectively, optimal) points of the pre-

vious analysis. The solid thick curve corresponds to

the signal plan proposed by Synchro. Recall that for

each figure, the more a cdf curve is shifted to the left,

the better the performance of the corresponding signal

plan. For all three figures, the four leftmost curves are

the four plans proposed by themixture model. In other

words, for all three performance metrics, the proposed

plans outperform all initial plans aswell as the Synchro

plan. These figures also show that, for all three met-

rics, the performance of the initial plans varies signif-

icantly, while the performance of the proposed signal

plans is very similar. This illustrates the robustness of

the proposed model to the quality of the initial points.
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Figure 10. Cumulative Distribution Functions of the Average Lane Queue Length, Considering Different Initial Signal Plans
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For two metrics, the average proportion of time a lane

is full and the average lane queue length, the Synchro

plan outperforms three of the four initial plans and

performs similarly to the fourth plan. For the average

trip travel time metric, the Synchro plan outperforms

all four initial points.

5. Conclusions
This paper formulates an analytical stochastic link

model that is both computationally tractable and con-

sistent with the kinetic theory of traffic flow. Themodel

is validated versus stochastic simulation results, using

a simulator of the stochastic link transmission model.

Compared with the model of Osorio and Flötteröd

(2015), the proposed model has a complexity that is

linear in the link space capacity, rather than cubic. This

leads to significant gains in computational run times.

Both models provide an accurate approximation of the

distribution of the link’s boundary conditions. The pro-

posed model is used to address a signal control prob-

lem for the city of Lausanne. It yields signal plans that

systematically outperform initial randomplans for var-

ious performance metrics. The experiments illustrate

the robustness of the model to the quality of the initial

points. The proposed plans also outperform a signal

plan derived by widely used commercial signal control

software.

Ongoing work formulates scalable probabilistic net-

work models. There are two main challenges to be

addressed. First, there is a need to formulate prob-

abilistic and scalable node models. The probabilis-

tic model of Osorio, Flötteröd, and Bierlaire (2011)

includes a two-link node model that provides a higher-

order description of the across-node dependencies.

It yields the joint distribution of the boundary con-

ditions that each link adjacent to a node provides

to the node—that is, the joint distribution of the

upstream link’s downstream boundary conditions and

the downstream link’s upstream boundary conditions.

The extension of this formulation to nodes with mul-

tiple upstream and downstream links is part of ongo-

ing work. Second, there is a need to formulate scal-

able network models. For a network with n links, each

with space capacity l, directly coupling the proposed

link model with the node model of Osorio, Flötteröd,

and Bierlaire (2011) would yield a model complexity
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Figure 11. Cumulative Distribution Functions of the Average Trip Travel Times, Considering Different Initial Signal Plans
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Figure 12. Cumulative Distribution Functions of the

Average Proportion of Time a Lane Is Full
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in the order of O(ln). Such a model is inappropriate

for large-scale network analysis. Ongoing work investi-

gates two research directions. First, we study the use of

Figure 13. Cumulative Distribution Functions of the

Average Lane Queue Length

x

F
x

network decomposition techniques. For instance, com-

bining the link and node models with the technique of

Flötteröd and Osorio (2017) would lead to a network
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Figure 14. Cumulative Distribution Functions of the

Average Trip Travel Time
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model with complexity O(slr), where s is the number

of intersections and r is the maximum number of links

adjacent to an intersection. Second, we study the use

of aggregation–disaggregation techniques that address

the curse of dimensionality by providing an aggregate

description of network states (Osorio and Wang 2017,

Osorio and Yamani 2017).
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