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Abstract

Microscopic urban traffic simulators embed the most detailed traveler behavior and
network supply models. They represent individual vehicles and can therefore account
for vehicle-specific technologies. These simulators can be coupled with instantaneous
energy consumption and emissions models to yield detailed network-wide estimates
of energy consumption and pollutant emissions. Nonetheless, there is currently a
lack of computationally efficient optimization techniques that enable the use of these
complex integrated models to design sustainable transportation strategies.

This thesis proposes a methodology that combines a stochastic microscopic traffic
simulation model with an instantaneous vehicular fuel consumption model and con-
secutively, with an instantaneous vehicular emissions model. The combined models
are embedded within a simulation-based optimization (SO) algorithm and used to
address a signal control problem. First, a framework that combines travel time and
fuel consumption in the objective is formulated followed by one combining travel time
and various pollutant emissions. The proposed technique couples detailed, stochas-
tic and computationally inefficient models, yet is an efficient optimization technique.
Efficiency is achieved by combining simulated observations with analytical approxi-
mations of the objective functions.

This methodology is applied to a network within the Swiss city of Lausanne. The
proposed method identifies signal plans with improved travel time, fuel consumption
and emissions metrics, and does so within a tight computational budget. It system-
atically outperforms traditional techniques, particularly when performance metrics
with high variance, such as fuel consumption and emissions, are used. This method
enables the use of disaggregate instantaneous vehicle-specific information to inform
and improve traffic operations at the network-scale.

Thesis Supervisor: Carolina Osorio
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

The International Energy Agency (IEA, 2012) has estimated that over 50% of oil use

worldwide is from transport and three-quarters of the energy used in the transport

sector is consumed on the roads. The IEA also projects that without strong new

measures, road transport energy use will double between 2010 and 2050. The energy

consumed every day on our roads not only contributes to the depletion of a valuable

natural resource but the linear relationship between fuel consumption and carbon

dioxide (CO2) emissions means that urban traffic plays a role in global warming.

Apart from carbon dioxide emissions, urban traffic is also responsible for emissions of

pollutants like nitrogen oxides (NOx), volatile organic compounds (VOC) and partic-

ulate matter (PM). In a recent report published jointly by the World Health Organi-

zation and the Transport Policy Advisory Services of the German goverment (WHO

and GIZ, 2011), it estimated that road transport contributes up to 30% of PM con-

centrations in European cities and up to 69% in cities of the developing world. The

report also confirms that transport is a leading source of other air pollutants, includ-

ing carbon monoxide (CO), oxides of nitrogen, as well as benzene (part of the volatile

organic compound family) which causes formation of ground-level ozone also known

as smog. It finds that transport-related air pollutants increase the risk of a number of

health problems, including cardiovascular and respiratory disease, cancer and adverse

birth outcomes, and are associated with higher death rates in populations exposed.

Thus, there is a need to understand how the use of existing urban transportation
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infrastructure can be enhanced to reduce energy consumption and urban traffic emis-

sions. Signal control remains a viable solution in this regard: the re-timing effort

involved is low-cost and the environmental benefits can be realized within a short

time-span.

Over the past decade state-of-the-art traffic, fuel consumption and emissions sim-

ulators have been developed independently, coupled and extensively used to evaluate

the impacts of various transportation projects on traffic, fuel consumption and emis-

sions. Nonetheless, there is currently a lack of computationally efficient optimization

techniques that enable the use of these complex integrated models to design sustain-

able transportation strategies.

This thesis proposes a methodology that combines detailed traffic and fuel con-

sumption/emissions models, in order to design traffic signal control strategies that

improve both traditional traffic metrics (e.g., average network travel times) as well

as reduce total fuel consumption and emissions in the considered network. The main

challenge is to use the most detailed and thus inherently inefficient models, while

simultaneously deriving a computationally efficient methodology.

Traffic simulators can be primarily classified as macroscopic, mesoscopic or micro-

scopic according to their modeling scale (for reviews see Barceló (2010), Boxill and

Yu (2000), Algers et al. (1997)). Macroscopic simulators use models that describe the

progression of traffic along links as a function of average link speed, flow and den-

sity. Macroscopic models are therefore flow-based models that provide an aggregate

representation of traffic. Vehicles along a link are collectively represented. This leads

to models that have few parameters to calibrate, are computationally efficient and

well-suited to address large-scale networks. These advantages come at the cost of a

non-detailed (aggregate) description of traffic.

Microscopic models represent each individual traveler and/or vehicle. Driver-

specific attributes (e.g., socio-economic attributes) and vehicle-specific characteristics

(e.g. vehicle type, vehicle technology) can be accounted for. They provide a highly

detailed representation of network flows and use disaggregate behavioral models (e.g.,

departure-time choice, mode choice, lane changing, car-following) to describe the
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reaction of individual drivers towards network components, traffic conditions and

adjacent drivers. Such detail leads to data-intensive and computationally-intensive

models. Mesoscopic traffic simulators lie on the spectrum between microscopic and

macroscopic simulators.

Similarly, fuel consumption and emissions models can primarily be categorized as

macroscopic or microscopic (for reviews see Rakha et al. (2003), Cappiello (2002),

Williams and Yu (2001)). Macroscopic models estimate fuel consumption and emis-

sions based on average speed/acceleration. However, both metrics are known to

depend on the spatial-temporal variations of both speed and acceleration. Past work

has, for instance, shown how different instantaneous profiles associated with different

fuel consumption and emissions may lead to common average speed/acceleration pro-

files (Rakha et al., 2000). Microscopic models rely on instantaneous (e.g., second-by-

second) speeds and accelerations of individual vehicles to estimate fuel consumption

and emissions and are thus considered more accurate.

Integrating microscopic traffic models with microscopic fuel consumption/emissions

models is particularly suitable when studying the impact of network changes on fuel

consumption and emissions. While the traffic model accounts for the complex vehicle-

to-vehicle and vehicle-to-supply interactions, the fuel consumption/emissions model

gives detailed estimates of the fuel consumed and the different types of pollutants

emitted, with the choice of various levels of aggregation from individual vehicles to

network-level estimates. However, the detail of such integrated models comes with

an increased computational evaluation cost, as well as a greater challenge to embed

them within an optimization framework.

This thesis focuses on the development of computationally efficient simulation-

based optimization (SO) techniques which account for environmental metrics such as

fuel consumption and emissions in the objective and can yield solutions within a tight

simulation budget (defined as a maximum number of simulation runs or run time).

Such techniques respond to the needs of practitioners by allowing them to address

real problems in a practical manner. In the remainder of this chapter, we present a

brief description of the thesis structure. This thesis is organized as follows:
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Chapter 2 describes the methodology used to incorporate fuel consumption within

an SO framework and the application of this framework to a case study in Lausanne, a

city in Switzerland. The empirical results obtained in this case study were presented

at the 4th International Symposium on Dynamic Traffic Assignment (Osorio and

Nanduri, 2012) and also submitted for journal publication.

Chapter 3 presents the formulation of the proposed SO algorithm when it is applied

to address a traffic signal control problem accounting for emissions. Once again,

results from a Lausanne city case study are analyzed. This chapter will also be

submitted for journal publication.

Chapter 4 enumerates some conclusions summarizing the main ideas in the thesis

and presents an outlook for future lines of research that can arise based on the results

of this study.

Appendices. The appendices provide: A) the formulation of the analytical queue-

ing network model used in this study, which was proposed by Osorio and Bierlaire

(2009a and 2009b); B) Details regarding the formulation of the trust-region subprob-

lem used to derive a trial point at each iteration of the SO algorithm proposed by

Osorio and Bierlaire (2010).
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Chapter 2

Energy-efficient signal control

2.1 Literature review

The interactions between traffic operations and fuel consumption have been exten-

sively investigated over the past three decades, since the seminal work of Robertson

(1983). In this section, we review recent work that has coupled traffic simulators

with fuel consumption models to address urban transportation problems. For early

references, we refer the reader to the review presented in Liao and Machemehl (1998).

Ikeda et al. (1999) modify the usual objective function (called the performance

index) of the macroscopic TRANSYT (Robertson, 1969) signal control technique to

explicitly account for fuel consumption. A case study considering a 10-link linear

network in Yokohama, Japan, is carried out. Li et al. (2004) develop a macroscopic

fuel consumption and emissions model that is combined with a macroscopic traffic

model. The combined model is used to evaluate the impact of a set of predetermined

cycle length values of a signal plan for one intersection in Nanjing, China.

Zegeye et al. (2010) couple the macroscopic traffic model METANET (Messmer

and Papageorgiou, 1990) with a microscopic fuel consumption and emissions model

VT-Micro (Rakha et al., 2004). As a macroscopic model, METANET provides only

average link speeds and accelerations. These are plugged into VT-Micro (at every

simulation step) as if they were instantaneous vehicle speeds. The combined mod-

els are embedded within a dynamic control framework. They consider a dynamic

17



speed limit problem along with an objective function that combines three metrics:

total travel time, total fuel consumption and total CO2 emissions. Their case study

considers a hypothetical 12km 2-lane freeway.

Cappiello (2002) couples a mesoscopic traffic model (Bottom, 2000) with a micro-

scopic fuel consumption and emissions model. They consider a hypothetical 14-link

network, and evaluate the travel time and fuel consumption performance of a set

of predetermined variable message sign strategies. Williams and Yu (2001) use the

macroscopic traffic model DYNAMIC (Yu, 1994) along with a macroscopic fuel con-

sumption model. They consider two hypothetical networks with, respectively, one

and two signalized intersection(s) and evaluate the fuel consumption performance of

several predetermined cycle lengths.

In order to provide a more accurate representation of the interaction between ve-

hicular fuel consumption and supply changes, microscopic traffic and fuel consump-

tion models have been coupled. Stathopoulos and Noland (2003) use the microscopic

models VISSIM (PTV, 2008) and CMEM (Scora and Barth, 2006) albeit not in an

optimization context. The coupled models are used to evaluate the travel time, fuel

consumption and emissions impacts of a set of predetetermined scenarios for two

hypothetical transportation projects (capacity expansion of an arterial bottleneck,

synchronization of traffic signals) on a hypothetical linear network with three signal-

ized intersections

Rakha et al. (2004) develop a microscopic fuel/emissions model known as VT-

Micro. This model is used in Rakha et al. (2000) along with the microscopic simulator

INTEGRATION (Van Aerde, 1999) to evaluate the performance of predetermined

signal plans considering a linear network with four links and simple demand profiles.

