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Abstract

We formulate a traffic theoretic and probabilistic analytical network loading model. The proposed
model extends past work that is based on a stochastic formulation of the link transmission model,
which itself is an operational formulation of Newell’s simplified theory of kinematic waves. The
proposed model yields a probabilistic description of the link’s upstream and downstream boundary
conditions. The model only tracks the transient probabilities of two of the link’s boundary states.
This leads to a model with a state space dimension that is constant (i.e., it does not depend on any
link attributes, such as link length). In other words, the model has constant complexity, whereas
past formulations have a complexity that scales linearly or cubically with link length. This makes
the proposed model suitable for large-scale network optimization. The model is validated versus a
simulation-based implementation of the stochastic link transmission model. Its performance is also
benchmarked with other past analytical formulations. The proposed model yields estimates with
comparable accuracy, while the computational efficiency is enhanced by at least one order of mag-
nitude. The model is then used to address a city-wide traffic signal control problem. Compared to a
benchmark analytical model, the proposed model enhances computational efficiency by two orders of
magnitude, while deriving signal plans with similar performance. The proposed model yields signal
plans that outperform those obtained from a widely used commercial signal control software.

1 Introduction

The field of traffic flow modeling is shifting from the formulation and use of deterministic models to
that of stochastic ones. This is facilitated and motivated by a number of factors, including increased
availability of urban mobility data, advanced censoring technologies that enable increased data gran-
ularity (i.e., resolution) such that more detailed models can be calibrated and validated, enhanced
computing capabilities such that more elaborate models can be evaluated. Additionally, transporta-
tion agencies in the US and in Europe have recognized both the importance and the need to evaluate
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and to improve network robustness and reliability metrics (U.S. Department of Transportation; 2008;
Transport for London; 2010). This calls for a probabilistic description of network performance.

Calvert et al. (2012) discuss the advantages and disadvantages of both deterministic and stochastic
modeling approaches from both methodological and transportation practice perspectives. They iden-
tify the lack of computational efficiency as one of the main challenges current stochastic models face.
Indeed, compared to their deterministic counterparts, stochastic models may suffer from the curse of
dimensionality and are often computationally inefficient for the analysis, let alone the optimization,
of large-scale networks. The goal of this paper is to propose an analytical stochastic traffic theoretic
model that addresses these scalability and computational efficiency concerns.

Detailed reviews of stochastic traffic flow models are provided by Sumalee et al. (2011); Jabari (2012);
Calvert et al. (2012); Laval and Chilukuri (2014) and Chen et al. (2015). This paper focuses on ana-
lytical (i.e., not simulation-based) formulations. In this research area, recent work has proposed for-
mulations based on the variational theory of Daganzo (2005) (Deng et al.; 2013; Laval and Chilukuri;
2014; Laval and Castrillón; 2015). The most popular approach to formulate a stochastic traffic model
is to add stochasticity to a specific deterministic traffic flow model. For instance, Boel and Mihaylova
(2006) formulate a stochastic cell-transmission model (CTM) (Daganzo; 1994) by adding Gaussian
noise terms to the sending and receiving functions of the deterministic CTM. However, for such
approaches, the expected traffic dynamics are not guaranteed to be consistent with their determin-
istic CTM counterparts. A detailed discussion of this, including the existence and implications of
negative sample paths, are given in Jabari and Liu (2012). Rather than adding noise directly to the
speed-density relationship, Jabari and Liu (2012) consider stochastic vehicle headways and Jabari
et al. (2014) consider a stochastic formulation of Newell’s simplified car-following model (Newell;
2002). Probabilistic assumptions are made at the microscopic level, and macroscopic probabilistic
speed-density relationships are then derived. For analytical models that add Gaussian noise terms to
a specific deterministic model, computational inefficiency can arise due to the need to sample from
high-dimensional Gaussian distributions.

An alternative approach has been the use of probabilistic queueing theory. Most work has considered
a stationary analysis (Heidemann; 1991, 1994; Heidemann and Wegmann; 1997). The work of Heide-
mann (2001) considers transient (i.e., non-stationary) analysis. Formulations based on both transient
queueing theory and finite (space) capacity queueing network theory have also been proposed (Osorio
et al.; 2011; Osorio and Flötteröd; 2015; Lu and Osorio; 2018). This paper extends this literature. The
model of Osorio and Flötteröd (2015) is a stochastic formulation of the deterministic link transmis-
sion model of Yperman et al. (2007), which itself is an operational formulation of Newell’s simplified
theory of kinematic waves (Newell; 1993). The model considers a single link with space capacity ℓ

and represents the link as a set of three queues with finite (space) capacity. It derives the joint tran-
sient probability distribution of the link’s upstream and downstream boundary conditions. For a link
with space capacity ℓ, the model complexity is in the order of O(ℓ3). The recent work of Lu and
Osorio (2018) extends the model of Osorio and Flötteröd (2015) by making it more computationally
efficient. Instead of deriving the joint distribution of the link’s upstream and downstream boundary
conditions, Lu and Osorio (2018) yield the marginal distribution of the link’s upstream boundary
conditions and the marginal distribution of the link’s downstream boundary conditions. They pro-
vide a simplified description of the spatial and temporal dependencies between the upstream and the
downstream boundary conditions. The model complexity is in the order of O(ℓ). This reduction in
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model complexity enhances the computational efficiency of the model. In this paper, we formulate
a model with further enhanced computational efficiency. The goal is to enable large-scale network
optimization to be performed efficiently. We extend the model of Lu and Osorio (2018) and propose
a formulation with constant complexity, i.e., the complexity no longer depends on the link’s space
capacity ℓ.

The paper is organized as follows. In Section 2, we motivate and formulate the proposed model. The
proposed model is validated in Section 3. It is then used to address a city-wide signal control problem
and is benchmarked versus other methods (Section 4). Section 5 summarizes the paper and discusses
ongoing work. The Appendices contain additional equation derivations and numerical validation
results.

2 Link model formulation

2.1 Past link model formulations

First we outline the main ideas of the models of Lu and Osorio (2018) (hereafter referred to as the
mixture model) and of Osorio and Flötteröd (2015) (hereafter referred to as the multivariate model).
Consider an isolated link with a triangular fundamental diagram, free flow speed v, backward wave
speed w, flow capacity q̂, link length L and jam density ρ̂. Consider a discrete-time model, where k

denotes the discrete time interval index. Each time interval is of length δ.

The models consider the stochasticity in the link’s arrival and departure processes as follows. The
arrival process at the upstream boundary of the link is an inhomogeneous Poisson process with rate
λ(k). The service times at the downstream end of the link are independent and identically distributed
exponential random variables with rate µ(k).

The process that vehicular flow experiences through the link is illustrated in Figure 1. During time
interval k, the link has an expected inflow (resp. outflow) of qin(k) (resp. qout(k)). Upon entrance
to the link, the vehicular inflow experiences a delay of L/v time units before it becomes ready to
leave the link at the downstream end of the link. This delay incurred upon entrance is represented
by the lagged inflow queue, LI. This delay process can be viewed as if the flow traveled sequentially
through a set of kfwd = ⌈L

v
⌉ cells. In other words, LI is represented by a set of kfwd discrete cells.

We denote the most downstream cell of LI as LLI in Figure 1. After this delay, the vehicular flow
is ready to depart the link. This flow is represented by the downstream queue, DQ. Upon departure
from the link, the newly available space is delayed for L/|w| time units before it becomes available
at the upstream end of the link. This space that is not yet available at the upstream end of the link
is represented by the lagged outflow queue, LO. In other words, vehicular departures from the link
lead to two events: (i) vehicular flow departs DQ and (ii) “newly available space” flow enters LO.
Similar to LI, LO can be viewed as a set of kbwd = ⌈ L

|w|
⌉ discrete cells that are traversed sequentially.

In Figure 1, the most downstream cell of LO is denoted LLO. The upstream boundary conditions of
the link are described through the upstream queue, UQ, which is defined as:

UQ = LI+DQ+ LO. (1)
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Figure 1: Link dynamics (adapted from Lu and Osorio (2018))

In other words, UQ accounts for all vehicular flow in the link (i.e., LI + DQ) as well as all “newly
available spaces” that are not yet available at the upstream end of the link (i.e., LO). Equivalently, for
a link with space capacity ℓ (which is defined as the rounded version of ρ̂L), ℓ − UQ represents the
vehicular space available at the upstream end of the link.

