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This paper proposes a simulation-based optimization technique for high-dimensional toll optimization prob-

lems of large-scale road networks. We formulate a novel analytical network model. The latter is embedded

within a metamodel simulation-based optimization (SO) algorithm. It provides analytical and differentiable

structural information of the underlying problem to the SO algorithm. Hence, the algorithm no longer treats

the simulator as a black-box.

The analytical model is formulated as a system of nonlinear equations that can be efficiently evaluated

with standard solvers. The dimension of the system of equations scales linearly with network size. It scales

independently of the dimension of the route choice set and of link attributes such as link length. Hence,

it is a scalable formulation suitable for the optimization of large-scale networks. For instance, the model is

used in the case study of the paper for toll optimization of a Singapore network with over 4050 OD (origin-

destination) pairs and 18200 feasible routes. The corresponding analytical model is implemented as a system

of 860 nonlinear equations.

The analytical network model is validated based on one-dimensional toy network problems. It captures

the main trends of the simulation-based objective function, and more importantly, accurately locates the

global optimum for all experiments. The proposed SO approach is then used to optimize a set of 16 tolls for

the network of expressways and major arterials of Singapore. The proposed method is compared to a general-

purpose algorithm. The proposed method identifies good quality solutions at the very first iteration. The

benchmark method identifies solutions with similar performance after 2 days of computation or similarly after

more than 30 points have been simulated. The case study indicates that the analytical structural information

provided to the algorithm by the analytical network model enables it to: (i) identify good quality solutions

fast, (ii) become robust to both the quality of the initial points and to the stochasticity of the simulator.

The final solutions identified by the proposed algorithm outperform those of the benchmark method by an

average of 18%.
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1. Introduction

Transportation demand management (TDM), also referred to as travel demand manage-

ment or traffic demand management, consists of strategies to reduce or redistribute travel

demand, in time or space, such as to improve, for instance, the efficiency or the sus-

tainability of the transportation network. The temporal and spatial dimensions of travel

(e.g., departure time, mode, route) and even the decision of whether or not to travel can

be shaped through TDM (Saleh and Sammer 2009). TDM strategies include pricing and

incentives (negative pricing). Pricing strategies are deployed more widely than incentives.

Congestion pricing has been extensively studied. A recent review of congestion pricing

methods is given in de Palma and Lindsey (2011). Toll optimization is one of the most

studied types of congestion pricing. Both offline and online toll optimization strategies

have been proposed. Offline strategies can be static (i.e., they yield a single toll for the

entire time horizon of interest at a given toll location) or dynamic (i.e., they yield a

time-dependent toll, such as in time-of-day tolling). Online strategies can be reactive or

proactive (also known as anticipatory or predictive). Reactive strategies use observed traf-

fic conditions to determine tolls, while proactive strategies combine both observed and

predictive traffic conditions to determine the tolls.

Table 1 summarizes some of the recent toll optimization literature. For each paper

(i.e., each row), the table indicates whether it considers an offline static problem, an

offline dynamic (i.e., time-dependent tolls) problem, an online problem (whether reactive

or proactive). The table also indicates if the traffic model used for toll optimization is

analytical or simulation-based, the dimension of the toll vector and a summary of the

network of the largest case study in the paper.

The table indicates that the focus of recent work has mostly been on online (i.e., real-

time) problems. Nonetheless, such approaches are mostly limited to simple applications

that consider a single corridor with its neighboring arterials. Few approaches, including

Gupta et al. (2016), Chen et al. (2016), and Vu et al. (2018), have considered more intri-

cate and large-scale network topologies. Most literature has focused on low-dimensional

problems. The recent works of Gupta et al. (2016) and Vu et al. (2018) consider a higher-

dimensional problem that optimizes, respectively, 13 and 16 tolls distributed throughout

Singapore.
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Offline Online Analytical. Simulation-based Toll Network
Study Static Dynamic
Lou et al. (2011) X X 1 One highway segment
Dong et al. (2011) X X 2 One part of the I-95 corridor and its

surroundings with 3459 links
Hassan et al. (2013) X X 2 One corridor along with its adjacent

arterials
Jang et al. (2014) X X 1 One 14-mile highway corridor in the

San Francisco area
Toledo et al. (2015) X X 1 One 14-km highway corridor
Zheng et al. (2016) X X 1 Area-based toll for Sioux-Falls network
Chen et al. (2016) X X 5 Network of highways and arterials in

Maryland (USA) with 2158 links
Gupta et al. (2016) X X 13 Network of Singapore’s expressways

and major arterials with 1150 links
Liu et al. (2017) X X 7 13 link network
Han et al. (2017) X X 10 10 link network
Vu et al. (2018) X X 16 Network of Singapore’s expressways

and major arterials with 1150 links
Chen et al. (2018) X X 5 Network of highways and arterials in

Maryland (USA) with 2158 links
Zhang et al. (2018) X X 2 Highway corridor in Texas

with 167 links
This paper X X 16 Network of Singapore’s expressways

and major arterials with 1150 links
Table 1 Recent toll optimization literature
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The congestion pricing literature has extensively studied the importance of accounting

for a detailed description of travel demand. For instance, accounting for the heterogeneity

in the value of time across the population is important (Lou et al. 2011, Jang et al. 2014,

Gupta et al. 2016). Furthermore, Vu et al. (2018) have enhanced the methods to account

for elasticity of travel demand such that the travelers can change their mode, departure

time and even cancel their trip in response to tolls. The work of Vu et al. (2018) considers

distance-based tolling. The increased complexity of the demand modeling component has

fostered the use of simulation-based models, which can embed detailed probabilistic travel

demand models with random coefficients, such as value of time.

When the toll optimization problem is formulated as a simulation-based optimization

problem, the most common approaches are the use of black-box (i.e., general-purpose)

algorithms such as genetic algorithms (Gupta et al. 2016, Vu et al. 2018) in combination

with a constrained local search technique (Zhang et al. 2018). Such approaches can be

directly used to address a variety of formulations (e.g., changes in the objective function or

the feasible region can be readily accounted for). Nonetheless, this limits their performance

under tight computational budgets or small samples. Given the computational cost of

running high-resolution or large-scale traffic simulators, algorithms that can yield good

quality solutions within few simulations are essential to address intricate optimization

problems such as toll optimization.