To the best of our knowledge, the only work that has integrated microscopic traf-

fic and fuel consumption models to perform optimization is that of Stevanovic et al.

(2009). They integrate VISSIM (PTV, 2008) with CMEM (Scora and Barth, 2006),

and embed the coupled models within the signal optimization tool VISGAOST (Ste-

vanovic et al., 2008). Their case study considers a network of 2 arterials with 14

signalized intersections in Park City, Utah, USA. They investigate various formu-
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lations of the signal control problem (e.g., objective functions consider throughput,

stops, delay, fuel consumption or CO2 emissions). Their problems have over 100 sig-

nal control variables. For each problem they run a total of 60,000 simulation runs

(12,000 signal plans evaluated across 5 simulation replications each). This is a flexible

approach, yet is not designed to address problems under tight computational budgets.

To summarize, traffic models coupled with fuel consumption models have been

applied at macroscopic, mesoscopic and microscopic scales in traffic management.

Microscopic simulators incorporate disaggregate behavioral models which make them

ideal for scenario-based analysis and accurate estimation of network performance

measures (such as fuel consumption and travel time).

However, the use of microscopic simulators coupled with detailed fuel consumption

models has been mainly limited to evaluating the effect of a set of predetermined

alternatives. This can primarily be attributed to the challenges faced when integrating

microscopic simulators in an optimization framework. The outputs from the simulator

are stochastic and non-linear with possibilities for numerous local minima. Also, a

large number of replications are needed to derive accurate estimates of the objective

function thus driving up computational costs.

In the next section, a simulation-based optimization technique is proposed that

uses integrated microscopic traffic and fuel consumption models to address signal

control problems. The SO technique can identify signal plans with improved perfor-

mance within a limited computational budget, i.e. it is efficient. Additionally, we also

illustrate how highly variable outputs from traffic simulators (e.g., fuel consumption)

can be efficiently used for optimization purposes. This method enables the use of

disaggregate instantaneous vehicle-specific information to inform and improve traffic

operations at the network-scale.
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2.2 Methodology

2.2.1 Simulation-based optimization framework

In this thesis we use the SO framework of Osorio and Bierlaire (2010). Hereafter,

we refer to it as the initial framework. It allows for generally constrained continuous

optimization problems. The constraints have analytical differentiable expressions,

but there is no analytical expression of the objective function. The latter is defined

implicitly by the simulator. Such problems can be formulated as:

min
x∈Ω

g(x; p) ≡ E[G(x; p)], (2.1)

where the objective function g is the expected value of a suitable stochastic network

performance measure, G. It is a function of a deterministic continuous decision or con-

trol vector x and deterministic exogenous parameters p. The feasible space Ω consists

of a set of general, typically non-convex, deterministic, analytical and differentiable

constraints.

In a signal control problem x can represent the green times (or green splits) for

the signalized lanes, whereas p accounts, for example, for the total demand or the

network topology. Past work has used traditional performance measures, such as

expected travel time (Osorio and Bierlaire, 2010, Osorio and Chong, 2012, Chen et al.,

2012), as objective functions. This chapter considers a more challenging objective

that accounts both for expected travel time and for expected fuel consumption which

depends not only on traffic conditions but also on the underlying vehicle type and

technology.

A given simulation run yields a realization of the random variable G. A given

simulation run involves sampling for each vehicle (or traveler) from the numerous

probability distributions that account for uncertainty in, for instance, traveler behav-

ior (e.g., route choice for individual drivers) or traffic generation (e.g., headways of

vehicles entering the network). For any network performance measure G, E[G(x; p)]

is an intricate function of x.
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The SO approach used in this thesis, is based on a metamodel technique. We

give an overview of its main ideas below. For details, we refer the reader to Osorio

and Bierlaire (2010). Each iteration of the SO algorithm considers a given point

x and proceeds through two main steps. Firstly, it collects a sample of simulated

observations of G(x; p) and estimates g(x; p) by the sample average. The estimate

is denoted ĝ(x; p). This estimate along with estimates at other points in previous

iterations, are used to fit an analytical approximation of the objective function. The

latter is called the metamodel or surrogate model. Secondly, the metamodel is used

to solve a signal control problem, and to derive a trial point (e.g., new signal plan).

The performance of the trial point is then evaluated with the simulator (first

step), and the process iterates until the computational budget is depleted. This SO

technique resorts to a derivative-free trust region algorithm, which is based on the

algorithm of Conn et al. (2009). That is, at each iteration of the SO algorithm the

trial point is derived by solving a trust region subproblem.

The most common choice of a metamodel are generic functions, such as polyno-

mials. These are chosen for their analytical properties (e.g., they may asymptotically

provide an excellent local fit), yet may not provide a good global approximation of the

objective function. Additionally, their functional form is independent of the consid-

ered application or problem. The initial framework uses a metamodel that combines

a generic component with what is known in the metamodeling field as a physical

component. The latter is an application and problem-specific approximation of the

objective function.

The metamodel has the following form:

m(x, y;α, β, q) = αgA(x, y; q) + φ(x; β), (2.2)
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where the following notation is used:

m metamodel;

x decision vector;

gA approximation of the objective function derived by the analytical model;

φ polynomial quadratic in x with diagonal second derivative matrix;

y endogenous queueing model variables;

q exogenous queueing model parameters;

α, β metamodel parameters.

The metamodel is a combination of a physical component gA and a generic com-

ponent φ. The physical component gA is an analytical approximation of the objective

function provided by a physical model (e.g. a macroscopic urban traffic model or a

macroscopic fuel consumption model). For instance, the macroscopic traffic model

used in this thesis is based on finite capacity queueing theory (more details on this

model are given in Section 2.2.2). The physical component provides a global approxi-

mation of the objective function. Since it provides closed-form continuous expressions

for the performance measures and their first-order derivatives, it surmounts the main

limitations of the simulator; and thus leads to a computationally efficient SO algo-

rithm. The parameters of the metamodel, α and β, are fitted by using the simulated

observations and solving a least squares problem (see Osorio and Bierlaire (2010) for

details).

Past work has considered traditional objective functions, mainly expected travel

time, which can be relatively well approximated by macroscopic models. Nonethe-

less, the use of less traditional, as well as vehicle-technology dependent, objectives

functions remains a challenge.

This chapter considers an objective functions that accounts for vehicle-specific

fuel consumption in addition to travel time. This performance measure is highly

dependent on both vehicle types, vehicle technologies and instantaneous vehicle ac-

celerations and speeds, which have complex spatial-temporal variations in congested

networks. We consider tight computational budgets (i.e., few simulation runs are
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allowed), where deriving a suitable analytical approximation of the relationship be-

tween city-wide fuel consumption or emissions and signal plans is an even greater

challenge.

2.2.2 Traffic Models

We use the same traffic models as in the initial framework.

Microscopic simulation model

We use a microscopic traffic simulation model of the Swiss city of Lausanne (Dumont

and Bert, 2006). It is calibrated for evening peak period traffic. This model accounts

for the behavior of individual drivers within the network. Trips are generated based

on an origin-destination matrix, along with a headway model. Driver behavior is

modeled using car following, lane changing, gap acceptance and route choice models.

It is implemented with the Aimsun software (TSS, 2011).

Macroscopic analytical model

The analytical model combines ideas from finite capacity queueing theory, national

transportation norms, and other urban traffic models. It models each lane of an urban

network as a set of finite capacity queues. It is formulated as a system of nonlinear

equations (its formulation is given in Appendix A). Its formulation is derived in

Osorio and Bierlaire (2009b), which is based on the more general queueing network

model of Osorio and Bierlaire (2009a). The model uses the finite capacity queueing

theory notion of blocking to describe how congestion arises and propagates through

the network. It analytically approximates how upstream and downstream queues

interact.
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2.2.3 Fuel consumption models

Microscopic simulation model

We use the microscopic fuel consumption model embedded in Aimsun (v6.1). This

detailed model accounts for the time spent by each vehicle in the network during

each simulation time-step in each of the four operating modes namely idling, decel-

eration, acceleration and cruising. The fuel consumed during the idling, deceleration

and acceleration modes is derived from Ferreira (1982) (pages 4-16), while the fuel

consumed during the cruising mode is derived from Akçelik (1983) (pages 51-53).

During a given simulation time-step the fuel consumed by a given vehicle j is

given by:

FCj = C1jt
I
j + C2jt

D
j + (C3j + C4jvjaj)t

A
j + [C5j(1 +

v3
j

2(V m
j )3

) + C6jvj]t
C
j , (2.3)

where the following notation for a given vehicle j is used:

FCj fuel consumed during a given simulation time step (in m`);

C1j idling fuel consumption rate;

C2j decelerating fuel consumption rate;

C3j, C4j accelerating mode constants;

C5j, C6j cruising mode constants;

V m
j speed at which vehicle fuel consumption is minimum;

tMj time spent in a given mode M ∈ {I (idling), D (deceleration),

A (acceleration), C (cruising)};

vj instantaneous speed (in m/s);

aj instantaneous acceleration (in m/s2).

In the right-hand side of Equation (2.3), capital letters are used to denote the

exogenous vehicle-specific parameters. The simulation time step ∆t is such that

∆t = tIj + tDj + tAj + tCj . In the considered simulation, ∆t = 0.75 seconds and the

individual components tIj , t
D
j , tAj , tCj are determined by the microsimulator. The con-
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stants C1j to C6j and V m
j are provided by the vehicle manufacturer. In this thesis,

we use the parameters corresponding to a 1994 Ford Fiesta (UK DOT, 1994). All

vehicles in the simulation are of this model. This assumption can be easily relaxed.

Microscopic simulators represent individual vehicles and thus, accounting for the spe-

cific technologies and performance of various fleet compositions is straightforward.

The values of the vehicle type-specific parameters used are listed below:

C1 0.333 m`/s;

C2 0.537 m`/s;

C3 0.42 m`/s;

C4 0.26 m`-s2/m2;

C5 0.223 m`/s;

C6 0.00335 m`/m;

V m 13.89 m/s.