All queues (LI,DQ, LO and UQ) are time-dependent stochastic processes. Hence, the flows on the
link are stochastic and so are the cumulative flows both upstream and downstream of the link. Thus,
the link models provide a stochastic description of the link’s upstream and downstream boundary
conditions.

In summary, the overall within-link dynamics are described by 4 queues (LI,DQ, LO,UQ), which
are linearly constrained through Eq. (1). Hence, we need only to track 3 of these 4 queues. The model
of Osorio and Flötteröd (2015) tracks 3 queues and yields the joint distribution of (LI,DQ, LO). For
a given link with space capacity ℓ, each queue has a state space defined as {0, 1, ..., ℓ}. Hence, the
dimension of the state space of this joint distribution (LI,DQ, LO) is in the order of O(ℓ3).

Lu and Osorio (2018) note that the link’s upstream (resp. downstream) boundary conditions are
described by UQ (resp. DQ). The model is formulated as a mixture of two independent univariate
models: a univariate model of UQ and a univariate model of DQ. The model tracks the full marginal
distributions of UQ and of DQ, over time. The dimension of the state space for the model is 2(ℓ+1),
i.e., the model complexity is in the order of O(ℓ). In other words, Lu and Osorio (2018) enhance
the scalability of the multivariate model of Osorio and Flötteröd (2015) by formulating a model with
linear, rather than cubic, complexity in the link’s space capacity ℓ.

In this paper, we propose a formulation with state space dimension equals to 2. In other words, the
model complexity is now independent of the link’s space capacity. This leads to enhanced scalability
and improves the ability of these models to be used efficiently for large-scale network optimization.
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This proposed formulation is simpler than past formulations, yet as illustrated in Section 3, it still
captures sufficient dependency between the link’s upstream and downstream boundary conditions.
Hereafter, we use the notation DQ(k) (resp. LI(k), UQ(k), LO(k)) to denote the state of DQ (resp.
LI, UQ, LO) at the end of time interval k. Hereafter, we use DQ and DQ(k) are used interchangeably.

2.2 Proposed link model formulation

The main idea underlying the proposed model is that in order to describe the link’s boundary condi-
tions, we do not need to track the full marginal distributions of UQ and of DQ as in Lu and Osorio
(2018), let alone track their full joint distribution as in Osorio and Flötteröd (2015). More specifically,
we have identified 2 specific queue states that are essential to describe these boundary conditions. The
first state is DQ = 0, which describes whether or not there is vehicular flow downstream ready to
depart the link. The second state is UQ = ℓ, which describes whether or not there is road space avail-
able at the upstream end of the link. Intuitively, in a network setting with two links, vehicular flow can
be transmitted from the upstream link to the downstream link if the following two conditions hold: (i)
there is flow at the upstream link ready to depart to the downstream link (i.e., for the upstream link
DQ > 0), and (ii) there is space available at the upstream end of the downstream link (i.e., for the
downstream link UQ < ℓ). Hence, for a given link, the proposed model approximates only 2 state
probabilities: P(DQ = 0) and P(UQ = ℓ).

More formally, for a given time interval k, the expected link inflow is defined as:

qin(k) = λ(k)(1− P(UQ(k) = ℓ)). (2)

Equation (2) states that vehicles can enter the link as long as there is space available at the upstream
end of the link (i.e., UQ(k) < ℓ), which happens with probability P(UQ(k) < ℓ) = 1− P(UQ(k) =
ℓ). Similarly, the expected link outflow is defined as:

qout(k) = µ(k)(1− P(DQ(k) = 0)). (3)

Equation (3) states that there are vehicle departures from the link as long as there are vehicles at
the downstream end of the link that are ready for departure (i.e., DQ(k) > 0), which happens with
probability P(DQ(k) > 0) = 1− P(DQ(k) = 0).

The mixture model of Lu and Osorio (2018) derives the marginal distributions of UQ(k) and of
DQ(k) at every time step k. However, the only information needed to compute the dynamics of the
link’s boundary conditions are the two probabilities P(UQ(k) = ℓ) and P(DQ(k) = 0).

In this paper, we propose a model that only keeps track of these two key probabilities over time (i.e.,
P(UQ(k) = ℓ) and P(DQ(k) = 0)). It improves model scalability by reducing the dimension of the
state space. The proposed model has a state space of dimension 2. In other words, its complexity is
now constant and no longer depends on the space capacity of the link. Hence, in a network setting,
the proposed model linearly scales with the number of links in the network, independently of link
attributes such as link lengths. The rest of this section is organized as follows. Section 2.2.1 formulates
the model of the link’s downstream boundary conditions P(DQ(k) = 0). Section 2.2.2 formulates
the model of the link’s upstream boundary conditions P(UQ(k) = ℓ). Section 2.2.3 summarizes the
algorithm for the proposed link model.
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2.2.1 Downstream boundary conditions

This section formulates the probabilistic model of the link’s downstream boundary condition P(DQ(k) =
0). We approximate the downstream queue during time interval k, DQ(k), as an M/M/1/ℓ queue.
More specifically, the arrival process of DQ(k) is approximated as a Poisson process with endogenous
rate λDQ(k). The service process of DQ(k) is exactly the service process at the link’s downstream
end. Hence, service times of DQ(k) are independent and identically distributed exponential random
variables with exogenous rate µ(k). There is no approximation made in the service process of DQ(k).

First, we describe the approximation of the endogenous arrival rate λDQ(k). Recall from Section 2.1
that the arrivals to DQ correspond to flow that leaves the last cell of LI. In Figure 1, this cell is the
kfwdth cell, which is denoted LLI. Hence, flow that enters DQ during time interval k corresponds to
flow that entered the link during time interval k − kfwd. Hence, we approximate the arrival rate to
DQ(k) as the expected flow to enter the link during time interval k−kfwd divided by the time interval
length δ:

λDQ(k) = qin(k− kfwd)/δ. (4)

For an M/M/1/ℓ queue, an exact closed-form expression for the transient queue-length distribu-
tion is given by Morse (1958, Chap. 6, Equation (6.13)). Nonetheless, the use of this expression
requires keeping track of the full queue-length distribution. Our aim is to track a single probability,
P(DQ(k) = 0), rather than the full distribution. We introduce the following notation:

P(DQ(k) = 0) probability of DQ(k) being empty at the end of time interval k (which is also
the beginning of time interval k+ 1);

Pk(DQ = 0) time-interval specific stationary probability of DQ = 0;
τDQ(k) inverse of the relaxation time during time interval k.

We propose the following formulation:

P(DQ(k) = 0) = Pk(DQ = 0) +
[
P(DQ(k− 1) = 0) − Pk(DQ = 0)

]
e−τDQ(k)δ. (5)

Equation (5) states that the transient probability P(DQ(k) = 0) at the end of time interval k is
approximated as the sum of a stationary probability (term Pk(DQ = 0)) and a term that decays
exponentially with time. The latter term is the difference between the initial condition of time interval
k (term P(DQ(k−1) = 0)) and the corresponding stationary probability Pk(DQ = 0). The functional
form of Equation (5) is inspired by both the expression of Morse (1958, Chap. 6, Equation (6.13)) as
well as by the recent work of Chong and Osorio (2017, Equation (14a)), which models the spillback
probability (also known as the blocking probability) of a queue with such a functional form.

Equation (5) contains two endogenous terms, Pk(DQ = 0) and τDQ(k). We now present their formu-
lations. We first present the approximation of Pk(DQ = 0). Recall that we approximate DQ(k) as an
M/M/1/ℓ queue with arrival rate λDQ(k) and service rate µ(k). For an M/M/1/ℓ queueing system,
there is a closed-form expression for the stationary queue-length distribution (e.g., Gross (2008, Chap.
2, Equation (2.49))). We use this expression to approximate Pk(DQ = 0):Pk(DQ = 0) =

1− ρDQ(k)

1− ρDQ(k)ℓ+1
(6a)

ρDQ(k) = λDQ(k)/µ(k). (6b)
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We now present the approximation for τDQ(k). In queueing theory, τDQ(k) is known as the inverse of
the relaxation time. It measures the speed at which a given performance measure reaches its stationary
value (i.e., a higher τDQ(k) corresponds to a higher speed of convergence to stationary values). We
approximate τDQ(k) as follows:

τDQ(k) = τDQ ·
(
α1|P(DQ(k− 1) = 0) − Pk(DQ = 0)|ρDQ(k)

1+ e−α2ρDQ(k)

)
(7a)

τDQ =
µ(k)(1− ρDQ(k))

2ℓ+ α3µ(k)ρDQ(k)
2
√
ℓ

(1+ ρDQ(k))(ℓ+ 1)
, (7b)

where α1, α2 and α3 are exogenous scalar coefficients. Equation (7a) approximates τDQ(k) as the
product of τDQ (which is defined in Eq. (7b)) and of the term within parenthesis. We now describe
how the formulation for each of these two terms is derived.