The recent approach of Chen et al. (2016) has considered a metamodel approach to

address the simulation-based optimization (SO) problem. A general-purpose Kriging meta-

model is used to address a 5-dimensional problem for a large-scale network with non-linear

network topology. They also apply similar simulation-based optimization techniques for

improving the travel time reliability of the network (Chen et al. 2018). The advantage of

using a general-purpose metamodel is that the approach can be directly applied to a vari-

ety of problem formulations. Nonetheless, this generality also comes with the need to run a

significant number of simulations prior to optimization. For instance, for the 5-dimensional

case study of Chen et al. (2016), a set of 100 points are simulated prior to optimization.

This limits the use of the approach for high-dimensional problems. Distance-based toll

optimization problems have also been receiving recent attention, Liu et al. (2017) provide

a review.

This paper focuses on the design of toll optimization problems with the following char-

acteristics. First, we consider large-scale road networks, such that the large-scale (e.g.,

across a full city or metropolitan region) impact of the tolls is accounted for. In particular,

the use of a large-scale network model allows to capture the impacts of the tolling on
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traffic assignment. This is particularly important when considering commuting patterns,

where travelers with long-distance commutes will react to changes in tolls throughout

the network. Second, we consider networks with intricate topologies. In particular, we

aim to go beyond the analysis of linear-topology corridor studies. Third, we consider

high-dimensional problems such that various tolls distributed throughout the network are

simultaneously or jointly optimized. This is important such as to account for the global

(or joint) impact of tolling on traffic assignment. This also allows to coordinate tolls

such as to account for equity considerations. Fourth, we focus on the use of stochastic

high-resolution simulation-based traffic models. The latter allows for a detailed (e.g., prob-

abilistic, dynamic) description of travel demand, which is essential to forecast the impact

of tolls on congestion patterns.

This paper contributes to this area by focusing on the design of computationally efficient

algorithms. These are algorithms that are designed to yield a good quality solution within

few simulation runs. The case study of this paper considers an offline static problem. We

view the design of these computationally efficient offline algorithms as the building block

for efficient real-time algorithms.

Computational efficiency can be improved through parallel computations such as in

Gupta et al. (2016), Vu et al. (2018). Nonetheless, as our transportation systems and

users become more real-time responsive and more connected, the intricacy of both the

traffic simulation tools used and of the transportation optimization problems addressed

increases. Hence, there is a need for computationally efficient algorithms.

Our approach to achieve computational efficiency is to allow the algorithms to exploit

problem-specific structural information. More specifically, we propose to formulate an ana-

lytical network model that approximates the mapping between the tolls and the network-

wide traffic conditions. We then embed this analytical structural information within the

algorithm. In other words, this analytical information is combined with simulation-based

information to identify suitable toll vectors.

This paper proposes an SO algorithm that enables high-dimensional toll optimization

problems for large-scale networks to be addressed in a computationally efficient way. The

essential component of the proposed methodology is the formulation of an analytical net-

work model which provides an analytical and differentiable mapping between the toll

vector and the network-wide performance metrics (such as revenue and traffic conditions).

The proposed formulation is scalable, and hence suitable for large-scale networks. More

specifically, for a network with n links, the analytical network model is formulated as a
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system of n nonlinear equations. Importantly, the analytical network model has endoge-

nous traffic assignment, yet its complexity (i.e., the dimension of the corresponding sys-

tem of equations) scales independently of the dimension of the route choice set, of link

attributes (e.g., link length, number of lanes), and of origin-destination matrix dimensions.

The proposed formulation is embedded within a metamodel SO algorithm and is used to

address a high-dimensional offline toll optimization problem for a large-scale Singapore

network. More specifically, 16 tolls that are distributed throughout the network of Sin-

gapore expressways and major arterials are optimized. The network is modeled as set of

over 1150 links, 2300 lanes, 4050 OD pairs with over 18000 routes.

Section 2 presents the proposed methodology. Validation experiments are presented in

Section 3, followed by a Singapore case study in Section 4. Conclusions are discussed in

Section 5.

2. Methodology
2.1. Problem formulation

To formulate the toll optimization problem, we introduce the following notation:

x decision vector (i.e., toll vector) in a given currency unit;
f(x) simulation-based objective function;
Fi(x) hourly flow on link i;
E[Fi(x)] expected hourly flow on link i;
xL lower bound vector;
xU upper bound vector;
T set of links with tolls.

The problem is formulated as follows:

max
x

f(x) =
∑

i∈T

xiE[Fi(x)] (1)

xL ≤x≤xU . (2)

The decision vector x is the vector of toll rates, with element i denoted by xi. For the case

study of Section 4, the dimension of x is 16. In other words, the tolls of 16 distinct loca-

tions are determined simultaneously. The objective function f(x) (Eq. (1)) is an unknown

simulation-based function, which in this paper is the expected hourly revenue. Term i in

the summation represents the expected hourly revenue for toll i. The latter is defined as

the product of the toll and of the expected number of vehicles per hour that travel on link i.

This expected link flow is a function of the tolls because the tolls impact traffic assignment

(i.e., when choosing their routes, the travelers account for the toll costs). This expectation

is an unknown function, which is estimated via simulation. The toll optimization problem
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considers lower and upper bound constraints for the tolls (Eq. (2)). These bounds are

available in analytical form, i.e., they are not simulation-based constraints. This problem

formulation considers the main incentive from the perspective of the toll operator: revenue

maximization. The proposed methodology is suited to address other problem formulations

which account explicitly for how tolls impact network performance. This can be done

by including in the objective function, additional network-wide performance metrics such

as travel times and speeds. In summary, the problem is an SO problem with continuous

decision variables, simulation-based objective function and analytical deterministic bound

constraints. Other problem formulations that account, for instance, for the level of service

or the social welfare can also be addressed with the proposed methodology.