Equation (2.3) can also be expressed as:

FCj = FCI
j + FCD

j + FCA
j + FCC

j , (2.4)

where FCM
j (M ∈ {I (idling), D (deceleration), A (acceleration), C (cruising)} is the

fuel consumed by a given vehicle j in mode M during a given simulation time-step.

We now analyze each component of Equation (2.4) separately.

The fuel consumption attributed to idling, FCI
j , for a given vehicle j during a

given simulation time-step is defined as the idling fuel consumption rate multiplied

by the time spent in idling mode. Thus,

FCI
j = C1jt

I
j . (2.5)

Aimsun (v6.1) uses a constant value of idling fuel consumption rate C1j as given

in Ferreira (1982) (page 4). This value is based on data collected from instrumented

vehicles in Leeds, UK for urban driving conditions.
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The fuel consumption attributed to deceleration, FCD
j , for a given vehicle j during

a given simulation time-step is defined as the decelerating fuel consumption rate C2j

multiplied by the time spent in decelerating mode tDj . Thus,

FCD
j = C2jt

D
j . (2.6)

We now detail the derivation of Equation (2.6) based on the work of Ferreira

(1982) and for this derivation, we use the same notation as in Ferreira (1982). The

fuel consumed by a vehicle, Fd, when it decelerates from an initial speed Vi to a final

speed of zero is given by (Equation (3) on page 13 of Ferreira (1982)):

Fd = Kd(
Vi
Rd

), (2.7)

where Kd is a regression constant and Rd is the deceleration rate or the rate of change

of speed during deceleration. Thus,

Rd =
∂Vi
∂t

. (2.8)

In Ferreira (1982) it is assumed that Rd is independent of time. On differentiating

Equation (2.7) with respect to time we get the fuel consumption rate for deceleration,

which is the same as C2j. Thus,

∂Fd

∂t
= C2j =

Kd

Rd

(
∂Vi
∂t

). (2.9)

Substituting the expression for Rd from Equation (2.8) in Equation (2.9) we get,

C2j = Kd. (2.10)

Thus, Aimsun (v6.1) assigns the value for the constant C2j as equal to the regres-

sion constant Kd from Equation (3) of Ferreira (1982).

The fuel consumption attributed to acceleration, FCA
j , for a given vehicle j dur-

ing a given simulation time-step is defined as the accelerating fuel consumption rate
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(which is a function of the vehicle’s instantaneous speed vj and instantaneous accel-

eration aj) multiplied by the time spent in accelerating mode tAj . Thus,

FCA
j = (C3j + C4jvjaj)t

A
j . (2.11)

We now detail the derivation of Equation (2.11) based on the work of Ferreira

(1982) and for this derivation, we use the same notation as in Ferreira (1982). The

fuel consumed by a vehicle, Fa, when it accelerates from an initial speed of zero to a

final speed Vf , is given by (Equation (5) on page 16 of Ferreira (1982)):

Fa = K1a(
Vf
Ra

) +K2a(V
2
f ), (2.12)

where K1a and K2a are regression constants and Ra is the acceleration rate or the

rate of change of speed during acceleration. Thus,

Ra =
∂Vf
∂t

. (2.13)

In Ferreira (1982), it is assumed that Ra is independent of time. On differentiating

Equation (2.12) with respect to time we get the fuel consumption rate for acceleration.

Thus,

∂Fa

∂t
=
K1a

Ra

(
∂Vf
∂t

+ 2K2aVf (
∂Vf
∂t

). (2.14)

Substituting the expression for Ra from Equation (2.13) in Equation (2.14) we

get,

∂Fa

∂t
= K1a + 2K2aVfRa. (2.15)

During a simulation time-step, the vehicle speed Vf is denoted as the instantaneous

vehicle speed vj and the acceleration rate Ra is denoted as the instantaneous vehicle
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acceleration aj. Thus, Equation (2.15) can be re-written as,

∂Fa

∂t
= K1a + 2K2avjaj. (2.16)

Substituting,

K1a = C3j, and, 2K2a = C4j, (2.17)

in Equation (2.16), we get the fuel consumption rate for acceleration which is the

same as that used by Aimsun (v6.1) and given in Equation (2.11).

The fuel consumption attributed to cruising, FCC
j , for a given vehicle j during

a given simulation time-step is defined as the cruising fuel consumption rate (which

is a function of a vehicle’s instantaneous speed vj) multiplied by the time spent in

cruising mode tCj . Thus,

FCC
j = [C5j(1 +

v3
j

2(V m
j )3

) + C6jvj]t
C
j . (2.18)

We now detail the derivation of Equation (2.18) based on the work of Akçelik

(1983) and for this derivation, we use the same notation as in Akçelik (1983). Ac-

cording to the elemental model of fuel consumption (Equation (2) on page 51 of

Akçelik (1983)) the fuel consumption per unit distance, fc, for a vehicle cruising at a

constant speed of vc is given by:

fc = b1 +
b2

vc
+ b3v

2
c , (2.19)

where b1, b2 and b3 are vehicle type-specific constants.

In order to get an approximation for the time derivative of fuel consumption in

cruising mode (or fuel consumption rate), we multiply Equation (2.19) by the cruising

speed vc. This gives us,

∂FCC
j

∂t
≈ b1vc + b2 + b3v

3
c . (2.20)
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For a cruising speed of zero, the fuel consumption rate is equal to b2. Thus b2

is the idling fuel consumption rate provided by the vehicle manufacturer. The other

coefficients b1 and b3 can in turn be derived from b2 as shown below (Equation (2a)

in Akçelik (1983)),

b1 = f0 − (
1.5b2

v0

) and, b3 =
b2

2v3
0

, (2.21)

where v0 is the cruising speed at which fuel consumption is minimum and f0 is the

minimum fuel consumption rate while cruising (also provided by the vehicle manu-

facturer).

Substituting the expressions for b1 and b3 from Equation (2.21) in Equation (2.20)

we get,

∂FCC
j

∂t
= b2 + [f0 − (

1.5b2

v0

)]vc + b2(
v3
c

2v3
0

) (2.22)

During a simulation time-step, the vehicle cruising speed vc can be replaced by

the instantaneous vehicle speed vj. Also substituting,

b2 = C5j, v0 = V m
j , and, f0 − (

1.5b2

v0

) = C6j (2.23)

in Equation (2.22), we get the fuel consumption rate for cruising which is the same

as that used by Aimsun(v6.1) and given in Equation (2.18).

Macroscopic analytical model

The purpose of the analytical model is to provide an analytical, tractable (e.g., dif-

ferentiable) macroscopic (i.e. aggregate) approximation of the microscopic fuel con-

sumption model. We consider the entire simulation period (e.g., evening peak period).

For this time period, the expected fuel consumption per vehicle on link `, E[FC`], is

approximated by using a simplified version of the Akçelik (1983) model. It is given
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by:

E[FC`] =

(
C5(1 +

E[V`]
3

2(V m)3
) + C6E[V`]

)
E[T`], (2.24)

where C5, C6, V m are vehicle type-specific parameters, E[V`] is the expected vehicle

speed on link `, and E[T`] is the expected vehicle travel time on link `.

Equation (2.24) is derived by making the following two simplifications to the

microscopic fuel consumption model. First, we account for a single operating mode,

which is the cruising mode. That is, we assume that throughout the entire trip, the

vehicle is in cruising mode. Secondly, we define the fuel consumption in cruising mode

as a function of average vehicle speed (instead of instantaneous speed). If different

vehicle types are to be used, similar macroscopic fuel consumption approximations

can be derived for each vehicle type.

The approximations for E[T`] and E[V`] are derived as follows. The average link

travel time E[T`] is derived by applying Little’s law (Little, 1961) to the underlying

queue:

E[T`] =
E[N`]

λ`(1− P (N` = k`))
, (2.25)

where E[N`] is the expected number of vehicles in queue `, λ` is the arrival rate to

the queue, and (1 − P (N` = k`)) is the probability that the queue is not full (i.e. it

can accept flow from upstream). For finite capacity queues the flow entering link ` is

given by λ`(1− P (N` = k`)). For a description of how to apply Little’s law to finite

capacity queues, we refer the reader to Tijms (2003) (pages 52-53).

Both λ` and P (N` = k`) are endogenous variables of the macroscopic traffic model.

The expected number of vehicles, E[N`], is given by:

E[N`] = ρ`

(
1

1− ρ`
− (k` + 1)ρk``

1− ρk`+1
`

)
, (2.26)

where ρ`, is known as the traffic intensity, it is an endogenous variable of the macro-

scopic traffic model. The derivation of Equation (2.26) is detailed in Osorio (2010)
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(pages 69-70).

The average speed is approximated by using the fundamental relationship that

relates the average flow q to average speed v and density k: q = kv, which in this

context is given by:

λ`(1− P (N` = k`)) =
E[N`]

L`
E[V`], (2.27)

where L` denotes the length of link `. In this equation the flow of a link is given as in

Equation (2.25) by λ`(1−P (N` = k`)), and the average link density is approximated

by E[N`]/L`.

We then use E[FC`] of Equation (2.24) to approximate the expected total fuel

consumption in the network by:

E[FC] = (
∑
`∈L

E[FC`])γ, (2.28)

where L is the set of all links in the network and γ is the expected number of trips

during the considered simulation period (given, for instance, by the origin-destination

matrix). This approximation may overestimate fuel consumption: by multiplying the

expected fuel consumption per vehicle by the total demand, it is similar to assuming

that all vehicles have traveled along all links. An alternate approximation such as∑
`∈L(E[FC`]γ`) (where γ` is the expected demand for link `) may be more accurate.

To summarize, the analytical approximation of the expected total fuel consumption

in the network is obtained by solving Equations (2.24)-(2.28).

2.3 Optimization problems

In this section, we formulate the three different traffic signal control problems that

are addressed in this chapter. For a review of traffic signal control terminology and

formulations, we refer the reader to Appendix A of Osorio (2010). In this thesis, we

consider a fixed-time (also called time of day or pre-timed) control strategy. These

are strategies that use historical traffic patterns to derive a fixed signal plan for a
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given time period. The signal control problem is solved offline. The signal plans of

multiple intersections are determined jointly. The decision variables are the green

splits (i.e., green times) of phases of the different intersections. All other traditional

control variables (e.g., cycle times, offsets, stage structure) are assumed fixed.