The study of relaxation times in the literature is mostly limited to the relaxation time of the expected
queue-length for infinite (space) capacity single-server Markovian queueing systems that start off
empty, such as in Odoni and Roth (1983) and in Newell (1982, Chap. 5). The work of Odoni and
Roth (1983) reviews relaxation time studies and identifies properties that a closed-form expression for
the relaxation time of the expected queue-length should have. A closed-form approximation is also
provided by Newell (1982, Chap. 5, Equation (5.6)).

The main differences between past studies and our setting are: (i) we consider a finite, rather than an
infinite, space capacity queueing system, (ii) we want to approximate the relaxation time (or equiva-
lently its inverse) of a probability state, rather than that of the expected queue-length, (iii) we consider
an arbitrary initial state for the queueing system, while past work consider empty initial states. The
term τDQ of Equation (7a) accounts for difference (i), while the expression for the term within paren-
thesis of Equation (7a) accounts for differences (ii) and (iii).

The proposed formulation for τDQ (Eq. (7b)) is based on the following two goals. First, when consid-
ering the experimental conditions considered in the literature (e.g., ℓ → ∞), the desired properties of
the relaxation time are preserved. Second, the formulation is extended to account for our experimental
conditions (i.e., finite capacity systems). We now describe this in more detail.

• As the space capacity increases, we retrieve the expression for an infinite space capacity M/M/1

system of Newell (1982, Chap. 5, Equation (5.6)), i.e.,:

lim
ℓ→∞ τDQ =

µ(k)(1− ρDQ(k))
2

(1+ ρDQ(k))
. (8)

The calculation of this limit is given in Appendix A.

• For infinite space capacity queueing systems, the relaxation time is only defined for ρDQ(k) <
1. For finite space capacity systems, τDQ should be defined for all non-negative values of traffic
intensity, including values greater than 1 (i.e., ρDQ(k) ≥ 0). Equation (7b) is well-defined for
ρDQ(k) ≥ 0 (even if ρDQ(k) = 1), as both the numerator and denominator are nonzero for all
ρDQ(k) ≥ 0.
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• Odoni and Roth (1983) and Newell (1982, Chap. 5) study how the relaxation time varies with
levels of congestion for infinite-capacity queueing systems. We follow a similar reasoning
and desire τDQ to first decrease with increasing congestion levels (i.e., it takes a longer time
to reach stationarity), but then increase as the congestion level further increases (i.e., it takes
a shorter time to reach stationarity). In the limit as ℓ → ∞, Equation (7b) becomes the exact
formula proposed by Newell (1982, Chap. 5, Equation (5.6)), which indeed satisfies this desired
property. Holding all parameters other than ρDQ(k) fixed, Equation (7b) is of the form h(x) =
(A(1− x)2 +Bx2)/C(x+ 1), where x ≥ 0 and A,C > 0, B ≥ 0 are parameters. This function
first decreases and then increases as x increases. Hence, Equation (7b) preserves this desired
property.

• Odoni and Roth (1983) state that the relaxation time should be scaled in time so that it varies
directly with the units of the arrival and service rates. For instance, Newell’s expression for an
M/M/1 system (Newell; 1982, Chap. 5, Equation (5.6)) is directly proportional to the service
rate µ(k) and hence it varies directly with the units of service rate. In other words, two identical
queueing systems measured in different time units should yield the same value of τDQ(k)δ (of
Eq. (5)). Equation (7a) satisfies this property because τDQ(k) is the product of a unit-free term
(term within parenthesis) and of a term that has the same unit as µ(k) (i.e., term τDQ of Eq. (7b)
is the sum of two terms that have the same unit as µ(k)).

The expression for the term within parenthesis of Equation (7a) is based on insights derived from
simulation experiments. We use a simulation-based implementation of the stochastic link trans-
mission model. This simulator samples individual vehicles, and imposes the forward and back-
ward lags explicitly for each vehicle. It corresponds to the benchmark simulator used in Osorio
and Flötteröd (2015). A total of 84 simulation experiments were carried out with all combinations
of traffic intensity λ/µ ∈ {0.25, 0.5, 0.75, 1.25}, service rate µ ∈ {0.2, 0.4, 0.6}, and space capac-
ity ℓ ∈ {10, 20, 30, 40, 60, 80, 100}. For all experiments, we identified a positive correlation between
τDQ(k) and the absolute difference |P(DQ(k−1) = 0)−Pk(DQ = 0)|. Based on these observations,
we derived the following unit-free expression for the term within parenthesis of Eq. (7a):

α1|P(DQ(k− 1) = 0) − Pk(DQ = 0)|ρDQ(k)

1+ e−α2ρDQ(k)
, (9)

where α1 and α2 are exogenous scalar coefficients. A description of how the exogenous scalar pa-
rameters α1, α2 and α3 are fitted is given in Appendix B.

2.2.2 Upstream boundary conditions

This section formulates the probabilistic model of the link’s upstream boundary conditions P(UQ(k) =
ℓ). In queueing theory P(UQ(k) = ℓ) is known as the blocking probability of UQ(k). In traffic flow
theory it represents the spillback probability of the link.

Recall from Section 2.1 that the arrival process to the link is assumed to be a Poisson process with
exogenous rate λ(k). Since the arrival process to the link is the same as the arrival process to UQ(k),
the arrival process to UQ(k) is also a Poisson process with exogenous rate λ(k). Hence, we only
need to approximate the service process of UQ(k).
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Recall from Section 2.1 that flow that enters UQ sequentially undergoes the following three phases of
service: (i) it is delayed kfwd time intervals (this delay is represented in Figure 1 by LI); (ii) it enters
DQ, where it experiences a sojourn (waiting and service) time; (iii) vehicular flow that leaves the link
(i.e., leaves DQ) generates newly available road space, which becomes available at the upstream end
of the link after a delay of kbwd time intervals (this delay is represented in Figure 1 by LO). Once this
space becomes available upstream, the corresponding flow leaves UQ.

Flow departures from UQ correspond to flow departures from the most downstream cell of LO (which
is denoted LLO in Figure 1). Let qLLO(k) denote the expected outflow from LLO during time interval
k. It corresponds to vehicular flow that left the link during time interval k− kbwd, i.e.,:

qLLO(k) = qout(k− kbwd). (10)

To approximate P(UQ(k) = ℓ) we consider two cases depending on whether or not qLLO(k) = 0.
Note that at time interval k, qLLO(k) is known since it defined by expected link outflows from past
time intervals (see Eq. (10)).

Case qLLO(k) = 0

If qLLO(k) = 0, then the expected outflow from UQ(k) is also zero. This implies that, with probability
1, there are no departures from UQ(k) (in other words, positive outflow from UQ(k) occurs with a
probability of zero). Hence, UQ(k) is a pure arrival process.

Let N(k) denote the number of attempted new arrivals during time interval k whether or not they
successfully enter UQ. Thus, the number of arrivals that successfully entered UQ during time interval
k is the minimum of N(k) and the available space left, i.e., ℓ − UQ(k − 1). Hence, the number of
vehicles in UQ at the end of time interval k (i.e., UQ(k)) is sum of the number of vehicles in UQ at
the beginning of time interval k (i.e., UQ(k−1)) and the number of vehicles that successfully entered
UQ:

UQ(k) = UQ(k− 1) + min{N(k), ℓ−UQ(k− 1)}. (11)

Therefore, P(UQ(k) = ℓ) can be obtained as follows:

P(UQ(k) = ℓ) = P((UQ(k− 1) + min{N(k), ℓ−UQ(k− 1)}) = ℓ) (12)

=

ℓ∑
i=0

P(min{N(k), ℓ− i} = ℓ− i|UQ(k− 1) = i)P(UQ(k− 1) = i) (13)

=

ℓ∑
i=0

P(N(k) ≥ ℓ− i|UQ(k− 1) = i)P(UQ(k− 1) = i) (14)

=

ℓ∑
i=0

P(N(k) ≥ ℓ− i)P(UQ(k− 1) = i) (15)

Equation (12) gives P(UQ(k) = ℓ) by substituting in Equation (11). Equation (13) is obtained
by conditioning on the states of UQ at the beginning of time interval k (i.e., UQ(k − 1)). In the

9



conditional probability of Equation (13), the equality min{N(k), ℓ − i} = ℓ − i holds if and only if
N(k) ≥ ℓ− i. Hence, Equation (14) is obtained. Since the process of attempted arrivals does not have
any dependence on the initial state of the system, P(N(k) ≥ ℓ−i|UQ(k−1) = i) = P(N(k) ≥ ℓ−i)
and Equation (15) is obtained.