In practice, dynamic tolls throughout a network are determined independently (i.e., the

spatial dependencies between tolls is not explicitly accounted for in the optimization).

Commonly used approaches in practice are rule-based approaches or lookup tables that

determine tolls based on the prevailing traffic conditions. An example is the dynamic

tolling at I-394 in the Minneapolis-St. Paul metropolitan area (Halvorson et al. 2011).

Recent literature has addressed the spatial dependencies between tolls. However, many

recent studies focus on the analysis of a single toll, as illustrated in Table 1. The proposed

formulation simultaneously determines all tolls in the network. In the Singapore case

study of this paper, a set of 16 tolls distributed throughout Singapore are jointly or

simultaneously determined. This allows to account for the joint impact of tolls on the

spatial and temporal propagation of congestion. For instance, a toll on an upstream link

influences flow on downstream links, which influences downstream tolls. This illustrates

the importance of accounting for these dependencies between the tolls for toll optimization.

More generally, it illustrates the intricate mapping between the toll vector, the underlying

traffic dynamics and the resulting objective function.

In practice, the toll bounds (Eq. (2)) are typically given by the context. The upper

bound is usually set by regulations. It is not a decision variable. As an example of the

discussion of such regulations we refer to Albalate et al. (2009) and an example from the

US context is given by Zhang et al. (2018). The lower bound can be set based on tolling

policies. For example, it can be set such as to avoid large toll fluctuations across time

intervals.
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2.2. Metamodel SO algorithm

We use in this paper the general metamodel SO approach of Osorio and Bierlaire (2013).

To briefly describe its main ideas, we introduce the following notation. The index k refers

to a given SO algorithm iteration.

mk metamodel function;
βk parameter vector of metamodel mk;
βk,j element j of the parameter vector βk;
fA(x) approximation of the SO objective function provided by an analytical traffic model;
φ(x;βk) polynomial component of the metamodel mk;
h(x;p) analytical traffic model formulated as a system of nonlinear equations.

To address Problem (1)-(2), each iteration k of the SO algorithm solves a metamodel

optimization problem of the following form:

max
x

mk(x;βk) = βk,0fA(x)+φ(x;βk) (3)

h(x;p) = 0 (4)

xL ≤ x≤xU . (5)

Problem (1)-(2) differs from Problem (3)-(5) in two main ways. First, the SO objective

function, f(x), is replaced by an analytical, and differentiable, function known as the

metamodel mk. The latter is a parametric function that is defined as the sum of: (i) an

analytical approximation of f(x) provided by an analytical traffic model (fA(x) term),

and (ii) a polynomial function (φ term). The metamodel can be seen as the approximation

of f provided by an analytical traffic model and corrected for with both a scaling factor

(βk,0) and an additive error term (φ term). The polynomial, φ, is defined as a quadratic

function with diagonal second-derivative matrix. More specifically:

φ(x;βk) = βk,1 +
T
∑

j=1

xjβk,j+1 +
T
∑

j=1

x2
jβk,j+T+1, (6)

where T is the dimension of the decision vector x. Equation (6) defines the function φ of

(3), which is the general-purpose (i.e., not problem-specific) component of the metamodel.

Second, it has an additional set of constraints (Eq. (4)) which represent the analytical

traffic model. The latter is formulated as a system of nonlinear equations.

Each iteration k of the SO algorithm carries out the following main steps: (i) use all

simulation observations collected so far (i.e., all estimates of f(x)) to fit the parameter

vector, βk, of the metamodel (the least squares problem that is solved to fit βk is detailed

in Appendix B, it aims to minimize a distance function between the metamodel predictions
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and the simulated estimates of f(x)); (ii) solve the metamodel optimization problem (3)-

(5); (iii) simulate new points (for instance, simulate the optimal solution of the metamodel

optimization problem).

The main component of the metamodel which can enable it to address high-dimensional

and intricate SO problems (e.g., non-convex) in a computationally efficient way is the ana-

lytical traffic model approximation (i.e., fA term). This term provides a problem-specific

approximation of f , while the polynomial provides a general-purpose approximation. In

other words, depending on the choice of f (e.g., revenue, consumer surplus, etc.) the func-

tional form of fA will vary, while that of φ will not. The analytical traffic model provides

analytical structural information to the SO algorithm. More specifically, it provides an

analytical and physically plausible (i.e., problem-specific) approximation of the mapping

between the decision vector and the objective function. . Traditional SO algorithms treat

the simulator as a black-box. The use of fA enables problem- and network-specific infor-

mation to be provided to the algorithm. Hence, the simulator is no longer treated as a

black-box.

The main challenge in this metamodel SO approach is the formulation of an analytical

traffic model that has the following properties. First, it should provide a good approx-

imation of the unknown simulation-based objective function f (such that the optimal

solutions to Problem (3)-(5) are good quality solutions to Problem (1)-(2)). Second, it

should provide a good global approximation (i.e., a good approximation in the entire fea-

sible region). This differs from local metamodels such as polynomials. Third, it should

be computationally efficient to evaluate. Since Problem (3)-(5) is solved at every itera-

tion of the SO algorithm it needs to be solved efficiently (otherwise, we are better off

allocating the computing resources to running additional simulations). Fourth, it should

be a scalable model such that it can be used for large-scale networks, i.e., the System of

Equations (4) needs to be efficiently evaluated for large-scale networks. Fifth, it should

be differentiable such that Problem (3)-(5) can be solved with a variety of traditional

gradient-based algorithms. In Section 2.3, we formulate an analytical traffic model with

all of the above properties for toll optimization problems. This general metamodel SO

idea has been formulated and used to design efficient algorithms for various transportation

problems, including various traffic signal control problem (Chong and Osorio 2017, Osorio

et al. 2017, Osorio and Nanduri 2015, Osorio and Chong 2015), and more recently for

model calibration problems (Zhang et al. 2017).
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2.3. Traffic model formulation

To formulate the analytical traffic model, we introduce the following additional notation:

Endogenous variables of the analytical traffic model:

yi expected hourly demand per lane of link i;
ki expected density per lane of link i;
vi expected (space-mean) speed per lane of link i;
tr expected travel time for route r;
zr toll cost for route r;
P (r) route choice probability for route r.