To formulate this problem we introduce the following notation:

bi available cycle ratio of intersection i;

x(j) green split of phase j;

xL vector of minimal green splits;

I set of intersection indices;

PI(i) set of phase indices of intersection i.

The problem is traditionally formulated as follows:

min
x
g(x; p) ≡ E[G(x; p)] (2.29)

subject to

∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (2.30)

x ≥ xL, (2.31)

where the decision vector x consists of the green splits for each phase. Constraints

(2.30) ensure that for a given intersection the available cycle time is distributed among

all phases. Green splits have lower bounds (Equation (2.31)), which are set to 4

seconds in this work (following the Swiss transportation norms VSS (1992)).

This chapter considers three different problems that vary according to their ob-

jective functions. The objective functions considered are:

1) expected travel time in the network (denoted gT )

2) expected total fuel consumption in the network (denoted gT,FC)

3) a linear combination of expected travel time in the network and expected total fuel
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consumption in the network (denoted as gT,FC) which is given by:

gT,FC = (1− wFC)gT + (wFC)gFC , (2.32)

where wFC is a weight parameter (0 ≤ wFC ≤ 1). We use the weights as defined in

Li et al. (2004), i.e., wFC = 3/7.

Within the framework of each objective function, at each iteration of the SO

algorithm, a trust region subproblem is solved. The formulation of this problem is

given in Appendix B.

2.4 Empirical Analysis

2.4.1 Experimental setup

As described in Section 2.2.2, in this study we use a model of the city of Lausanne

that represents evening peak period traffic (Dumont and Bert, 2006). We consider

the first hour of the evening peak period (5-6pm). The network under consideration

is located in the city center and is delimited by a circle in Figure 2-1, the detailed

network is displayed in the left plot of the figure. This network contains 47 roads and

15 intersections of which 9 are signalized. The signalized intersections have a cycle

time of either 90 or 100 seconds and a total of 51 variable phases. This is a complex

constrained simulation-based optimization problem.

The queueing model of the network consists of 102 queues. The trust region sub-

problem (formulated in Appendix B) consists of 621 variables with their correspond-

ing lower bound constraints, 408 nonlinear equality constraints, 171 linear equal-

ity constraints and one nonlinear inequality constraint. This is a high-dimensional

simulation-based optimization problem.

We compare the performance of the following three optimization methods.

• The proposed approach, denoted Am.

• A traditional SO metamodel method, where the metamodel consists only of a
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Figure 2-1: Lausanne city network model (left), network of interest (right).

quadratic polynomial with diagonal second derivative matrix (i.e., the meta-

model consists of φ given in Equation (2.2)). This approach therefore uses

simulation information but does not use information from the analytical traffic

model (i.e., it does not have a physical component). This approach is denoted

Aφ.

• A method that uses only the analytical traffic model, and does not use any sim-

ulated information (i.e., the objective function is given by gA in Equation (2.2)).

This method is denoted AgA.

We compare the performance of these three methods for three different objective

functions gT , gFC and gT,FC as defined in Section 2.3.

We consider different types of initial points, namely, an existing fixed-time signal

plan for Lausanne city (for details see Dumont and Bert (2006)), and randomly drawn

feasible signal plans. The latter are uniformly drawn from the feasible region defined

by Equations (2.30) and (2.31). We draw uniformly from this space using the code

of Stafford (2006).

For methods Am and Aφ, we define the computational budget as a maximum

of 150 simulation runs that can be carried. That is, the algorithm starts off with

no simulated information, and once it has called the simulator 150 times it stops.

The point considered as the current iterate (best point found so far) is taken as the

proposed signal plan. This is a very tight computational budget, given the dimension
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and complexity of the considered problems.

The derivation of a proposed signal plan involves calling the simulator. Given the

stochastic nature of the simulation outputs, for a given initial point, the methods Am

and Aφ are run 5 times (allowing each time for a maximum of 150 runs). We then

compare the performance of all 5 proposed signal plans.

We evaluate the performance of a proposed signal plan as follows. We embed

the proposed signal plan within the Lausanne simulation model. We then run 50

simulation replications, which yield 50 observations of the performance measures of

interest (travel time, fuel consumption, emissions). For a given performance measure,

we plot the cumulative distribution function (cdf) of these 50 observations.

2.4.2 Results

We first compare the performance of the three methods for a combined objective func-

tion gT,FC . Figure 2-2 considers a given initial point, and displays the performance of

various signal plans in terms of total fuel consumption (left plot) and average travel

time (right plot). Each plot displays 12 cdf curves: the 5 solid black (resp. dashed

red) cdf’s correspond to the cdf’s of the signal plans proposed by Am (resp. Aφ).

The green cdf corresponds to the signal plan proposed by AgA, and the blue is that

of the initial signal plan. Each cdf curve consists of 50 observations which correspond

to the 50 simulation replications. The optimization methods were initialized with a

random (uniformly drawn) initial signal plan (blue cdf).

Figure 2-2(a) indicates that 3 of the signal plans derived by Am outperform, in

terms of total fuel consumption, all other signal plans, and in particular all those

derived by Aφ. The other 2 signal plans derived by Am have similar performance to

the plans derived by Aφ. The signal plans derived by Am also have reduced variability

compared to those of Aφ. All plans proposed by both Am and Aφ have improved

performance compared to the initial plan, and four out of five (for each method) have

improved performance compared to the signal plan proposed by AgA. Figure 2-2(b)

considers the same signal plans and displays their performance in terms of average

travel time. Similar conclusions hold.
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Figure 2-2: Performance of the signal plans derived with the gT,FC objective function
and a random initial signal plan.

Figure 2-3 considers a different random (uniformly drawn) initial signal plan. Fig-

ure 2-3(a) displays the cdf’s of total fuel consumption. The four best signal plans are

derived by Am, these plans also have the smallest variance in total fuel consumption.

The fifth plan derived by Am has the worst performance. Similar conclusions hold,

when evaluating the signal plans in terms of average travel time (Figure 2-3(b)).

Figure 2-4(a) considers an existing signal plan for the city of Lausanne as the

initial plan. Four of the five plans derived by Am are among the best signal plans.

The fifth has similar performance to the existing Lausanne plan. One of the signal

plans derived by Aφ has worse performance compared to the initial plan. The signal

plan derived by AgA has similar performance to that of the initial signal plan. The

same conclusions hold when evaluating the signal plans in terms of average travel

time (Figure 2-4(b)).

In Figures 2-2, 2-3 and 2-4, 13 of the 15 plans derived by Am outperform the plans

derived by AgA, in terms of both fuel consumption and travel time. This shows the

added value of using both analytical and simulated information as opposed to only

analytical information.

The information of Figures 2-2(a), 2-3(a) and 2-4(a) is summarized in Figure 2-

5(a). The latter displays two cdf’s one for all signal plans derived by Am (solid

black) and one for all those derived by Aφ (dashed red). Each cdf consists of all fuel
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Figure 2-3: Performance of the signal plans derived with the gT,FC objective function
and a random initial signal plan.
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Figure 2-4: Performance of the signals plan derived with the gT,FC objective function.
The algorithms are initialized with an existing signal plan for Lausanne.
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Figure 2-5: Summary of the performance of the signal plans derived with the gT,FC

objective function.

consumption observations displayed in the three previously mentioned figures (i.e.,

each cdf consists of 50× 5× 3 = 750 total fuel consumption observations). Similarly,

Figure 2-5(b) summarizes the information of Figures 2-2(b), 2-3(b) and 2-4(b). In

both cases, the signal plans proposed by Am outperform those proposed by Aφ. These

figures show that there is an added value of complementing the simulated information

with analytical information.

Figure 2-6 considers the same initial point as Figure 2-2 and the objective function

gT,FC . Each plot displays the network of interest. Each link is colored according to

the average (over 50 replications) fuel consumption per vehicle (in liters). The top

plot considers the performance under the initial signal plan, whereas the bottom plot

displays the performance of a signal plan derived by Am. This figure illustrates the

fuel consumption reductions that can be achieved at the link level by the proposed

signal plan.

Next, to understand the effect of different objective functions on the performance

of the signal plans, Figures 2-7, 2-8, 2-9 and 2-10 consider a signal control problem

with an objective function that accounts only for total fuel consumption (gFC) in

the network. This is a challenging problem, since the fuel consumption is a highly

variable metric. Additionally, we are attempting to identify a signal plan with 51

variable phases (dimension of the decision vector) by calling the simulator at most
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Figure 2-6: Average fuel consumption per vehicle per link (in liters).
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Figure 2-7: Performance of the signal plans derived with the gFC objective function
and a random initial signal plan.

150 times.

In order to evaluate the performance of the signal plans, we proceed as before.

That is we evaluate their performance both in terms of fuel consumption and of travel

time. Figure 2-7 considers the same initial plan as Figure 2-2. Figure 2-7(a) indicates

that of the top 4 signal plans with best performance, 3 are proposed by Am. Four of

the plans proposed by Am outperform four of the plans proposed by Aφ. These four

plans also lead to reduced variability. Both Am and Aφ derived one signal plan with

worse performance than the initial plan. When evaluating these plans in terms of

their travel times (Figure 2-7(b)), four of the plans proposed by Am are among those

with the best performance, whereas the fifth has performance similar to the initial

plan.

Figure 2-8 considers the same initial plan as Figure 2-3. Figure 2-8(a) compares

the total fuel consumption of the signal plans. Here the top 4 signal plans with best

performance are proposed by Am. These plans also have reduced variability compared

to those proposed by Aφ and to the initial signal plan. Similar conclusions hold when

evaluating these signal plans in terms of average travel time (Figure 2-8(b)).

Figure 2-9 considers the existing Lausanne signal as the initial plan (i.e. same

initial plan as Figure 2-4). For both fuel consumption (Figure 2-9(a)) and travel time

(Figure 2-9(b)) four out of the top 5 signal plans are proposed by Am. As before,
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Figure 2-8: Performance of the signal plans derived with the gFC objective function
and a random initial signal plan.

the plans proposed by Am lead to reduced variability compared to those proposed by

Aφ.