Since the arrival process to the link, which is also the arrival process to UQ(k), is a Poisson process
with rate λ(k), then N(k), the number of attempted arrivals during time interval k, follows a Poisson
distribution with parameter λ(k)δ. Thus, P(N(k) ≥ ℓ− i) is calculated as follows:

P(N(k) ≥ ℓ− i) = 1− P(N(k) ≤ ℓ− i− 1) = 1− e−λ(k)δ

ℓ−i−1∑
j=0

(λ(k)δ)j

j!
. (16)

Equation (15) depends on the full marginal distribution of UQ (i.e., it depends on all terms P(UQ(k−
1) = i), ∀i ∈ {0, . . . , ℓ}). However, the proposed model does not track the full distribution of UQ, it
only tracks the scalar probability P(UQ(k−1) = ℓ). Hence, we propose the following approximation
for P(UQ(k− 1) = i), 0 ≤ i ≤ ℓ− 1:

P(UQ(k− 1) = i) =
1− P(UQ(k− 1) = ℓ)∑ℓ−1

j=0 f(j, q
UQ(k− 1)δ)

f(i, qUQ(k− 1)δ) (17a)

f(i, qUQ(k− 1)δ) =
(qUQ(k− 1)δ)ie−qUQ(k−1)δ

i!
(17b)

qUQ(k− 1) =

k−2∑
r=0

qin(r) −

k−kbwd−2∑
r=0

qout(r). (17c)

Equation (17b) gives the probability mass function (pmf) of a Poisson distribution with parameter
qUQ(k − 1)δ. Equation (17a) is a normalized and finite support ({0, ..., ℓ − 1}) Poisson distribution
(with parameter qUQ(k− 1)δ). The normalization term (the fraction term) is defined such that:

ℓ∑
i=0

P(UQ(k− 1) = i) = P(UQ(k− 1) = ℓ) +

ℓ−1∑
i=0

1− P(UQ(k− 1) = ℓ)∑ℓ−1

j=0 f(j, q
UQ(k− 1)δ)

f(i, qUQ(k− 1)δ)

(18)

= P(UQ(k− 1) = ℓ) +
1− P(UQ(k− 1) = ℓ)∑ℓ−1

j=0 f(j, q
UQ(k− 1)δ)

ℓ−1∑
i=0

f(i, qUQ(k− 1)δ)

(19)

= P(UQ(k− 1) = ℓ) + 1− P(UQ(k− 1) = ℓ) = 1 (20)

Equation (17c) defines the expected flow in UQ(k − 1) as the difference between: (i) aggregated
(over time) flow that has entered the link up until the end of time interval k − 2 (first summation)
and (ii) aggregated (over time) vehicular flow that has left the link up until the end of time interval
k−kbwd−2 (second summation). The second summation accounts for the kinematic backward wave
delay.
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Case qLLO(k) > 0

When qLLO(k) > 0, we account for all three service processes that flow within UQ goes through,
which were mentioned at the start of Section 2.2.2. This leads us to approximate UQ(k) as an
M/G/ℓ/ℓ system. Let us detail this. Denote SDQ(k) the sojourn time of DQ(k) system. First, since
the service time of UQ(k) is the sum of that of these three processes, we assume it to be generally
distributed. The expected service time, E[SUQ(k)], is given by:

E[SUQ(k)] = kfwd + E[SDQ(k)] + kbwd (21)

where E[SDQ(k)] is the expected sojourn time of the DQ(k) system. Second, we approximate UQ(k)
as a multi-server, rather than a single-server, queueing system. This is because the flow in LI and in
LO is served (or processed) simultaneously, rather than sequentially.

We introduce the following notation.

P(UQ(k) = ℓ) probability of UQ(k) being full at the end of time interval k (which is also
the beginning of time interval k+ 1);

Pk(UQ = ℓ) time-interval specific stationary probability of UQ = ℓ;
τUQ(k) inverse of the relaxation time during time interval k.

If qLLO(k) > 0, then we use the same functional form as for DQ(k) (Eq. (5)) to approximate
P(UQ(k) = ℓ):

P(UQ(k) = ℓ) = Pk(UQ = ℓ) +
[
P(UQ(k− 1) = ℓ) − Pk(UQ = ℓ)

]
e−τUQ(k)δ. (22)

Just as for DQ(k) (Eq. (5)), the transient probability P(UQ(k) = ℓ) is defined as the sum of a time-
interval specific stationary probability (term Pk(UQ = ℓ)) and a term that decays exponentially with
time and accounts for the difference between the initial conditions (P(UQ(k − 1) = ℓ)) and the
corresponding stationary probability (Pk(UQ = ℓ)).

The stationary probability Pk(UQ = ℓ) of Equation (22) is approximated as follows:
Pk(UQ = ℓ) =

ρUQ(k)
ℓ/ℓ!∑ℓ

n=0 ρUQ(k)n/n!
(23a)

ρUQ(k) = λ(k)(kfwd + E[SDQ(k)] + kbwd) (23b)

E[SDQ(k)] =
ℓρDQ(k)

ℓ+1 − (ℓ+ 1)ρDQ(k)
ℓ + 1

µ(k)(1− ρDQ(k)ℓ)(1− ρDQ(k))
. (23c)

The system M/G/ℓ/ℓ has been extensively studied and is known as the Erlang loss model. Studies
of the transient blocking probability of an M/G/ℓ/ℓ system include Jagerman (1974, 1975) and
Davis et al. (1995). Jagerman (1975, Equation (166)) expresses the transient blocking probability of
M/M/ℓ/ℓ systems as the sum of the corresponding stationary probability (known as the Erlang-B
formula, it is presented below) and a term that decays exponentially with time. We consider generally
distributed, rather than Markovian, service times. Nonetheless, we use a similar functional form for
the transient probability.

11



Equation (23a) is the stationary blocking probability for an M/G/ℓ/ℓ. It is known as the Erlang-B
formula. It was first derived by Erlang (1917) for an M/M/ℓ/ℓ, Khinchin (1962) later proved that it
holds for generally distributed service times with finite expectation. Equation (23b) is the definition
of the traffic intensity of the M/G/ℓ/ℓ: it is the ratio of the arrival rate (λ(k)) to the inverse of the
expected service time, which is given by Equation (21). Equation (23c) approximates the expected
sojourn time (waiting plus service time) of DQ(k). As discussed in Section 2.2.1, DQ(k) is modeled
as an M/M/1/ℓ queue with arrival rate λDQ(k) and service rate µ(k). For such a queueing system,
there is a closed-form expression for the expected sojourn time (e.g., Gross (2008, Chap. 2, Equations
(2.48) and (2.51))), which yields Equation (23c).

The endogenous parameter τUQ(k) of Equation (22) represents the inverse of the relaxation time. As
discussed in Section 2.2.1, it measures the speed of convergence to the stationary value. We propose
the following formulation for τUQ(k):

τUQ(k) = α4

µ(k)

CDQ(k)ℓ2
+ α5

µ(k)

ℓ2
(24a)

CDQ(k) =
√

Var(SDQ(k))/E[SDQ(k)] (24b)

Var(SDQ(k)) = [ℓρDQ(k)
2ℓ+2 − 2ℓρDQ(k)

2ℓ+1 + (ℓ+ 1)ρDQ(k)
2ℓ − ℓ(ℓ+ 1)ρDQ(k)

ℓ+2

+ 2ℓ(ℓ+ 1)ρDQ(k)
ℓ+1 − (ℓ2 + ℓ+ 2)ρDQ(k)

ℓ + 1]/[µ(k)2(1− ρDQ(k)
ℓ)2(1− ρDQ(k))

2],
(24c)

where α4 and α5 are exogenous scalar coefficients.