Exogenous parameters of the analytical traffic model:

ds expected hourly travel demand for OD pair s;
kjam
i jam density per lane of link i;

vmax
i maximum speed of link i;
qcap lane flow capacity;
ni number of lanes of link i;
ℓi average lane length of link i;
θ1, θ2 coefficients of the route choice model;
α1,i, α2,i parameters of the fundamental diagram of link i;
c scaling parameter common to all links;
O(r) OD pair of route r;
R1(i) set of routes that include link i;
R2(s) set of routes of OD pair s;
L(r) set of links of route r.
T set of links with tolls.

The analytical traffic model is formulated as follows:

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

fA(x) =
∑

i∈T

xiniyi (7a)

yi =
1

ni

∑

r∈R1(i)

P (r)dO(r) (7b)

P (r) =
eθ1tr+θ2zr

∑

j∈R2(O(r)) e
θ1tj+θ2zj

(7c)

tr =
∑

i∈L(r)

ti (7d)

zr =
∑

i∈L(r)∩T

xi (7e)

ti =
ℓi
vi

(7f)

vi = vmax
i

(

1−

(

ki

kjam
i

)α1,i
)α2,i

(7g)

ki = c
kjam
i

qcap
yi. (7h)

Eq. (7a) is the approximation of the expected hourly revenue provided by the analyti-

cal traffic model. It is the analytical counterpart of Eq. (1), where the simulation-based
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expected hourly flow of link i, E[Fi(x)], is replaced by the analytical expected hourly

demand of link i. The latter is defined as the product of the hourly demand per lane of

link i, yi, and the number of lanes on link i, ni. The hourly demand per lane of link i is

defined by Eq. (7b) as the ratio of the sum of the expected demand for all routes that

travel through link i and of the number of lanes of link i. The expected route demand

is the product of the route choice probability and the total demand for the underlying

OD (Origin-Destination) pair. The route choice probability (Eq. (7c)) is approximated as

a multinomial logit model with a utility that is a function of the route’s expected travel

time and the route’s toll cost. The expected route travel time (Eq. (7d)) is the sum of the

expected travel times of its links. The route toll cost is the sum of the tolls that are on

the given route (Eq. (7e)). Equation (7f) defines the expected link travel time as the ratio

of the link length and the expected (space-mean) link speed. The fundamental diagram

of the link is given by Eq. (7g). It relates link densities to link speeds. Finally, Eq. (7h)

relates the link demand to the link density. The underlying assumption is that the ratio

of density to jam density is proportional to the ratio of hourly demand to flow capacity.

The proportionality constant, c, is common for all links. In this model, a common flow

capacity value is used for all links. This System of Equations (7) defines the system of

equations denoted h in Eq. (4).

In summary, the above analytical traffic model provides a simplified (compared to the

simulator) description of how tolls impact the spatial distribution of vehicular flow. The

System of Equations (7) accounts for the dependencies between tolls (recall discussion in

Section 2.1) through an analytical description of how tolls impact route choices, which in

turn impact the spatial propagation of congestion and the corresponding toll revenues.

The above model (Eq. (7)) is implemented for a network with n links as a system of n

nonlinear equations. In other words, the complexity of the model (i.e., the dimension of the

corresponding system of equations) scales linearly with the number of links in the network,

and is independent of other link attributes such as link length or lane attributes. What

is particularly remarkable is that the analytical model has endogenous traffic assignment

(i.e., endogenous route choice), yet its complexity does not depend on the size of the

route choice set. For instance, for the Singapore case study of this paper, the analytical

model considers a network with 860 links, 4050 OD pairs and over 18,200 routes; and

is implemented as a system of 860 nonlinear equations. This is a scalable formulation

suitable for large-scale network optimization.

A description of how this analytical model differs from the simulation model used for

the case studies of this paper is given in Appendix A. The exogenous parameters of
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the analytical model are calibrated as follows. The simulator considers multi-lane links,

with heterogeneous lanes, while the analytical model assumes all lanes of a link to be

homogeneous. Hence, the link attributes (kjam
i , vmax

i and ℓi) of the analytical model are

estimated as the average, over all lanes of the link, of the individual lane attributes of

the simulator. The parameters of its fundamental diagram of each link of the analytical

model are defined based on those of the simulator, the specific equation that governs this is

detailed in Appendix A. For all lanes, the analytical model uses a single lane flow capacity

value (denoted qcap), its value is set as the maximum flow capacity value, among all all of

the simulators lanes. The simulator has a pre-determined route choice set, which defines

the route choice set of the analytical model. Additional details on this are provided in

Appendix A. The simulator allows for time-dependent OD demand matrices. The time-

independent OD demand, d, of the analytical model is obtained as the average, over the

time period of interest, OD demand. For the case studies of this paper, the proportionality

coefficient c of Eq. (7h) is kept to the same value, which is set to 1/6. This value was

obtained through insights from numerical experiments on a toy network. As is described

in Appendix A, the simulator uses a route choice model with a probabilistic value of time,

while the analytical model considers a deterministic value of time. The coefficients of the

route choice model (denoted θ1 and θ2), include the value of time, are estimated as the

expected value of the probabilistic coefficients of the simulator’s route choice model.

3. Validation

We carry out experiments on a synthetic small toy network as illustrated in Figure 1.

The network has 1 OD pair, and 3 multi-lane links in a diverge node topology. In other

words, all trips have a common origin link. After traveling on link 1, the travelers can

choose between links 2 and 3. The only difference between links 2 and 3 is that link 2

is tolled. This is a one-dimensional problem (i.e., a scalar toll value). We consider exper-

iments with 2 different value of time (VOT) values ($15/h and $30/h). For each of the

experiments, we consider four different demand scenarios. Three demand scenarios have a

constant OD demand with values 3600, 4800 and 6000 vehicles per hour, respectively. The

fourth demand scenario considers time-dependent OD matrices, where demand increases

gradually (from 3600 to 6000), and the average demand is 4800 vehicles per hour. These

experiments cover various levels of congestion ranging from free-flowing conditions to con-

gested conditions.