Figure 2-10(a) summarizes the information of Figures 2-7(a), 2-8(a) and 2-9(a).

It indicates that the signal plans proposed by Am outperform those proposed by Aφ

both in terms of total fuel consumption and average travel time.

Next, in Figures 2-11, 2-12, 2-13 and 2-14, we analyze the performance of the

signal plans when the objective function excludes fuel consumption and considers

only travel time (denoted as gT ). This objective has reduced variability since travel-

time is not influenced to a significant degree by individual vehicle attributes, unlike

fuel consumption. We proceed as before, evaluating the performance of each signal

plan in terms of travel time and fuel consumption, and comparing the performance

of the frameworks Am, Aφ and AgA for a given initial plan.

Figure 2-11 considers the same initial point as Figures 2-2 and 2-7. Here, all five

signal plans proposed by Am show similar improvements over the initial signal plan,

both in terms of total fuel consumption and in terms of average travel time. The

signal plan proposed by AgA also performs similarly to the Am plans. Of the five

signal plans proposed by Aφ, three perform very similarly to Am while two do worse.

Thus overall, we see that the variability in the performance of signal plans, both

within a given framework and between different frameworks, is reduced.
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Figure 2-9: Performance of the signal plans derived with the gFC objective function.
The algorithms are initialized with an existing signal plan for Lausanne
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Figure 2-10: Summary of the performance of the signal plans derived with the gFC

objective function.
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Figure 2-11: Performance of the signal plans derived with the gT objective function
and a random initial signal plan.

Figure 2-12 considers the same initial point as Figures 2-3 and 2-8. In Figure 2-

12(a), four of the five signal plans proposed by Am perform similarly as the five plans

derived by Aφ and the single plan proposed by AgA. One of the plans proposed

by Am does not do as well. In Figure 2-12(b), four of the signal plans proposed

proposed by Am perform very well and similar to the plan proposed by AgA. The

plans proposed by Aφ comes next in terms of performance. The fifth plan proposed

by Am does not do as well.

Figure 2-13 considers the existing signal plan of Lausanne as the initial plan (i.e.

the same initial plans as Figures 2-4 and 2-9). The five plans proposed by Am perform

similarly, both in terms of total fuel consumption and in terms of average travel time,

to four of the plans proposed by Aφ and the single plan proposed by AgA. One of

the plans proposed by Aφ performs worse than the initial signal plan.

Figure 2-14 summarizes the information in Figures 2-12, 2-11 and 2-12. The signal

plans proposed by Am outperform those proposed by Aφ. However, the improvement

is lower than that seen in Figures 2-5 and 2-10.

2.4.3 Case study conclusions

Figures 2-2 to 2-14 show that there is an added value of combining simulated and

analytical information. Since fuel consumption observations depend strongly on in-
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Figure 2-12: Performance of the signal plans derived with the gT objective function
and a random initial signal plan.
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Figure 2-13: Performance of the signal plans derived with the gT objective function.
The algorithms are initialized with an existing signal plan for Lausanne
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Figure 2-14: Summary of the performance of the signal plans derived with the gT

objective function.

dividual vehicle attributes and complex local traffic dynamics, they have high vari-

ability. Thus, an algorithm which uses only simulated information is typically at a

disadvantage compared to one that combines suitable analytical and simulated infor-

mation. In Chapter 3 we formulate a signal control problem that addresses a more

complex objective involving multiple noisy metrics. Once again, the performance of

the proposed framework Am is compared to that of the other frameworks Aφ and

AgA, and the empirical results are presented for a traffic network in Lausanne.
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Chapter 3

Signal control for emissions

mitigation

3.1 Literature review

Just as fuel consumption models, emissions models can be either macroscopic or

microscopic in their modeling of vehicle emissions (for reviews see Cappiello (2002),

Rakha et al. (2003), Williams and Yu (2001)). Macroscopic emissions models are usu-

ally based on laboratory drive cycle tests conducted at a given average speed/acceleration

(CARB, 2008, EPA, 1994). Once the emissions rates are established for a given aver-

age speed, the emissions at other average speeds are estimated by multiplying by speed

correction factors (SCFs). SCFs are based on inputs of vehicle-specific characteristics

such as age and operating conditions, and use a single variable namely average speed

to determine emissions. Thus, they do not account for time-variations in speed and

acceleration which may significantly impact emissions and lead to erroneous conclu-

sions (Rakha et al., 2000). However since they do not require second-by-second speed

or acceleration information, they offer relative ease of computation when applied to

emissions over large areas (Bartin et al., 2007, Bai et al., 2007). Microscopic emis-

sions models on the other hand, take into account the detailed interaction between

drivers and the instantaneous speed and acceleration of each vehicle in the network.

They are considered to be more accurate but due to the complexity of computations
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involved, they have primarily been applied to segments of a corridor (Stathopoulos

and Noland, 2003) or small networks within a city (Stevanovic et al., 2009).

Microscopic emissions models are primarily of two kinds: load-based (EPA, 2010,

Scora and Barth, 2006) and regression-based (Rakha et al., 2004, Smit et al., 2007).

Both kinds of models require instantaneous speed and acceleration data as inputs

along with parameters such as vehicle manufacturer, vehicle age, road-grade etc.

Regression models require additional inputs of on-road emissions information from

instrumented vehicles. Load-based microscopic emissions models use the input data

to identify different speed and acceleration events in a vehicle’s path from origin to

destination. Next, equations which quantify the impact of each speed/acceleration

event on the engine load are used to estimate emissions. Thus, the emissions esti-

mates from load-based models have a physical interpretation but are more complex

to construct since it requires an understanding of the mechanical phenomena in a

vehicle’s engine. Regression-based microscopic emissions models on the other hand,

fit a polynomial to the emissions data collected from instrumented vehicles. Thus,

they are easier to construct but the regression constants used to fit the model do not

necessarily have a physical interpretation. In this section, we review recent work that

has coupled traffic simulators with emissions models to address urban transportation

problems.

Li et al. (2004) use an analytical model that describes the movements of vehicles

arriving and leaving an intersection in Nanjing City, China, based on the traffic

signal settings for the intersection. The cycle length for the intersection is treated as

a variable. The authors derive an optimal cycle length for the intersection by plotting

a graph showing the effect of different cycle lengths on a weighted objective function

containing average vehicle delay, total fuel consumption and total emissions at the

intersection. The fuel consumption and emissions at the intersection are estimated

using analytical expressions derived from prior studies (Xiang, 2000, Li, 1999). The

weights for the three terms in the objective function are assigned as 4:3:3 respectively

but the authors do not elaborate on how these weights were derived. Each term

in the objective function is normalized with respect to the initial signal settings for
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the intersection. The pollutants considered in this study are carbon monoxide(CO),

hydrocarbons (HC) and nitrogen oxides (NOx).

Williams and Yu (2001) observe the effects on travel time and emissions in a small

hypothetical network when different traffic assignment objectives are used. They also

observe the effects of changing the cycle length of the only signalized intersection in

the network and the impact of signalizing an additional intersection. They use the

macroscopic traffic model DYNAMIC (Yu, 1994) which has an inbuilt macroscopic

emissions model. The movement of vehicles through the network is influenced by the

assignment objectives and the number as well as the settings of traffic signals in the

network, which in turn influences travel time and emissions. Here, the authors merely

observe the changes in the performance metrics for before and after scenarios in each

case.

Bai et al. (2007) combine the mesoscopic dynamic traffic assignment model DYNA-

SMART-P (Mahmassani et al., 2004) with the macroscopic emissions model EMFAC

(CARB, 2008) to study the effect of changes in regional demand on emissions. The

authors investigate and compare two approaches to modeling regional emissions in

the Sacramento and Kern counties of California, USA, namely the use of trip-average

speeds and the use of link-average speeds. They find that the emissions calculated

from the trip-based approach are more sensitive to changes in regional demand while

those estimated using the link-based approach are sensitive to changes in specific

roadway facilities (e.g., the introduction of a new highway lane or congestion on

specific links).

Bartin et al. (2007) analyze the emissions impacts of introducing Electronic Toll

Collection (ETC) systems on the New Jersey Turnpike, USA using a large-scale simu-

lation network model implemented with the microscopic traffic simulator PARAMICS

(Quadstone, 2009) in combination with the macroscopic emissions model MOBILE6.2

(EPA, 2003). The authors find that while emissions on the tollbooth links are reduced

as a result of the ETC, the throughput of the Turnpike increases and the net system-

wide effect is an increase in emissions. Interfacing between the microscopic traffic

model and the macroscopic emissions model is achieved by computing the average
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speed of each vehicle during each time-step (as defined in the traffic simulator) and

providing this as input to the emissions model.

Xie et al. (2011) study the effect on pollutant emissions of carbon monoxide (CO),

nitrogen oxides (NOx), sulphur oxides (SOx) and carbondioxide (CO2) when a certain

percentage of the car fleet is electric or uses biofuel. The effect on emissions when

public transit buses switch to Compressed Natural Gas as fuel, is also studied. The

case-study considered is a segment of a freeway in Greenville, South Carolina, USA

which is modeled in the microscopic traffic simulator PARAMICS (Quadstone, 2009).

The traffic model is coupled with the emissions model MOVES (EPA, 2010) which

has the capability of estimating microscopic emissions using the load-based approach.

However, in the study MOVES is used in a macroscopic context by providing as inputs

to it only the link-level traffic counts and average speeds. Since the network modeled

is not large, the decision to use MOVES as a macroscopic emissions model does not

seem justified given the availability of detailed speed and acceleration information

from PARAMICS.