Studies of the relaxation time of an M/G/ℓ/ℓ system are limited. Equations (24a) and (24b) are
inspired from the work of Davis et al. (1995). Davis et al. (1995) study non-stationary Erlang loss
models with a special focus on Mt/PH/n/n systems. They observe that the inverse of relaxation
time decreases, as the variability of the service time increases. In other words, the more variable the
service time, the longer it takes to reach stationarity. Recall that the service time of UQ(k) (denoted
SUQ(k)) is the sum of three parts: two constant delays in LI and LO (i.e., kfwd and kbwd) and the
sojourn time in DQ(k) (denoted SDQ(k)). Hence, the variability of the service time of UQ(k) only
comes from the variability of the sojourn time of DQ(k). We use the coefficient of variance of
SDQ(k), which is unit-free, as a measure of the variability of SUQ(k). The coefficient of variance
of SDQ(k) (denoted CDQ(k)) is defined by Equation (24b). In Equation (24a), τUQ(k) is inversely
proportional to CDQ(k). This implies that the larger the variability of SUQ(k), the larger CDQ(k), the
smaller τUQ(k), and thus the longer it takes to reach stationarity.

The variable CDQ(k) (of Eq. (24b)) is defined as a function of the expectation of SDQ(k), which
is given by Equation (23c), and of the variance of SDQ(k), which is given by Equation (24c). The
latter is obtained as follows. Recall from Section 2.2.1 that DQ(k) is approximated as an M/M/1/ℓ

system, the closed form expression for the variance of the sojourn time of such a system is derived in
Appendix C and is given by Equation (24c).

Similar to our reasoning for τDQ(k), the expression for τUQ(k) should vary directly with the time
units of the arrival and service rates. Equation (24a) contains two additive terms, both of which are
directly proportional to µ(k) (note that CDQ(k) and ℓ are unit-free). Hence, τUQ(k) satisfies this
property.
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We use the same 84 simulation experiments described in Section 2.2.1 to fit the two exogenous scalar
coefficients α4 and α5 of Equation (24a). A description of how these coefficients were estimated is
given in Appendix D.

2.2.3 Algorithm

Algorithm 1 summarizes the proposed model. Steps 1 through 5 are initialization steps. Step 6 is
carried out iteratively, it yields for each time interval the two key probabilities: P(DQ(k) = 0)
and P(UQ(k) = ℓ), as well as expected link inflow (qin(k)) and expected link outflow (qout(k)). All
function evaluations can be done sequentially and no simultaneous evaluation of a system of equations
is required. This makes our algorithm computationally efficient.

3 Validation

In this section, we evaluate the accuracy and the computational efficiency of the proposed model. We
benchmark its performance versus the multivariate model of Osorio and Flötteröd (2015) and versus
the mixture model of Lu and Osorio (2018). The analytical approximations provided by each of
the three analytical models are compared to simulation-based estimates obtained from the stochastic
simulator that was used as a benchmark in the validation experiments in Osorio and Flötteröd (2015)
and in Lu and Osorio (2018).

The simulator is a discrete-event implementation of the link transmission model (LTM) (Yperman
et al.; 2007). More specifically, it implements a stochastic LTM with an inhomogeneous Poisson
arrival process at the upstream end of the link and a stochastic departure process at the downstream
end of the link. The simulator samples individual vehicles, it implements the exact forward and
backward lags. The vehicles at the downstream end of the link are served following a first-come
first-serve rule. The service times are independent and identically distributed exponential random
variables. The simulated estimates are obtained from 106 simulation replications.

The validation experiments are those used in Lu and Osorio (2018). We consider a link with param-
eters defined in Table 1. First, we consider two experiments with time-varying demand and evaluate
the ability of the proposed model to approximate the upstream and downstream boundary conditions.
The space capacity of the link, ℓ, is fixed at 10 for both experiments. The link is initially empty.
Experiment 1 considers a case where traffic conditions change from uncongested to highly-congested
(i.e., µ(k) < λ(k)) and then to congested. More specifically, it considers an arrival rate, λ(k), of 0.1
veh/sec during the time [0, 125] seconds, of 0.5 veh/sec for [125, 175] seconds and of 0.3 veh/sec for
[175, 300] seconds. Experiment 2 considers a case where traffic conditions change from congested
to uncongested and then to highly-congested. It considers an arrival rate of 0.3 veh/sec during time
[0, 100] seconds, of 0.1 veh/sec for [100, 200] seconds and of 0.5 veh/sec for [200, 300] seconds.

Figure 2 considers experiment 1. The left (resp. right) plot considers P(DQ(T) = 0) (resp. P(UQ(T) =
ℓ)). For each plot, the x-axis displays the integer time T in seconds and the y-axis displays the corre-
sponding probability. The simulated estimates are displayed as a red line with asterisks, those of the
proposed model are the black solid line, those of the the multivariate model are the black dot-dashed
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Algorithm 1 Link model algorithm

1. set exogenous link parameters ρ̂, v,w, ℓ and the duration of each time interval δ

2. compute the forward and backward lags: kfwd = ⌈ ℓ
ρ̂v
⌉ and kfwd = ⌈ ℓ

ρ̂|w|
⌉

3. set, for each time interval, the exogenous arrival rates and service rates λ(k) and µ(k) for
∀ k = 1, 2, ...

4. set initial link conditions: qin(0), qout(0), qUQ(0), qLLO(0), P(UQ(0) = ℓ) and P(DQ(0) = 0)

5. set qin(k) = 0 and qout(k) = 0 for k < 0

6. repeat the following for time intervals k = 1, 2, ...

(a) compute λDQ(k) and qLLO(k) according to Eq. (4) and Eq. (10), respectively

(b) compute ρDQ(k) according to Eq. (6b)

(c) compute Pk(DQ = 0) and τDQ according to Eq. (6a) and Eq. (7b), respectively

(d) compute τDQ(k) according to Eq. (7a)

(e) compute P(DQ(k) = 0) according to Eq. (5)

(f) if qLLO(k) = 0:

i. compute qUQ(k− 1) according to Eq. (17c)
ii. compute f(i, qUQ(k− 1)δ) ∀i ∈ {0, 1, ..., ℓ− 1} according to Eq. (17b)

iii. compute P(N(k) ≥ ℓ − i) ∀i ∈ {0, 1, ..., ℓ} and compute P(UQ(k − 1) = i) ∀i ∈
{0, 1, ..., ℓ− 1} according to Eq. (16) and Eq. (17a), respectively

iv. compute P(UQ(k) = ℓ) according to Eq. (15)

else:

i. compute E[SDQ(k)] and Var(SDQ(k)) according to Eq. (23c) and Eq. (24c), respec-
tively

ii. compute ρUQ(k) and CDQ(k) according to Eq. (23b) and Eq. (24b), respectively
iii. compute Pk(UQ = ℓ) and τUQ(k) according to Eq. (23a) and Eq. (24a), respectively
iv. compute P(UQ(k) = ℓ) according to Eq. (22)

(g) compute qin(k) and qout(k) according to Eq. (2) and (3), respectively
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Parameter Value
v 0.01 km/sec
w −0.005 km/sec
ρ̂ 200 veh/km
q̂ 2400 veh/h = 0.67 veh/sec
δ 1 sec

µ(k) 1440 veh/h = 0.4 veh/sec
λ(k) varies by experiment

ℓ, L, kfwd, kbwd varies by experiment

Table 1: Link parameters
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Figure 2: Experiment 1: impact of the temporal variation of demand on the link’s upstream and
downstream boundary conditions

line, and those of the mixture model are the black dashed line. The simulated estimates are displayed
with 95% confidence intervals, which are barely visible.