Figure 2 displays eight plots. The top plots display the objective function (i.e., expected

revenue function f of Eq. (1)) estimates obtained via simulation. The bottom plots display
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Figure 1 Toy network topology

the approximations derived by the analytical network model (i.e., function fA of Eq. (3)). A

given row of plots displays, from left to right, the demand scenarios with constant demand

3600, constant demand 4800, constant demand 6000 and increasing demand with average

4800, respectively. Each plot displays two curves that correspond to a given VOT value: a

VOT of 15 corresponds to the solid curve, a VOT of 30 corresponds to the dashed curve.

Note that the different plots have different y-axis limits. For a given demand scenario (i.e.,

a given plot), as the VOT increases, the maximum revenue increases and the toll for which

maximum revenue is obtained also increases. This holds for all demand scenarios. This

trend is well replicated by the analytical model. For a given demand scenario (i.e., when

comparing a given column of plots), the analytical model has an accurate approximation

of the value of the optimal toll. This holds for all demand scenarios, with both constant

and time-dependent demand. Nonetheless, the magnitude of the revenue functions differ.

The analytical model tends to overestimate the simulated revenue.

Figure 3 considers the same set of experiments. It now displays in the same plot, the

experiments with common VOT value yet different demand scenarios. As before, the top

(resp. bottom) plots correspond to simulation-based estimates (resp. analytical approxi-

mations). The four demand scenarios are represented as follows: constant demand of 3600

(blue curve), constant demand of 4800 (black curve), constant demand of 6000 (green

curve), increasing demand with an average of 4800 (red curve). The top plots indicate that

for a given VOT value, as the average demand increases, so does the maximum revenue,

yet the value of the optimal toll does not vary much. The analytical model captures these

trends, as indicated by the bottom plots. Since the analytical model is time-invariant (in

particular, it is a stationary model), the revenue values for both demand scenarios (con-

stant demand and increasing demand) with an average demand of 4800 are identical. The

simulator, which is a dynamic model, also yields similar expected revenue functions for

these two demand scenarios.
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Figure 2 Comparison of the simulation-based objective function and the analytical objective function

for various demand and value of time scenarios
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Figure 4 Comparison of the performance of the algorithms for a toy network toll optimization problem

We address the toll optimization problem for this toy network. We consider a VOT

value of $15/h and a constant demand of 4800 vehicles per hour. We compare our pro-

posed approach with the derivative-free generalized pattern search algorithm (Mathworks,

Inc. 2016). This algorithm was chosen as a benchmark for the following reasons. As a

derivative-free algorithm, it does not rely on first-order derivative information, which

can be computationally costly to estimate. It is suitable for non-continuous and non-

differentiable objective functions, as is the case of our simulation-based objective function

(the traffic simulator relies on non-continuous and non-differentiable functions). Moreover,

recent work has highlighted the good performance of similar direct search techniques when

used under tight computational budgets (Dong et al. 2017).

We consider 20 different initial points, which are uniformly drawn from the feasible

region (Eq. (2)). For each initial point, we run each method (i.e., algorithm) allowing for

a computational budget of 50 simulations (i.e., the algorithm is terminated once a total

of 50 simulations are evaluated).

Figure 4 displays the performance of each method considering each of its 20 runs. Each

plot displays the estimate of the objective function of the current iterate (i.e., the point

considered to have best performance so far) as a function of the total number of simulated

points (i.e., computational budget used so far). The top (resp. bottom) plot considers the

proposed (resp. benchmark) method.
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The top plot indicates that all 20 runs of the proposed method identify at iteration

1 a solution with excellent performance. This shows the ability of the proposed method

to perform well regardless of the quality of the initial solution. In other words, it is

robust to the quality of the initial point. The benchmark method gradually finds points

that have improved performance compared to the initial point. Its performance for low

computational budgets (e.g., 10 simulation runs) is sensitive to the quality of the initial

point. For larger budgets, it has a performance similar to that of the proposed method. All

20 runs of the proposed method converge to the same final solution, which is the global

optimal solution. For the benchmark method, 16 of the 20 runs converge to this value,

the other 4 runs converge to a local optimum with an estimated objective function that

is 4% lower than the global optimal solution.

4. Singapore case study

We consider a case study with a network model of the major arterials and expressways

of Singapore as seen in Figure 5a. We consider a set of 16 tolls to optimize. The 16 toll

gantries are distributed throughout the network and labeled in the figure with red circles.

The expressway links are represented with orange lines, the major arterials are represented

with yellow lines. The simulation model of the network is displayed in Figure 5b. It

accounts for all expressway links and a few arterial links. Currently, Electronic Road

Pricing (ERP) is deployed in Singapore such that travelers are charged at gantries when

they enter a zone. The toll to be charged varies across the day (time-of-day tolling) and

location. The pricing is pre-determined: it is reviewed quarterly and published so that the

travelers know exactly the toll they will pay. We refer to Seik (2000) for the history of the

ERP system in Singapore.

The network model consists of 1150 links with over 2300 lanes, 4050 OD pairs with over

18000 routes. Note that of the 1150 links of the simulator only 860 belong to routes of

the pre-determined route choice set. Details on how this choice set is defined are given in

Appendix A.

Hence, the analytical model only accounts for those 860 links. Demand is defined, in

the simulator, as calibrated time-dependent OD matrices for every 5 minute interval. We

simulate a weekday 8am-9:30am period, during this period expected travel demand is of

the order of 226247 trips. We determine the tolls such as to optimize revenue for the

9am-9:30am period. We set the lower toll bound to its smallest value of S$0 and upper toll

bound to a relatively high value of S$5 (Singapore dollars). As a reference, toll values in

Singapore for the period of May-Aug 2018 are provided by the Land Transport Authority
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(a) Singapore expressway network (map data: Google Maps (2017))

(b) Simulation network model
Figure 5 Singapore network

(2018) and toll values tend to be significantly lower than S$5. We consider 5 initial points.