Liu and Tate (2000) study the impacts on carbon monoxide (CO), hydrocarbon

(HC) and nitrogen oxide (NOx) emissions when vehicles equipped with Intelligent

Speed Adaptation (ISA) systems are deployed on a road network in Leeds, UK. ISA-

equipped vehicles have a speed control system that prevents them from exceeding the

speed limit (on links which have specified limits). A fixed percentage of the vehicle

fleet is assumed to have ISA and the interaction of these vehicles with other vehicles

in the network is modeled using the microscopic traffic simulator DRACULA (Liu,

2005). The outputs of each simulation time-step namely, the time spent cruising

along with the cruising speed, the time spent accelerating,time spent decelerating

and time in idling mode, are supplied to the macroscopic emissions model QUARTET

(QUARTET, 1992) which specifies an emissions rate for each combination of pollutant

and operating mode. The authors analyze the effect of ISA systems on emissions

for different levels of penetration of these systems in the vehicle fleet, for different

congestion levels, for different roadway types and for different pre-determined speed-

limit settings.
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Cappiello (2002) develops a microscopic emissions model called EMIT which has

the capability to estimate emissions of carbondioxide (CO2), carbon monoxide (CO),

hydrocarbons (HC) and nitrogen oxides (NOx). EMIT is defined using the load-based

approach i.e. it uses equations to specify engine-load based on instantaneous speed

and acceleration. However, the constants used in these equations are calibrated using

regression-techniques drawing from an existing database of vehicle emissions from on-

road instrumented vehicles. EMIT is combined with a mesoscopic traffic simulator

developed by Bottom (2000). The traffic management problem addressed in this

study has been described in Section 2.1.

Zegeye et al. (2010) integrate the macroscopic traffic model METANET (Messmer

and Papageorgiou, 1990) with the microscopic fuel consumption/emissions model VT-

Micro (Rakha et al., 2004). The traffic control problem addressed in this study has

been described in Section 2.1.

Lin et al. (2011) combine the mesoscopic traffic simulator DynusT (Chiu et al.,

2011) with the microscopic emissions model MOVES (EPA, 2010) in order to eval-

uate the impact of congestion management schemes in Sacramento, California, USA

on emissions of carbondioxide (CO2). While DynusT does not directly provide in-

stantaneous acceleration being a mesoscopic model, it is estimated as the difference in

instantaneous speed between two time-steps and then supplied as input to MOVES.

Rakha et al. (2000) apply the microscopic fuel/emissions model VT-Micro in com-

bination with the microscopic traffic simulator INTEGRATION (Van Aerde, 1999)

to evaluate signal control strategies as described in Section 2.1.

Lee et al. (2009) use the microscopic traffic simulator TransModeler (Caliper, 2008)

in combination with the microscopic emissions model CMEM (Scora and Barth, 2006)

and the macroscopic emissions model EMFAC (CARB, 2008) in order to estimate the

impact of heavy-duty truck movements along a highway connecting to a container port

facility in Alameda, California, USA, on emissions of carbon monoxide (CO), carbon-

dioxide (CO2), hydrocarbons (HC), nitrogen oxides (NOx) and particulate matter

(PM). While CMEM has the capability of modeling the first four pollutants it does

not provide estimates of particulate matter which constitutes the biggest health risk
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among the five. So the authors use EMFAC for this purpose. The emissions im-

pacts of several strategies such as cleaner fuel for trucks, alternate modes such as rail

connecting to the container facility, lane restrictions on the highway etc.

Madireddy et al. (2011) integrate the microscopic traffic simulator PARAMICS

(Quadstone, 2009) with the microscopic emissions model VERSIT+ (Smit et al., 2007)

to evaluate traffic management schemes in Antwerp, Belgium. The effect of speed

limit reduction in certain residential areas on emissions of carbon dioxide (CO2) and

nitrogen oxides (NOx) is studied. The speed limits on the residential roads included

in the network are lowered to a pre-determined value and the resulting emissions are

compared to the original scenario.

Panis et al. (2006) develop a regression-based microscopic emissions model in their

study, fitted to emissions data collected from on-road instrumented vehicles in Leeds,

UK. The emissions model is coupled with the microscopic traffic simulator DRACULA

(Liu, 2005) to study the effect on emissions of carbondioxide (CO2), nitrogen oxides

(NOx), volatile organic compounds (VOC) and particulate matter (PM) when a given

percentage of the fleet in Ghent, Belgium is fitted with ISA systems. While ISA

systems result in a lowered average speed for the network, the authors find that these

systems have almost no noticeable effect on emissions. The authors state a possible

reason for this to be that ISA-equipped vehicles have lower cruising speeds and lower

speed variations. The authors believe that the two effects of having lower speeds

(leading to higher emissions in this case) but with less speed variation (leading to

lowered emissions again specific to this case) may be the reason for this observation.

To summarize, traffic models coupled with emissions models have been used at

the macroscopic, mesoscopic and microscopic scales. Microscopic simulators coupled

with microscopic emissions models are the most accurate since they account for de-

tailed vehicle interaction which is known to influence emissions to a significant degree.

However, most of the prior work using a combination of microscopic traffic simula-

tors with microscopic emissions models have been what-if analyses i.e. the emissions

model is used to evaluate pre-determined traffic management strategies as opposed to

being used to identify viable strategies. To the best of our knowledge, the only work
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that has integrated microscopic traffic and emissions models to perform optimization

is that of Stevanovic et al. (2009). A review of their study can be found in Chapter 2.

In the next section, a simulation-based optimization (SO) technique is proposed

that uses integrated traffic and emissions models to address a signal control problem

for a city network in Lausanne. We see that the proposed SO framework is able to

identify signal plans with improved performance on many different metrics and it is

able to do so within a tight computational budget. This is especially challenging

given the high degree of variability in emissions estimates from one simulation run to

the next. The proposed method can be used to inform traffic control decisions at the

network-level while using disaggregate and noisy vehicle-specific information.

3.2 Methodology

3.2.1 Simulation-based optimization framework

The simulation-based optimization framework used in this chapter is identical to the

one presented in Section 2.2.1 with the exception that the performance measure G

used in Equation (2.1) is now a combination of travel time and various pollutant emis-

sions. This performance measure is also expected to show a high degree of variability

from one simulation run to the next since it is dependent on vehicle-specific attributes

which include but are not limited to vehicle type, engine technology, instantaneous

speed and acceleration. Once again, we address the challenge of identifying, within a

limited number of simulation runs, signal plans with improved performance using a

high-variance performance measure.

3.2.2 Traffic models

We use a microscopic simulation model of the Swiss city of Lausanne (Dumont and

Bert, 2006) and a macroscopic analytical queueing network model derived in Osorio

and Bierlaire (2009b). For a brief description of these models please refer Section

2.2.2.
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3.2.3 Emissions models

Microscopic emissions model

We use the microscopic emissions model embedded in Aimsun (v6.1), which is based

on the model of Panis et al. (2006). This model gives the instantaneous emissions

rate of four pollutants namely carbon dioxide (CO2), nitrogen oxides (NOx), volatile

organic compounds (VOC) and particulate matter (PM), based on a vehicle’s in-

stantaneous speed and acceleration. We introduce the following notation for a given

vehicle j:

k Pollutant type, k ∈ {CO2, NOx, VOC, PM};

vj(t) Instantaneous speed (in m/s);

aj(t) Instantaneous acceleration (in m/s2);

ERk
j (t) Instantaneous emissions rate of pollutant k (in g/s);

Ek
0j Minimum emissions rate of pollutant k (in g/s);

Ck
1j, C

k
2j, C

k
3j, C

k
4j, C

k
5j, C

k
6j Emissions rate coefficients for pollutant k.

The emissions rate for vehicle j at a given time-instant t is given by (Equation

(4) in Panis et al. (2006)):

ERk
j (t) = max{Ek

0j, C
k
1j +Ck

2jvj(t)+Ck
3jvj(t)

2 +Ck
4jaj(t)+Ck

5jaj(t)
2 +Ck

6jvj(t)aj(t)}.

(3.1)

In Panis et al. (2006), the minimum emissions rate Ek
0j is fixed at zero for all

pollutant types and vehicle types. The coefficients Ck
1j, C

k
2j, C

k
3j, C

k
4j, C

k
5j, C

k
6j are

specified for each pollutant type and vehicle type based on a regression model fitted

to emissions observations from on-road instrumented vehicles (Panis et al., 2006).

However, for the purpose of this study only a single vehicle type i.e. petrol car, is

considered. For a given pollutant type and vehicle type, the coefficients Ck
1j to Ck

6j

may be different for acceleration and deceleration. Table 2 on page 276 of Panis

et. al (2006) specifies different coefficients for the pollutants VOC and NOx based
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on whether aj(t) is positive or negative. The table gives the same coefficients for

acceleration and deceleration for the pollutants CO2 and PM. This distinction is

made because the regression curves of the pollutants NOx and VOC show differences

between when they are fitted to acceleration data-points and when they are fitted to

deceleration data-points while this is not the case for the pollutants CO2 and PM.

The reader is referred to Panis et. al (2006) for further details.

The values of the vehicle type-specific parameters used are listed below:

Common for acceleration and deceleration modes,

CCO2
1 5.53 x 10−1 g/s;

CCO2
2 1.61 x 10−1 g/m;

CCO2
3 -2.89 x 10−3 g-s/m2;

CCO2
4 2.66 x 10−1 g-s/m;

CCO2
5 5.11 x 10−1 g-s3/m2;

CCO2
6 1.83 x 10−1 g-s2/m2;

CPM
1 0;

CPM
2 1.57 x 10−5 g/m;

CPM
3 -9.21 x 10−7 g-s/m2;

CPM
4 0;

CPM
5 3.75 x 10−5 g-s3/m2;

CPM
6 1.89 x 10−5 g-s2/m2;

For acceleration mode,

CNOx
1 6.19 x 10−4 g/s;

CNOx
2 8 x 10−5 g/m;

CNOx
3 -4.03 x 10−6 g-s/m2;

CNOx
4 -4.13 x 10−4 g-s/m;

CNOx
5 3.80 x 10−4 g-s3/m2;

CNOx
6 1.77 x 10−4 g-s2/m2;
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CV OC
1 4.47 x 10−3 g/s;

CV OC
2 7.32 x 10−7 g/m;

CV OC
3 -2.87 x 10−8 g-s/m2;

CV OC
4 -3.41 x 10−6 g-s/m;

CV OC
5 4.94 x 10−6 g-s3/m2;

CV OC
6 1.66 x 10−6 g-s2/m2;

For deceleration mode,

CNOx
1 2.17 x 10−4 g/s;

CNOx
2 0;

CNOx
3 0;

CNOx
4 0;

CNOx
5 0;

CNOx
6 0;

CV OC
1 2.63 x 10−3 g/s;

CV OC
2 0;

CV OC
3 0;

CV OC
4 0;

CV OC
5 0;

CV OC
6 0.