Recall that in experiment 1, there is a sharp increase in demand at time T = 125 seconds and a sharp
decrease at time T = 175 seconds. The changes in P(DQ(T) = 0) and P(UQ(T) = ℓ) are visible
for all models. More specifically, as congestion increases, we expect P(DQ(T) = 0) to decrease and
P(UQ(T) = ℓ) to increase. Similarly, as congestion decreases, we expect P(DQ(T) = 0) to increase
and P(UQ(T) = ℓ) to decrease. All models exhibit these trends. They all capture the sharp decrease
and increase trends of the simulator. The multivariate model yields the most accurate approximation.
The largest deviation from the simulated estimates of P(DQ(T) = 0) comes from the proposed model
during the time interval [125, 175]. For P(UQ(T) = ℓ), the largest deviation comes from the mixture
model during the time interval [175, 300]. Overall, the proposed model yields a good approximation
of both probabilities P(DQ(T) = 0) and P(UQ(T) = ℓ).
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Figure 3: Experiment 2: impact of the temporal variation of demand on the link’s upstream and
downstream conditions

The results of experiment 2 are displayed in Figure 3. These plots have the same layout as those
of Figure 2. The simulated estimates are displayed with 95% confidence intervals, which are barely
visible. Recall that experiment 2 considers a sharp decrease in demand at T = 100 seconds and a
sharp increase at T = 200 seconds. The left plot shows an increase in P(DQ(T) = 0) after T = 100

seconds and a decrease after T = 200 seconds. The right plot shows that the spillback probability
(P(UQ(T) = ℓ)) decreases after T = 100 seconds and increases after T = 200 seconds. All analytical
models capture these sharp changes in probability mass. Once again, the multivariate model is the
most accurate. The mixture model yields a less accurate approximation of the stationary value of the
spillback probability during the congested and the highly congested regimes. The proposed model
yields a less accurate approximation of both the stationary probability that DQ is empty and the
stationary spillback probability during the highly congested regime. All three models approximate
well the dynamics of the link’s boundary conditions for sudden and significant changes in congestion
levels.

Next, we benchmark the accuracy of the proposed model over a set of 21 experiments, which con-
sider all combinations of the following arrival rates (λ ∈ {0.1, 0.2, 0.3} veh/sec) and space capacities
(ℓ ∈ {10, 20, 30, 40, 60, 80, 100}). The space capacity values considered correspond to link lengths
L ∈ {50, 100, 150, 200, 300, 400, 500} (in meters), forward lags kfwd ∈ {5, 10, 15, 20, 30, 40, 50} (in
seconds) and backward lags kbwd ∈ {10, 20, 30, 40, 60, 80, 100} (in seconds). All experiments start
with an empty link and have a duration of 250 seconds. For each experiment and each model, we set
a maximum computation runtime of 40 hours. Model evaluations that have not concluded within the
40 hours are terminated.

The error metric used to evaluate the accuracy of a given analytical model is the average absolute
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difference between the simulated estimate and the analytical approximation:

ēDQ =
1

250

250∑
T=1

|PA(DQ(T) = 0) − PS(DQ(T) = 0)| (25)

ēUQ =
1

250

250∑
T=1

|PA(UQ(T) = ℓ) − PS(UQ(T) = ℓ)|, (26)

where PA denotes the probability approximated by an analytical model (proposed, mixture or multi-
variate) and PS denotes the simulated estimate.

Figure 4 displays the average absolute difference for the 21 experiments. The top (resp. bottom) three
plots consider the spillback probability P(UQ(T) = ℓ) (resp. P(DQ(T) = 0)). The first, second
and third column of plots consider the experiments with arrival rate 0.1 veh/sec, 0.2 veh/sec and 0.3

veh/sec, respectively. Each plot compares the three models: the proposed model (circles), the mixture
model (asterisks) and the multivariate model (triangles). The x-axis displays the space capacity (i.e.,
ℓ) and the y-axis displays the average absolute difference (i.e., ēUQ or ēDQ). The top three plots,
which consider the spillback probability, have the y-axis in logarithmic scale. For the experiments
with space capacity greater than 30 (ℓ > 30), the multivariate model does not conclude within 40

hours, hence these runs are terminated and are not displayed in the plots.

The main insights from Figure 4 are as follows. For most experiments, the multivariate model gives
the lowest errors for both P(UQ(T) = ℓ) and P(DQ(T) = 0), followed by the mixture model. For
all analytical models, holding the space capacity ℓ constant, experiments with larger arrival rate have
larger errors. Holding the arrival rate constant, experiments with smaller ℓ have larger errors. For
the spillback probabilities (i.e., top three plots), both the proposed model and the mixture model have
errors that decrease exponentially as the space capacity ℓ increases. As the space capacity increases,
the error in the approximation of P(DQ(T) = 0) (bottom three plots) first decreases and then remains
around a low value for both the proposed model and the mixture model. The numerical values of the
errors displayed in Figure 4 are provided in Appendix E (Tables 3 and 4). The average (over the 21
experiments) ēUQ and ēDQ of the proposed model are 0.0007 and 0.0035, respectively, whereas those
of the mixture model are 0.0024 and 0.0025. Compared to the mixture model, the proposed model,
on average, gains accuracy in approximating the upstream boundary conditions and loses accuracy in
approximating the downstream boundary conditions.

Overall, the multivariate model has the highest accuracy, yet is computationally inefficient for large
space capacity values. The proposed model and the mixture model have comparable accuracy. The
proposed model performs well for both time-varying and constant demand experiments.

We now compare the multivariate model, the mixture model and the proposed model in terms of com-
putational runtime. Figure 5 compares the runtimes for the 21 experiments. Figure 5(a), 5(b) and 5(c)
consider the experiments with arrival rate 0.1 veh/sec, 0.2 veh/sec and 0.3 veh/sec, respectively. For
each plot, the x-axis displays the space capacity ℓ and the y-axis displays the computational runtime
(in seconds). The y-axis is plotted on a logarithmic scale. Each plot considers runtimes of the three
models: proposed (circles), mixture (asterisks) and multivariate (triangles). Since the multivariate
model does not conclude within 40 hours for experiments with ℓ > 30, they are not evaluated. As
illustrated in Figure 5, regardless of the arrival rates, the runtime of the multivariate model increases
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exponentially with ℓ, that of the mixture model increases linearly, while for the proposed model, the
computational runtime appears constant over all experiments. The average runtime over the 21 ex-
periments of the proposed model is 0.26 seconds, whereas that of the mixture model is 3.03 seconds.
The average runtime is improved by one order of magnitude.

In summary, for all experiments with both constant or time-varying demand, the proposed model
performs comparably with the mixture and multivariate model in describing the dynamics of the
link’s boundary conditions. The gain in computational runtime is significant and increases as the
space capacity increases.

4 Case study

In this section, we evaluate and benchmark the computational efficiency of the proposed model with a
traffic signal control problem for the Swiss city of Lausanne. The signal control problem considered
is the same as that studied in Lu and Osorio (2018). Section 4.1 formulates the problem. Section 4.2
presents the numerical results and evaluates the computational runtime of the proposed model com-
pared to the mixture model. It also compares the derived signal plans with the signal plan proposed
by a widely used commercial software.

4.1 City-scale signal control

The Lausanne network consists of 603 links, 902 lanes and 231 intersections. We consider a fixed sig-
nal control problem in which we determine the signal plans of 17 intersections distributed throughout
the network. The signal plans of the 17 intersections are determined jointly. The problem is a fixed-
time signal control problem for the evening peak period 5:00-5:30pm. The decision variables are the
green splits of the signal phases of different intersections. All other traditional control variables (e.g.,
cycle times and offsets) are fixed. This lead to a total of 99 endogenous signal phase variables (i.e.,
the decision vector is of dimension of 99). We use the following notation.

bd ratio of available cycle time to total cycle time for intersection d;
x vector of green splits;
x(j) green split of signal phase j;
xLB vector of lower bounds for green splits;
D set of intersection indices;
PD(d) set of endogenous signal phase indices of intersection d;
L set of all lanes;
T̃ total number of one-minute time intervals;
N1 number of lanes, i.e., cardinality of L.

The problem is formulated as follows:

min
x

f(x) =
1

T̃N1

∑
i∈L

T̃∑
t̂=1

P(UQi(t̂; x) = ℓi) (27)
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subject to ∑
j∈PD(d)

x(j) = bd, ∀d ∈ D (28)

x ≥ xLB. (29)

The decision vector, x, is the green splits of the signal controlled lanes. Constraint (28) ensures that,
for every intersection, the sum of the green times equals the available cycle time. Constraint (29)
sets lower bounds, which are set to 4 seconds in this case study. P(UQi(t̂; x) = ℓi) denotes the
spillback probability of lane i at integer time t̂ under signal plan x. Therefore, the objective function
is the average (over space and over time) spillback probability. The goal is to find a signal plan
that minimizes the spatial and temporal occurrence of spillbacks. For other implementation details,
we refer the reader to Section 4.1 of Lu and Osorio (2018). The above problem is solved with the
proposed model and with the mixture model using the interior-point algorithm of the fmincon routine
of Matlab (MATLAB; 2016). The maximum runtime is set to 24 hours. If the algorithm does not
converge to a local optimal solution within the time limit, the algorithm is terminated and the current
iterate is used as the final solution.