Each initial point is uniformly drawn from the feasible region (Eq. (2)). For a given point,

we run each algorithm once and allow for a computational budget of 80 simulations.

We compare the performance of the algorithms as a function of the number of simulated

points (i.e., the amount of computational budget depleted). This allows for a comparison

that is hardware (e.g., computational resources) and software (e.g., code implementation)

agnostic. We also compare their performance as a function of the total computation time.
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Figure 6 Revenue of the current iterate as a function of the cumulative computation time

The runs are carried out on various servers, which do not guarantee equal CPU allocation

to each job. Hence, the computation times are indicative of efficiency yet the differences

may not be solely attributable to the algorithm.

Figure 6 displays the performance of each algorithmic run as a function of compu-

tation time. The red dashed lines represent the proposed metamodel SO method. The

black dotted lines represent the benchmark method. For each algorithm, there are 5 lines,

which correspond to 5 different initial points. The x-axis displays the total computation

time in days. The y-axis displays the simulation-based estimate of the objective function

of the current iterate. Note that on average one simulation run takes approximately 2

hours to compute. Figure 6 indicates that all 5 runs of the proposed method significantly

outperform the benchmark runs for the first two days of computation. Then, there is a

phase where all runs of the benchmark outperform 4 runs of the proposed method. After

day 3.5, four of the proposed method runs outperform all benchmark runs. The fifth run

outperforms two of the five benchmark runs.

This figure illustrates that the proposed method often (in four out of five instances) iden-

tifies final solution that significantly outperform the solutions proposed by the benchmark

method. When comparing the objective function value of the final solution and averaging

over the 5 runs, the proposed method yields an average improvement of 19% (average

revenues of 289678 versus 244158). Similarly, when comparing the revenue of the best
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solution (out of the 5 solutions) proposed by each method, the proposed method yields

an improvement of 18% (revenue of 303450 versus 258090). The best solution is defined as

that with the highest objective function estimate. Four of the five proposed solutions (i.e.,

solutions derived by the proposed method) have very similar objective function values.

This indicates robustness of the method to both the quality of the initial point and the

stochasticity of the simulator. There is higher variability among solutions derived by the

benchmark method.

During the first 2 days of computation the benchmark method slowly finds solutions

that gradually improve performance. As of day 2, it finds solutions with performance

comparable to those of the proposed method and that significantly outperform the initial

solutions. On the other hand, the proposed method immediately (i.e., at iteration 1) iden-

tifies solutions with significantly improved performance compared to the initial solution

(at iteration 1, the revenue improves on average by 95%; i.e., average revenues of 190150

versus 97229). This initial improvement is entirely due to the analytical network model.

More specifically, when the algorithm starts, there are no simulation observations avail-

able, hence the first current iterate is defined as the solution to the analytical network

model problem (i.e., a problem that maximizes fA(x) of Eq. (3) subject to constraints (4)-

(5)). This shows the added value of the structural information provided by the analytical

network model. Also note that the solutions to this analytical network model problem are

the same for all 5 initial points. This shows the added value of using an analytical network

model that provides a good global approximation of the objective function (rather than

using local models, such as polynomials). It is this analytical network model that leads to

an SO algorithm that is robust to the quality of the initial points.

Figure 7 differs from the previous figure in that it considers the performance as a

function of the total number of simulated points (instead of the total computation time)

(i.e., the two figures differ in their x-axis). This figure serves to compare the performance

of the algorithm independently of hardware and software considerations. The lines are

almost identical to those of the previous figure. All conclusions from the previous figure

also hold here.

Figure 8 considers for each algorithm, the 5 solutions it yields upon termination and

displays the coordinates of the solutions (i.e., toll values). Each plot contains 16 boxplots,

one for each toll (i.e., each i value). For a given i, the boxplot illustrates the variability

(across the 5 solutions) of the toll values, xi. The top, middle and lower plot display,

respectively, the 5 initial points, the 5 final solutions of the proposed method, and the 5

final solutions of the benchmark method. The top plot confirms that the 5 initial points
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Figure 7 Revenue of the current iterate as a function of the number of simulated points

are very different (i.e., high variability). The middle plot shows that for most tolls there is

little variability across toll values. More specifically, 13 of the 16 tolls have low variability

(the tolls with high variability are indexed 5, 8 and 16). The lower plot shows that the

benchmark method yields solutions with lower variability than the initial point, but with

higher variability than the proposed method. More specifically, 10 of the 16 tolls have

lower variability under the proposed method than under the benchmark method. For the

proposed method, 8 of the tolls have a variance smaller than 0.1, while for the benchmark

method, only 1 of the tolls is below this threshold.

Figure 9 considers all the points simulated across all 10 runs (5 for the benchmark

method and 5 for the proposed method). For each of these points, it evaluates the ana-

lytical approximation of the objective function provided by the analytical network model.

In other words, it considers a given x and solves the system of nonlinear equations (7)

to obtain fA(x), which is the analytical network model approximation of f(x) of Eq. (1).

For each simulated point, x, Figure 9 displays fA(x) along the x-axis and the simulated

estimated of the expected revenue (i.e., an estimate of f(x)) along the y-axis. Each point

(i.e., each x value) is displayed as a cross. The figure also displays the diagonal line (dashed

blue line). This figure shows that most points lie along a line with positive slop. This indi-

cates that the analytical network model provides approximations that have high positive
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Figure 9 Comparison of the simulated revenue and the revenue approximated by the analytical network

model

correlation with the simulation-based estimate. It is remarkable that such a simple analyt-

ical formulation captures the main trends of such an intricate simulation-based objective

function.
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5. Conclusions

This paper proposed a simulation-based optimization technique for high-dimensional toll

optimization problems of large-scale road networks. The main novelty is the formulation

of an analytical network model. The latter is embedded within a metamodel simulation-

based optimization (SO) algorithm. It provides analytical and differentiable structural

information of the underlying problem to the SO algorithm. Hence, the algorithm no

longer treats the simulator as a black-box.