Macroscopic analytical model

The purpose of the analytical emissions model is to provide a tractable (e.g., dif-

ferentiable) macroscopic (i.e. aggregate) approximation of the microscopic emissions

model. For vehicles on link `, the expected emissions rate, ERk
` (in g/s), of pollutant

type k (where k ∈ {CO2, NOx, VOC, PM}) is approximated by using a simplified

version of the Panis et al. (2006) model as given by:

E[ERk
` ] = max{Ek

0 , C
k
1 + Ck

2E[V`] + Ck
3E[V`]

2} (3.2)
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where E0, C1, C2 and C3 are vehicle type-specific parameters, and E[V`] is the ex-

pected vehicle speed on link `.

Equation (3.2) is derived by making the following two simplifications to the micro-

scopic emissions model. First, we assume that throughout its trip in the considered

network, a vehicle is in cruising mode. Thus, we substitute aj(t) = 0 in Equation (3.1).

Second, we assume that the emissions rate over a link ` for a vehicle in cruising mode

is a function of average vehicle speed over that link (instead of instantaneous speed)

and substitute vj(t) with E[V`] in Equation (3.1). If different vehicle types are to be

used, similar macroscopic emissions approximations can be derived for each vehicle

type.

The expected total emissions (in g) of pollutant k on link ` during the simulation

is given by,

E[Ek
` ] = E[ERk

` ]E[T`]λ`∆T (3.3)

where E[T`] is the expected travel time on link `, λ` is the arrival rate to the queue

` and ∆T is the total simulation time.

The analytical approximations to expected speed E[V`] and expected travel time

E[T`] are detailed in Section 2.2.3.

The expected total emissions (in g) of pollutant k in the network during the

simulation is given by,

E[Ek] =
∑
`∈L

E[Ek
` ] (3.4)

where L is the set of all links in the network.

3.3 Optimization problem

The general formulation of the traffic signal problem addressed in this section is given

by Equations (2.29), (2.30) and (2.31) as described in Chapter 2. Here, we consider

an objective function which is a linear combination of expected travel time gT and

57



the expected total emissions of four pollutants in the network namely carbon dioxide,

nitrogen oxides, volatile organic compounds and particulate matter, denoted as gCO2,

gNOx, gV OC and gPM respectively, and given by:

gT,EM = (
wT

nT
)gT +(

wCO2

nCO2
)gCO2 +(

wNOx

nNOx
)gNOx +(

wV OC

nV OC
)gV OC +(

wPM

nPM
)gPM (3.5)

where wT , wCO2, wNOx, wV OC and wPM are economic weighting parameters for travel

time and the pollutants CO2, NOx, VOC and PM respectively. While wT denotes

the value of time, the weights for each of the pollutants are based on their externality

costs to human health and other large-scale effects such as global warming. The

values of the weighting parameters are derived from Table 2 and Table 9 of Mayeres

et al. (1996), and listed below:

wT 2.14 x 10−3 EURO/s;

wCO2 7.72 x 10−3 EURO/g;

wNOx 13.8 x 10−3 EURO/g;

wV OC 2.95 x 10−3 EURO/g;

wPM 83.19 x 10−3 EURO/g;

nT 109.32 s;

nCO2 5.19 x 105 g;

nNOx 818.09 g;

nV OC 1.60 x 103 g;

nPM 106.76 g.

nT , nCO2, nNOx, nV OC and nPM are normalization constants for travel time, CO2,

NOx, VOC and PM respectively, derived from the value of the respective performance

measure for the existing signal configuration of the network.

Implementation Notes

The analytical approximation of the expected emissions rate gk from Equation (3.5)

where k ∈ {CO2, NOx, VOC, PM}, is a non-differentiable function given by Equa-
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tion (3.2). This equation ensures that the emissions rate of a pollutant k on a link

` is always non-negative since the minimum emissions rate Ek
0 is set to zero for all

pollutants and vehicle types in Table 2 of Panis et al. (2006). However, the opti-

mization problem we solve requires that the analytical approximation of the objective

function gT,EM be differentiable at every point. During implementation, we make the

following two changes in the macroscopic emissions model to ensure differentiability.

First we define two new variables for each link (i.e. queue) `, given by y1` and y2`,

which are related to the analytical approximation of the expected emissions rates on

link ` (E[ek` ]) in the following way:

y1` − y2` =
∑
k

wk

nk
(Ck

1 + Ck
2E[V`] + Ck

3E[V`]
2) (3.6)

Second, we impose lower bounds (equal to zero) for y1` and y2`. Equation (3.6)

ensures that if the total emissions rate for a given link is positive, then it is equal

to y1`, and y2` equals zero. If the total emissions rate for the link is negative, then

it is equal to the opposite of y2`, and y1` equals zero. This implementation does not

ensure that the emissions rate of each pollutant type k (where k ∈ {CO2, NOx, VOC,

PM}) on link ` is non-negative. However, the total emissions rate on link ` is always

non-negative.

Since only non-negative emissions should appear in the objective function, the

new analytical approximation to the expected total emissions (in g) in the network

during the simulation is given by,

E[Etotal] =
∑
`∈L

y1`E[T`]λ`∆T (3.7)

3.4 Empirical Analysis

3.4.1 Experimental setup

The experimental setup used is identical to the one described in Section 2.4.1. We

compare the performance of the methods Am, Aφ and AgA for the objective function
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gT,EM as defined in Equation (3.5). Once again, we consider different initial points,

namely, an existing fixed-time signal plan for Lausanne city and randomly drawn

feasible signal plans. We define the computational budgets for methods Am and Aφ to

be 150 simulation runs as before. The methods are compared based on the evaluation

of the proposed signal plans when embedded within the Lausanne simulation model

for a fixed number of replications set to 50 as before. We plot empirical cdf curves

showing the performance of the signal plans proposed by each method on five different

metrics, namely expected travel time in the network and expected total emissions of

CO2, NOx, VOC and PM in the network.

3.4.2 Results

We perform a similar analysis as before (see Section 2.4.2) by comparing the perfor-

mance of the signal plans derived by each algorithm in terms of different performance

measures. Each figure in this section contains five cdf plots, one for each performance

measure. Within each cdf plot there are 10 curves. The color coding of the curves

is the same as before. There are four black curves, one for each of the signal plans

proposed by the Am method. There are four red curves, one for each of the signal

plans proposed by the Aφ algorithm. There is one green curve for the signal plan

proposed by the AgA algorithm and one blue curve for the initial signal plan.

In Figures 3-1 (a), (b), (c) and (d), the four best signal plans are proposed by Am.

The signal plans proposed by Am also show reduced variability compared to those

proposed by Aφ. One of the plans proposed by Aφ does worse than the initial signal

plan. In Figure 3-1(e), two of the signal plans proposed by Aφ perform similarly to

the ones proposed by Am while two do worse. The signal plan proposed by AgA

performs worse than the initial signal plan for two performance metrics, namely NOx

and VOC emissions. In terms of travel time and CO2 emissions, the AgA plan is

able to achieve some improvement over the initial signal plan and in case of PM

emissions, this plan achieves significant improvement over the initial signal plan. The

trends seen on comparing the algorithms Am and Aφ are consistent throughout the

first four performance metrics (namely travel time, CO2, NOx and VOC) but change

60



when it comes to the fifth performance metric i.e. total PM emissions in the network.

Figure 3-2 considers a different random (uniformly drawn) initial signal plan. In

Figure 3-2 (a)-(d), the three best signal plans are proposed by Am. Two of the signal

plans proposed by Aφ do worse than the initial signal plan. The degree of variability

is also higher in the plans proposed by Aφ than in those proposed by Am. The signal

plan proposed by AgA is able to achieve improvements over the initial plan here but

does worse than all four of the plans proposed by Am and two of the plans proposed

by Aφ. In Figure 3-2(e), two of the three best plans are proposed by Am. One of the

Aφ plans and the plan proposed by AgA perform worse than the initial plan.

Figure 3-3 uses the existing signal plan of Lausanne as the initial signal plan.

When comparing algorithms for the travel time, CO2, NOx and VOC performance

metrics, we observe that the best signal plan in each case is that proposed by Am.

For these four performance metrics, one of the signal plans proposed by Aφ does

significantly worse than the initial signal plan. The degree of variability in the plans

proposed by Aφ is also higher than those proposed by Am. In Figure 3-3(e), three

of the signal plans proposed by Aφ perform similarly to the four plans proposed by

Am. For all five performance metrics, the performance of the signal plan proposed

by the method AgA is very similar to that of the initial signal plan. Thus, the green

curve is barely distinguishable in each cdf plot of this figure.

Figure 3-4 summarizes the information in Figures 3-1, 3-2 and 3-3. Each cdf plot

contains two curves. The black curve consists of all the Am signal plans displayed

in the previously mentioned figures (i.e. each black curve consists of 50x5x3 = 750

observations of the respective performance measure). Similarly, each red curve con-

sists of all the Aφ signal plans displayed in the previously mentioned figures for that

specific performance measure. Figure 3-4 shows that the signal plans proposed by

Am significantly outperform those proposed by Aφ over four performance metrics

namely, average network travel time and total network emissions of CO2, NOx and

VOC. For the last performance metric (i.e. PM emissions), the Am plans perform

better than the Aφ plans. Thus, we see an added value of using a combination of

simulated and analytic information to perform optimizations compared to using just
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Figure 3-1: Performance of the signal plans derived with the gT,EM objective function
and a random initial signal plan.
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Figure 3-2: Performance of the signal plans derived with the gT,EM objective function
and a random initial signal plan.
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Figure 3-3: Performance of the signal plans derived with the gT,EM objective function.
The algorithms are initialized with an existing signal plan for Lausanne.
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simulated information. This once again can be attributed to the fact that emissions

are dependent on individual vehicle attributes which show high variability from one

simulation run to the next. Thus the use of an analytic emissions model in addition

to the simulation model, makes the optimization process much more efficient.