4.2 Numerical results

For each model, Problem (27)-(29) is solved considering four different initial points. The initial points
are drawn uniformly randomly from the feasible region (Equations (28)-(29)). The uniform sampling
is conducted using the code of Stafford (2006).

For the proposed model, all four optimization runs (i.e., one for each initial point) conclude within
the time limit. Actually, they all finish within 2.5 hours. For the mixture model, the algorithms do
not converge within the time limit. Table 2 compares the average computation time (in minutes) per
algorithmic iteration. Each column of Table 2 corresponds to a different initial point. For the proposed
model, the average runtime per iteration is in the order of 1 minute, while for the mixture model it is
in the order of 2.4 hours (i.e., 146 minutes). The proposed model reduces the runtime per iteration by
2 orders of magnitude.

Initial point 1 2 3 4
Mixture model 144.98 146.14 144.37 149.38

Proposed model 1.31 1.31 1.31 1.30

Table 2: Average runtime (in min) per iteration of the signal control optimization algorithm

We now compare the performance of the derived signal plans. To evaluate the performance of a given
signal plan, we use a microscopic traffic simulation model of Lausanne (Dumont and Bert; 2006),
which is calibrated for the evening peak period demand. It is implemented in the Aimsun software
(TSS; 2014). For a given signal plan, we embed it within the microscopic simulation software, and
evaluate 50 simulation replications. Each replication consists of a warm-up period of 15 minutes
followed by a simulation period of 30 minutes. For each simulation replication, we estimate the
objective function (Eq. (27)), which is the average (over lanes) proportion of time (over 30 minutes)
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a lane is full. For each signal plan, we construct a cumulative distribution function (cdf) of these 50

objective function observations.

Each plot of Figure 6 considers a different initial signal plan and plots three cdf curves: one for
the initial signal plan (dashed line), one for the solution derived by the proposed model (solid line),
and one for the solution derived by the mixture model (dot-dashed line). The x-axis displays the
objective function realizations (i.e., average (over all the lanes in the network) proportion of time a
lane is full). The y-axis displays the proportion of the 50 simulation replications that have objective
function realizations smaller than x. Hence, the more a cdf curve is shifted to the left, the better the
performance of the corresponding signal plan. For all 4 plots (Fig. 6(a)-6(d)), the cdf of the derived
signal plans, from both the mixture model and from the proposed model, are to the left of the initial
signal plan. Hence, both models identify signal plans that outperform the initial signal plans. This
holds for all initial signal plans. Paired-sample t-tests at a significance level of 5% are carried out to
test for differences (in the average proportion of time a lane is full) between the signal plans derived
by the proposed model and by the mixture model. For Figures 6(b) and 6(c), the plan derived by the
proposed model has statistically improved performance compared to the plan derived by the mixture
model. For Figures 6(a) and 6(d) both models yield plans with statistically similar performance.

Figures 7 compares the performance of the signal plans in terms of the average lane queue-length
(in vehicles). As before, it compares the cdf curves of the different signal plans. It has a similar
layout as Figure 6. As before, the more a cdf curve is shifted to the left, the better its performance
(i.e., the higher the proportion of simulation replications, out of the 50, that have low average lane
queue-lengths). All four plots in Figure 7 indicate that all derived signal plans outperform their
corresponding initial signal plans. The derived signal plans from both analytical models have similar
performance.

Figure 8 compares the performance of the signal plans in terms of the average trip travel times (in
minutes). For all initial points, the corresponding derived solutions yield lower average trip travel
times compared to the initial points. The signal plans derived by the proposed model and by the
mixture model have similar performance.

We compare the performance of the derived signal plans with that of a signal plan proposed by the
widely used commercial software Synchro (Trafficware; 2011). Synchro is a signal control opti-
mization software based on a deterministic macroscopic traffic model, it does not solve the same
optimization problem (27)-(29). For details on how the Synchro signal plan is derived, we refer the
reader to Section 5.3 of Osorio and Chong (2015). Figures 9, 10 and 11 display, respectively, the
three performance metrics: average proportion of time a lane is full, average lane queue-length and
average trip travel time. Each figure contains 9 cdf curves: four black dashed lines for the four initial
points, four solid thin lines for the four solutions derived by the proposed model and one solid thick
line for the signal plan proposed by Synchro. For all figures, the left-most curves are the ones corre-
sponding to the signal plans derived by the proposed model. In other words, for all three performance
metrics, the signal plans derived by the proposed model outperform both the initial signal plans and
the signal plan derived from Synchro. For each figure, the performance of the four initial points varies
significantly, while that of the proposed signal plans is similar. In other words, the proposed method
is robust to the quality of the initial points.

In summary, compared to the mixture model, the proposed model improves the runtimes by 2 orders
of magnitude, on average, and yields signal plans with improved or similar performance. This case
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study illustrates the scalability and efficiency of the proposed model. It is suitable for large-scale
network analysis and optimization.

5 Conclusion

This paper formulates an analytical probabilistic stochastic model that is scalable and suitable for
large-scale network optimization. The main idea of the proposed model is to describe the link’s
boundary conditions with only two key probabilities instead of tracking the full marginal, or full joint,
distributions. More specifically, while the dimension of the state space of the models of Osorio and
Flötteröd (2015) and of Lu and Osorio (2018) scales cubically and linearly, respectively, with the
link’s space capacity, the proposed model has a constant dimension of 2. Hence, it scales indepen-
dently of the link attributes such as the link’s space capacity. This makes it suitable for large-scale
network analysis and optimization. The model is validated versus stochastic simulation results from
a simulation-based implementation of a stochastic link transmission model. The model’s accuracy is
comparable to that of Osorio and Flötteröd (2015) and of Lu and Osorio (2018), while being more
computationally efficient. The proposed model is then used to address a signal control problem for
the city of Lausanne (Switzerland). The derived solutions are benchmarked with those derived by the
mixture model of Lu and Osorio (2018). The derived signal plans from both the proposed model and
the mixture model have similar performance, considering various performance metrics. They both
outperform the initial plans and a signal plan proposed by a widely used commercial software. Com-
pared to the model of Lu and Osorio (2018), the proposed model reduces computational runtime by 2
orders of magnitude.

Future work focuses on the formulation of scalable stochastic network models, the goal is to be able
to recover the joint distribution of a path or a network. First, there is a need to formulate scalable
probabilistic node models that are consistent with their deterministic counterparts. Osorio et al. (2011)
includes a two-link probabilistic node model that provides the dependencies of the links’ boundary
conditions across a node. It yields the joint distribution of the downstream boundary conditions of the
upstream link and the upstream boundary conditions of the downstream link. The extension of this
formulation to nodes with multiple incoming and outgoing links is part of ongoing work. Second,
scalable and computationally efficient network model formulations are required. Consider a network
of n links, directly coupling the proposed link model with the node model of Osorio et al. (2011)
would yield a complexity of O(2n), which is not scalable. Possible techniques to achieve scalability
include network decomposition (Flötteröd and Osorio; 2017) and aggregation-disaggregation (Osorio
and Yamani; 2017; Osorio and Wang; 2017).
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Appendices

A Calculation of limℓ→∞ τDQ of Equation (8)

In this appendix, we derive the limit of τDQ (Equation (7b)) as ℓ goes to infinity.

lim
ℓ→∞ τDQ = lim

ℓ→∞
µ(k)(1− ρ(k))2ℓ+ 1.5λDQ(k)ρ(k)

√
ℓ

(1+ ρ(k))(ℓ+ 1)
(30)

= lim
ℓ→∞

µ(k)(1− ρ(k))2ℓ

(1+ ρ(k))(ℓ+ 1)
+ lim

ℓ→∞
1.5λ(k)ρ(k)

√
ℓ

(1+ ρ(k))(ℓ+ 1)
(31)

=
µ(k)(1− ρ(k))2

(1+ ρ(k))
lim
ℓ→∞

ℓ

ℓ+ 1
+

1.5λ(k)ρ(k)