The analytical model is formulated as a system of nonlinear equations that can be

efficiently evaluated with standard solvers. The dimension of the system of equations scales

linearly with network size and independently of the dimension of the route choice set,

and of link attributes, such as link length. Hence, it is a scalable formulation suitable

for the optimization of large-scale networks. For instance, the model is used in Section 4

for toll optimization of a Singapore network with over 4050 OD pairs and 18200 feasible

routes. The corresponding analytical model is implemented as a system of 860 nonlinear

equations.

The analytical network model is validated based on one-dimensional problems of a toy

network. It captures the main trends of the simulation-based objective function, and more

importantly, accurately locates the global optimum for all experiments. The proposed SO

approach is then used to optimize a set of 16 tolls for the network of expressways and major

arterials of Singapore. The proposed approach identifies good quality solutions at the very

first iteration of the algorithm. This is entirely due to the analytical structural information

provided by the analytical network model. More specifically, at iteration 1, the proposed

method improves the objective function value by 95%. The benchmark method is slow to

identify solutions with good performance: this is achieved after 2 days of computation or

similarly after 30 points are simulated. The proposed algorithm yields final solutions that

outperform those of the benchmark method by an average of 18%. The experiments also

indicate that the analytical structural information enables the SO algorithm to become

robust to both the quality of the initial points and the simulators stochasticity.

This general idea of formulating and using structural analytical problem-specific infor-

mation is promising for the design of real-time algorithms. Cities worldwide are increas-

ingly collecting real-time data and adapting their operations to respond to the real-time

variations of demand and of supply. Hence, there is a pressing need to develop algorithms

that both: are real-time feasible and capture the network performance at a large-scale

(e.g., an entire city or metropolitan region). Coupling general-purpose black-box tech-

niques (e.g., machine learning, simulation-based optimization) with such analytical struc-

tural information is a promising approach to enable them to achieve real-time feasibility
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for both high-dimensional problems and large-scale networks. Such structural information

can also improve the robustness of these methods (e.g., to measurement errors, to sparse

data).

There are various ways in which the structural information of the analytical traffic

model can be used to enhance the performance of real-time algorithms. One promising

approach is to use the analytical approximation of the simulation-based objective function

to design a sampling distribution that balances the traditional exploration-exploitation

trade-off. Ideas along these lines have been developed, for simulation-based signal control

problems, in Tay and Osorio (2017). This allows to simulate both: (i) points with good

performance (i.e., good objective function estimates) and (ii) points that further explore

the feasible region.

The majority of the computational effort lies in the evaluation of the simulation model.

For online optimization, it is essential to find more efficient ways of performing simula-

tion evaluations. The traditional approach is to focus on parallelization. Promising, and

recently proposed ideas, include marginal simulation (Corthout et al. 2014) and multi-

model optimization (Osorio and Selvam 2017).

This paper focused on the design of algorithms that can identify points with good perfor-

mance within a tight computational budget (i.e., within few simulation runs). Hence, the

algorithm is terminated once this computational budget is reached (i.e., once a maximum

number of simulations are performed). This does not guarantee a locally optimal solu-

tion. If larger computational budgets are considered (e.g., at least 2 orders of magnitude

higher), then the algorithm can incorporate local optimality stopping criteria. Perform-

ing such local optimality tests is computationally demanding. Therefore, it is essential to

devise strategies that trade-off the frequency of performing these tests with the associ-

ated computational costs. A discussion of these trade-offs in the context of discrete SO is

discussed in Xu et al. (2013).

In practice, changes in tolls can impact not only route choices, but also departure time

and mode choices. The simulator used in this paper can account for changes of departure

time, mode and trip cancellations. This can also be accounted for in the analytical model,

just as we did in this paper for route choice. This entails using a simplified mode and/or

departure time choice model. This is particularly important when considering a dynamic

problem (where tolls vary over time) such as to properly account for how tolls impact the

temporal distribution of demand.

The simulator accounts for time-varying network demand, link demand and link states.

The analytical model used to build the metamodel is a stationary model, which does
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not account for temporal variations in demand and link states. The extension of these

ideas to address a dynamic problem (where tolls vary across time intervals) will require

the use of an analytical model that captures these temporal variations. A straightforward

approach would be to formulate a time-dependent analytical traffic model. The main chal-

lenge would then be to derive a sufficiently tractable analytical formulation. A different

approach, which has recently been proposed for a class of high-dimensional SO prob-

lems (OD calibration problems), is to use one stationary model per time interval and to

account for the temporal variations through the metamodel parameters (Osorio 2018).

The extension of these ideas for dynamic toll optimization is part of ongoing work.
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Appendix A: Main differences between the analytical model and the

simulator used for the case studies of this paper

For the case studies of this paper, we use the mesoscopic simulator DynaMIT (DYnamic Network

Assignment for the Management of Information to Travelers) which is a simulation-based DTA

model that estimates and predicts traffic conditions, generates traffic management strategies and

provides consistent guidance information to travelers (Ben-Akiva et al. 2010). DynaMIT uses time-

dependent origin-destination matrices to specify demand. The traffic conditions are predicted for

a specified prediction horizon, e.g., 30 min, and the predicted travel times are used for the route

choice models. Traffic dynamics are determined based on the use of speed-density relationships

and queueing models. The simulator considers both aggregate and disaggregate representation of

demand. The aggregate demand is defined based on the OD matrix, which is then disaggregated

into a population of drivers with heterogeneous behavior. Hence, individual vehicles are simulated

with their corresponding and unique behavioral characteristics.

The analytical traffic model (Eq. (7)) is a stationary model which does not describe temporal

variations in traffic patterns, while the simulator is a dynamic model. The analytical model assumes

homogeneous supply conditions (e.g., common lane attributes such as length and maximum speed)

and homogeneous traffic conditions for all lanes of a link (e.g., common speeds, densities, etc.).