Figure 3-5 considers the best signal plan proposed by the method Am when initial-

ized with the existing signal plan of Lausanne city and demonstrates the monetary

savings achieved when this plan is implemented during the one-hour evening peak

period from 5 to 6 PM on a single day. In order to monetize the reduction in travel

time and various pollutant emissions achieved by this plan for the considered network,

we use the weights listed in Section 3.3. Figure 3-5 contains five cdf plots with two

curves in each. The blue curve represents the externality costs for the existing signal

configuration of Lausanne city and the black curve represents the externality costs

when the best Am plan is implemented. The externality costs are given in EURO

and are calculated for the one-hour evening peak period.

Figure 3-5 shows that the maximum cost savings are attributable to the reduction

in network CO2 levels followed next by the cost savings from reduction in total network

travel time. The reduction in the externality costs of CO2 emissions in the network

ranges (across replications) from 200 to 700 EUROs. It is important to note that

these savings are just for the evening peak period on a single day. Travel time savings

for the network range (across replications) from zero to 300 EUROs.

Figure 3-6 shows the reduction in total externality cost, summed across travel

time and all pollutant emissions in the network, achieved by the best Am plan over

the initial signal plan.

Figures 3-7, 3-8, 3-9 and 3-10 consider the same initial point as Figure 3-1 and

the objective function gT,EM . Each plot displays the network of interest. Each link

is colored according to the difference in the average (over 50 replications) emissions

per vehicle between the best Am signal plan and the initial signal plan (i.e., positive

values indicate a reduction in emissions achieved by the Am plan), for the pollutants

CO2, NOx, VOC and PM, respectively. Links that are colored dark green see a

significant reduction in emissions for that specific pollutant, while links colored light
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Figure 3-4: Summary of the performance of the signal plans derived with the gT,EM

objective function.
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Figure 3-5: Monetary evaluation of the best signal plan proposed by Am when ini-
tialized with an existing signal plan for Lausanne.
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Figure 3-6: Monetary evaluation of the best signal plan proposed by Am in terms of
total externality cost for the network

green see some reduction. Links colored orange see an increase in pollutant emissions

for the Am plan compared to the initial plan and links colored red see a signficant

increase. For each of the four pollutants, we see that the number of links showing a

reduction in emissions for the Am plan is greater than the number of links showing

an increase in emissions. The link-level emissions trends for the other random initial

point (considered in Figure 3-2) are also similar and have not been displayed.

Figures 3-11, 3-12, 3-13 and 3-14 consider the existing signal plan of Lausanne

as the initial signal plan. The coloring scheme is the same as for Figures 3-7 to 3-

10 above. Here we see that the number of links for which the Am plan achieves a

reduction in emission levels compared to the initial signal plan, is fewer than before.

However, this number still exceeds the number of links which show an increase in

emissions levels, for each of the four pollutant types.
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Figure 3-7: Improvement in average CO2 emissions per vehicle per link (in g) achieved
by the best Am plan when initialized with a random signal plan.

Figure 3-8: Improvement in average NOx emissions per vehicle per link (in mg)
achieved by the best Am plan when initialized with a random signal plan.
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Figure 3-9: Improvement in average VOC emissions per vehicle per link (in mg)
achieved by the best Am plan when initialized with a random signal plan.

Figure 3-10: Improvement in average PM emissions per vehicle per link (in mg)
achieved by the best Am plan when initialized with a random signal plan.
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Figure 3-11: Improvement in average CO2 emissions per vehicle per link (in g)
achieved by the best Am plan when initialized with the existing signal plan of Lau-
sanne.

Figure 3-12: Improvement in average NOx emissions per vehicle per link (in mg)
achieved by the best Am plan when initialized with the existing signal plan of Lau-
sanne.
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Figure 3-13: Improvement in average VOC emissions per vehicle per link (in mg)
achieved by the best Am plan when initialized with the existing signal plan of Lau-
sanne.

Figure 3-14: Improvement in average PM emissions per vehicle per link (in mg)
achieved by the best Am plan when initialized with the existing signal plan of Lau-
sanne.
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3.4.3 Case study conclusions

The empirical analysis for a traffic network in the city of Lausanne presented in

the Section 3.4.2 shows that there is an added value of combining simulated and

analytical information. Since emissions of pollutants like CO2, NOx, VOC and PM

depend strongly on individual vehicle attributes and complex local traffic dynamics,

they have high variability. Thus, an algorithm which uses only simulated information

is typically at a disadvantage compared to one that combines suitable analytical and

simulated information. The analysis further details the monetary savings which can

be achieved with the implementation of a signal plan derived using the proposed

framework and demonstrates that the savings are significant. While the monetary

savings are evaluated at the network-level, the empirical analysis also presents the

reduction in emissions levels that are achieved at the link-level.
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Chapter 4

Conclusions

The empirical case-studies of Chapter 2 and Chapter 3 show that when accounting

for complex and high variance performance measures, such as fuel consumption and

various pollutant emissions, there is an added value of combining information from

the simulator with approximations derived from analytical macroscopic models. The

proposed methodology outperforms both traditional methodologies: which resort to

either only simulated information (Aφ) or only analytical information (AgA). The

proposed methodology systematically achieves reductions in travel time, fuel con-

sumption and emissions, and does so within a tight computational budget.

With energy efficiency and emissions mitigation being a growing concern for the

transportation industry, this thesis demonstrates how detailed traffic and vehicle-

performance simulation tools can be coupled and used to design traffic management

strategies that improve network-wide performance metrics.

Ongoing work addresses optimization problems that account for environmental

performance measures using signal control over a congested large-scale urban network.

The addition of performance metrics with a high degree of variability in the objective

function and the limited computational budget makes the development of an efficient

framework a real challenge.

The importance of incorporating fuel consumption and emissions in a signal con-

trol framework is exemplified by, for instance, US federal regulations such as the

Clean Air Act and the Surface Transportation Efficiency Act, which place increasing
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responsibility on city and regional agencies to account for and achieve their envi-

ronmental targets. By increasing accountability and using past performance as a

metric for the procurement of future federal funding, these regulations also build

incentive for governing agencies to conceive new insfrastructure schemes addressing

sustainable transportation. The success of traffic management strategies is now de-

pendent on their demonstrated ability to prevent further degradation of air quality

in the surrounding areas while addressing city congestion. Signal control remains a

low cost alternative in this regard. However, as is currently the practice, the use of

integrated traffic-fuel-emissions models is primarily restricted to observing the effect

of predetermined alternatives on emissions and/or fuel consumption. The optimiza-

tion framework presented in this thesis enables practitioners to go beyond evaluation

purposes and systematically identify alternatives with improved urban-scale perfor-

mance. The tight computational budget also ensures that the time-span required to

identify improved signal configurations is short.

While this domain has not been explored in the thesis, we believe that the com-

bination of analytic and simulated information to address environmental objectives

can be extended beyond signal control to include intelligent transportation system

deployments, ramp metering and dynamic speed limits. Since the SO framework

presented accounts for detailed vehicle-specific information, it can also be used to

evaluate the performance of novel vehicle technologies, and to inform their design

while accounting for the complex local interactions of drivers with both surrounding

vehicles and with the underlying infrastructure.
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Appendix A

Analytical queueing network model

The physical component of the metamodel is an analytical and differentiable urban

traffic model. Each lane of an urban road network is modeled as a set of finite capacity

queues. In the following notation the index i refers to a given queue. We refer the

reader to Osorio and Bierlaire (2009b) and to Osorio and Bierlaire (2009a) for details.

γi external arrival rate;

λi total arrival rate;

µi service rate;

µ̃i unblocking rate;

µeff
i effective service rate (accounts for both service and eventual blocking);

ρi traffic intensity;

P f
i probability of being blocked at queue i;

ki upper bound of the queue length;

Ni total number of vehicles in queue i;

P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;

pij transition probability from queue i to queue j;

Di set of downstream queues of queue i;

77



The queueing network model is formulated as follows.



λi = γi +

∑
j pjiλj(1− P (Nj = kj))

(1− P (Ni = ki))
, (A.1a)

1

µ̃i

=
∑
j∈Di

λj(1− P (Nj = kj))

λi(1− P (Ni = ki))µeff
j

, (A.1b)

1

µeff
i

=
1

µi

+ P f
i

1

µ̃i

, (A.1c)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii , (A.1d)

P f
i =

∑
j

pijP (Nj = kj), (A.1e)

ρi =
λi
µeff
i

, (A.1f)

The exogenous parameters are γi, µi, pij and ki. All other parameters are endoge-

nous. When used to solve a signal control problem (as in this thesis), the capacity

of the signalized lanes become endogenous, which makes the corresponding service

rates, µi, endogenous.
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Appendix B

Trust region subproblem

At a given iteration k, the SO algorithm considers a metamodel mk(x, y;αk, βk, q), an

iterate xk (point considered to have best performance so far) and a trust region (TR)

radius ∆k, and solves the TR subproblem in order to derive a trial point (i.e., a signal

plan with potentially improved performance). The TR subproblem is formulated as

follows:

min
x,y

mk = αkg
A(x, y; q) + φ(x; βk) (B.1)

subject to

∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (B.2)

h(x, y; q) = 0 (B.3)

µ` −
∑

j∈PL(`)

xjs = 0, ∀` ∈ L (B.4)

‖x− xk‖2 ≤ ∆k (B.5)

y ≥ 0 (B.6)

x ≥ xL, (B.7)
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where s denotes the saturation flow rate, L denotes the set of indices of the signalized

lanes, PL(`) denotes the set of phase indices of lane `, and h is the analytical traffic

model.

The TR subproblem differs from the signal control problem given in Section 2.3

(Equations (2.28), (2.29) and (2.30)) as follows. The TR subproblem approximates

the objective functions by the metamodel at iteration k, mk. It includes the following

additional constraints:

• Inequality (B.5). This is known as the trust region constraint.

• Equation (B.3). The function h of Equation (B.3) represents the queueing

network model given above by the System of Equations (A.1).

• Equation (B.4). This equation relates the green splits of a phase to the flow

capacity of the underlying signalized lanes (i.e., the service rate of the queues).

• Equation (B.6). The endogenous variables of the queueing model are subject

to positivity constraints.
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