(1+ ρ(k))
lim
ℓ→∞

√
ℓ

ℓ+ 1
(32)

=
µ(k)(1− ρ(k))2

(1+ ρ(k))
· 1+ 1.5λ(k)ρ(k)

(1+ ρ(k))
· 0 (33)

=
µ(k)(1− ρ(k))2

(1+ ρ(k))
. (34)

B Estimation of the scalar coefficients in τDQ(k)

This appendix describes the procedure to fit the exogenous coefficients (αi for i = 1, 2, 3) of Equation
(7). A total of 84 simulation experiments considering combinations of ρ = λ/µ ∈ {0.25, 0.5, 0.75, 1.25};
µ ∈ {0.2, 0.4, 0.6}; ℓ ∈ {10, 20, 30, 40, 60, 80, 100} are conducted. Each experiment considers a dura-
tion of 250 seconds. The simulator yields an estimate of P(DQ(k) = 0), denoted PS(DQ(k) = 0),
for all k = 1, ..., 250. The coefficients αi (for i = 1, 2, 3) are fit such as to minimize, over all 84
experiments, the error function given by Equation (25) and rewritten here:

ēDQ =
1

250

250∑
T=1

|PA(DQ(T) = 0) − PS(DQ(T) = 0)|, (35)

where PS(DQ(T) = 0) is the estimate from the simulator and PA(DQ(T) = 0) is the analytical
approximation obtained from Algorithm 1 with the following adjustments. At every time step k,

• P(UQ(k) = ℓ) is obtained from the simulator;

• λDQ(k) is obtained from the simulator;

• τDQ(k) is obtained from Equation (7), which depends on scalar parameters αi, i = 1, 2, 3.

In other words, perfect information about the link’s upstream boundary conditions is assumed in the
calculation of PA(DQ(k) = 0). Hence, PA(DQ(k) = 0) only depends on the choice of αi, i = 1, 2, 3

and thus the error function ēDQ only depends on αi, i = 1, 2, 3. The scalars are estimated jointly and
the numerical values obtained are: α1 = 12, α2 = 1.5 and α3 = 1.5.
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C Variance of the sojourn time of DQ(k)

In this section, we derive the expression for the variance of the sojourn time of DQ(k). Recall that
DQ(k) is approximated as an M/M/1/ℓ queue with arrival rate λDQ(k) and service rate µ(k). To
make the notation simpler, hereafter the time index k is dropped. Let ρ = λDQ/µ.

The probability density function of the sojourn time of a M/M/1/ℓ queue, denoted fSDQ
(t), is given

by Sztrik (2012, Chap. 2.4, Page 34):

fSDQ
(t) =

ℓ−1∑
n=0

µ
(µt)n

n!
e−µt P(DQ = n)

1− P(DQ = ℓ)
(36)

where P(DQ = n) is the steady state probability of DQ.

We use this probability density function expression to compute E[S2
DQ] as follows.

E[S2
DQ] =

∫∞
0

t2fSDQ
(t)dt (37)

=

∫∞
0

t2
ℓ−1∑
n=0

µ
(µt)n

n!
e−µt P(DQ = n)

1− P(DQ = ℓ)
dt (38)

=

∫∞
0

t2
ℓ−1∑
n=0

µ
(µt)n

n!
e−µt

(
1−ρ

1−ρℓ+1

)
ρn

1−
(

1−ρ

1−ρℓ+1

)
ρℓ
dt (39)

=
(1− ρ)

1− ρℓ

∫∞
0

t2
ℓ−1∑
n=0

µ
(µt)n

n!
e−µtρndt (40)

=
(1− ρ)

1− ρℓ

ℓ−1∑
n=0

ρn

∫∞
0

t(µt)n+1

n!
e−µtdt (41)

=
(1− ρ)

1− ρℓ

ℓ−1∑
n=0

ρn Γ(n+ 3)

µ2n!
(42)

=
(1− ρ)

(1− ρℓ)µ2

ℓ−1∑
n=0

ρn(n+ 2)(n+ 1) (43)

=
−ℓ(ℓ+ 1)ρℓ+2 + 2ℓ(ℓ+ 2)ρℓ+1 − (ℓ+ 1)(ℓ+ 2)ρℓ + 2

µ2(1− ρℓ)(1− ρ)2
(44)

Equation (39) is obtained from Equation (38) by substituting the closed-form expression of the steady
state probability distribution of an M/M/1/ℓ system (see Gross (2008, Chap. 2, Equation (2.49))),
which is given by:

P(DQ = n) =

(
1− ρ

1− ρℓ+1

)
ρn, ∀n ∈ {0, ..., ℓ}. (45)
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The expected value of the sojourn time of DQ is given by (see Eq. (23c)):

E[SDQ] =
ℓρℓ+1 − (ℓ+ 1)ρℓ + 1

µ(1− ρℓ)(1− ρ)
(46)

Hence the variance of the sojourn time of DQ is given by:

Var(SDQ) = E[S2
DQ] − E[SDQ]

2 (47)

=
ℓρ2ℓ+2 − 2ℓρ2ℓ+1 + (ℓ+ 1)ρ2ℓ − ℓ(ℓ+ 1)ρℓ+2 + 2ℓ(ℓ+ 1)ρℓ+1 − (ℓ2 + ℓ+ 2)ρℓ + 1

µ2(1− ρℓ)2(1− ρ)2

(48)

D Estimation of the scalar coefficients in τUQ(k)

This section describes the procedure to fit the exogenous coefficients α4 and α5 of Equation (24a).
The same set of 84 simulation experiments as described in Appendix B are used. The coefficients
αi for i = 4, 5 are fit by minimizing, over all 84 experiments, the following error function given by
Equation (26) and rewritten here:

ēUQ =
1

250

250∑
T=1

|PA(UQ(T) = ℓ) − PS(UQ(T) = ℓ)|, (49)

where PS(UQ(T) = ℓ) is the estimate from the simulator and PA(UQ(T) = ℓ) is the analytical
approximation, which is obtained from Algorithm 1 with the following adjustments. At every time
step k,

• P(DQ(k) = 0) is obtained from the simulator;

• qUQ(k) and qLLO(k) are obtained from the simulator;

• τUQ(k) is obtained from Equation (24), which depends on scalar parameters αi, i = 4, 5.

In other words, perfect information about the link’s downstream boundary conditions is assumed in
the calculation of PA(UQ(T) = ℓ). Hence, PA(UQ(T) = ℓ) only depends on the choice of αi,
i = 4, 5 and thus the error function ēUQ depends only on αi, i = 4, 5. The scalars are estimated
jointly and the numerical values obtained are: α4 = 0.1 and α5 = 25.

E Tables of mean absolute differences

Tables 3 and 4 display, respectively, the mean absolute error of the link’s upstream and downstream
boundary conditions.
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Experiment ēUQ

λ(k) ℓ Mixture Multivariate Proposed

0.1

10 4.60e− 5 6.50e− 6 3.67e− 5

20 7.07e− 11 4.29e− 9 3.11e− 10

30 7.58e− 16 3.17e− 13 5.39e− 15

40 8.54e− 21 NaN 9.20e− 20

60 1.14e− 30 NaN 3.01e− 29

80 1.55e− 40 NaN 1.18e− 38

100 2.05e− 50 NaN 5.09e− 48

0.2

10 6.44e− 3 1.07e− 4 3.79e− 3

20 1.41e− 4 9.56e− 6 1.23e− 4

30 2.32e− 6 1.08e− 6 2.26e− 6

40 6.82e− 8 NaN 6.86e− 8

60 1.59e− 16 NaN 6.17e− 15

80 1.12e− 21 NaN 1.24e− 19

100 7.78e− 27 NaN 2.75e− 24

0.3

10 3.11e− 2 3.85e− 4 4.08e− 3

20 1.11e− 2 1.19e− 4 5.85e− 3

30 2.27e− 3 4.73e− 5 1.86e− 3

40 3.85e− 4 NaN 3.62e− 4

60 8.04e− 6 NaN 7.98e− 6

80 1.25e− 7 NaN 1.25e− 7

100 1.01e− 15 NaN 7.02e− 13

Table 3: Mean absolute difference ēUQ of P(UQ(k) = ℓ). The value NaN denotes cases where the
evaluation of the multivariate model exceeded the limit of 40 hours.
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