Hence, for the analytical model, the term lane and link can be used interchangeably. On the other

hand, the simulator allows for heterogeneous lanes. For instance, possible turnings to downstream-

lanes are defined at the lane level. Note that a more detailed analytical model which accounts



:

Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 25

for heterogeneous lanes is straightforward to formulate, yet will become less tractable. The case

study of Section 4 considers a simulation network model with links that have heterogeneous lanes.

The results indicate that the above analytical model provides a good approximation of the total

expected hourly revenue.

The simulator provides a detailed description of vehicular travel time and accounts for the occur-

rence and impact of downstream congestion (e.g., spillbacks) on link travel time. More specifically,

it considers each link to be comprised of two components: (i) a moving part that represents homo-

geneous traffic conditions governed by the link’s supply (i.e., the links fundamental diagram); and

(ii) a queueing part that accounts for the impact of downstream traffic conditions (e.g., build-up

and dissipation of vehicular queues due to spillbacks). The analytical model defines the expected

link travel time as the ratio of the link length and the expected (space-mean) link speed (Eq. (7f)).

Unlike the simulator, the expected link travel time of the analytical model (Eq. (7f)) does not

account for delays due to vehicular queueing or spillbacks. Instead each lane is assumed to have

homogeneous traffic conditions along the lane.

The fundamental diagram (Eq. (7g)) is a differentiable simplification of the more intricate, non-

differentiable, fundamental diagram of the simulator (Ben-Akiva et al. 2010). More specifically, the

moving part of the simulator’s link (or lane) supply model is governed by the following speed-density

relationship:

vi =











vmax

i if k < k0

i

vmax

i

[

1−

(

k− k0
i

kjam
i

)βi

]αi

otherwise.

The parameters of the model are the critical density k0
i , the maximum speed vmax

i , the jam density

kjam
i , and two scalar coefficients αi and βi. The index i refers to a given link (or lane). This

non-differentiable function is approximated by the differentiable function of Eq. (7g). The scalar

coefficients of Eq. (7g), α1,i and α2,i, are defined as functions of the parameters of the simulator’s

supply model as follows.

α1,i =αi +
k0
i

2kjam
i

(8)

α2,i = βi +2.5
k0
i

kjam
i

. (9)

The DynaMIT simulator generates a predetermined route choice set for each OD pair as the

universal choice set. This process is carried out offline and it involves three steps as stated by

Balakrishna (2002): “The shortest path computation step generates the shortest path connecting

each link in the network to all destination nodes. This set represents the most probable paths

chosen by drivers under uncongested conditions. A link elimination step augments the paths from

the shortest path set with alternative paths. This step involves the elimination of each link in the

network and the subsequent re-computation of the shortest path, and ensures that an incident on

any link will still leave alternative paths open for every O-D pair. A further random perturbation

step is performed in order to obtain a richer path set. The impedance of the links are perturbed
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randomly to simulate varying travel times. Another set of shortest paths are now computed, and

appended to the existing set. The number of random perturbations performed could be controlled by

the user. The algorithm also screens the final path set for uniqueness, and eliminates unreasonably

long paths.”

Given the predetermined route choice set, three levels of route choice behavior are modeled in

DynaMIT: (i) habitual route choice, which represents the behavior based on historical travel times,

(ii) pre-trip route choice, which is the response of the habitual behavior to the available pre-trip

information, and (iii) en-route choice, which represents the reaction to real-time information after

the traveler starts traveling. The behavioral models for each of these levels use a similar set of

attributes. Their distinction is the information provided to travelers which determines which travel

times and costs are used in decision making. As an example, we specify here the pre-trip route

choice model. It is a logit model where the deterministic part of the utility function for route r is

given by:

Vr = θ1tr + θ2zr (10)

where t and z are the travel time and cost for route r. When we normalize the utility by the

travel time parameter we get θ1/θ2 which is proportional to value of time (VOT). For the ease of

explanation we refer to this ratio, θ1/θ2 , as VOT. Therefore we obtain:

Vr = θ1

[

tr +
1

V OT
zr

]

. (11)

The simulator assumes that the value of time is distributed randomly across the population fol-

lowing a lognormal distribution. For each traveler, the value of time is sampled from a lognormal

distribution. This accounts for the heterogeneity, across the population, in willingness to pay the

toll. This specification of the route choice model of the simulator (Eq. (10) or equivalently (11))

considers the same attributes as that of the analytical model (Eq. (7c)). Nonetheless, the analytical

model considers a deterministic value of time.

Appendix B: Metamodel parameter fit

In this Section, we detail how the metamodel parameters are fitted. For a given SO iteration, k,

the metamodel parameter vector (βk) is fitted by solving the following least squares problem.

min
βk

∑

x∈Sk

{

wk(x)
(

f̂(x)−mk(x;βk)
)}2

+w2

0

(

(βk,0 − 1)2 + β2

k,1+

T
∑

j=1

β2

k,j+1 +

T
∑

j=1

β2

k,j+T+1

)

,

(12)

where Sk denotes the set of points (i.e., tolls) simulated up until iteration k, f̂(x) denotes the

estimate of the SO objective function (f of Eq. (1)) for point x, mk(x;βk) is given by Eq. (3), w0

is an exogenous scalar weight parameter (set to 10−2), and wk(x) is a scalar point-specific weight

defined as in Osorio and Bierlaire (2013) by the following equation:

wk(x) =
1

1+ ‖x−xk‖
2

, (13)
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where xk denotes the current iterate (i.e., the point with best performance so far).

The first term of Problem (12) is a traditional least squares expression of a weighted distance

between the estimates of the simulation-based function and its corresponding metamodel approx-

imation. For a given point x, the weight (wk(x)) is proportional to the distance between the

considered point x and the current iterate xk. The use of this weight serves to improve the local

(i.e., in the vicinity of the current iterate) fit of the metamodel. The second term of Problem (12)

is used such as to ensure that the least squares matrix is of full rank. It can be interpreted as the

distance between the parameter βk and prior values. The prior values can be interpreted as giving

more weight to the analytical network model than to the polynomial function (i.e., βk,0 = 1 and

∀j ≥ 1 βk,j = 0).
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