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ABSTRACT

This paper presents an analytical model, based on finite capacity queueing network theory, to evaluate
congestion in protein synthesis networks. These networks are modeled as a set of single server bufferless
queues in a tandem topology. This model proposes a detailed state space formulation, which provides a
fine description of congestion and contributes to a better understanding of how the protein synthesis rate
is deteriorated. The model approximates the marginal stationary distributions of each queue. It consists
of a system of linear and quadratic equations that can be decoupled. The numerical performance of this
method is evaluated for networks with up to 100,000 queues, considering scenarios with various levels of
congestion. It is a computationally efficient and scalable method that is suitable to evaluate congestion
for large-scale networks. Additionally, this paper generalizes the concept of blocking: blocking events
can be triggered by an arbitrary set of queues. This generalization allows for a variety of blocking phe-

nomena to be modeled.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

To synthesize proteins, the information of an mRNA (messenger
RiboNucleic Acid) is translated. An mRNA consists of a strand of co-
dons. The information of an mRNA is encoded in these codons (i.e.
each codon codes for an amino acid) and is translated to form pro-
teins using ribosomes as catalysts.

Protein synthesis involves three main phases: initiation, elonga-
tion and termination. These are depicted in Fig. 1. This figure pre-
sents an mRNA strand that consists of a series of N codons, i.e. a set
of codons in a tandem topology. Each codon is depicted by a verti-
cal line on the mRNA. There are four ribosomes on the mRNA. Each
ribosome is L codons long.

During the initiation phase, the ribosome binds to the mRNA at
the first codon (or start codon). Then the ribosome advances along
the mRNA one codon at a time. At each codon, elongation takes
place. During elongation the corresponding codon (i.e. the underly-
ing amino acid) is added to the growing protein chain. Termination
occurs when the ribosome encounters the last codon (or termina-
tion codon). Both the ribosome and the newly formed protein are
released, i.e. they unbind from the mRNA, and the ribosome is once
again available for other translations.

For a given mRNA, the bound ribosomes advance along its co-
dons, and may therefore be blocked by downstream ribosomes.
Since for a given cell there are numerous mRNA’s competing for
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available (i.e. non-binding) ribosomes, the blocking of ribosomes
on an mRNA strand decreases the protein synthesis rate of that
mRNA, and may affect that of other mRNA’s by reducing the prob-
ability that a ribosome is available for translation.

The frequency and effect of ribosome blocking is determined by
the codon-specific initiation, elongation and termination rates,
which therefore play an important role in the protein synthesis
rate. Protein synthesis models are developed in order to study
how these translation rates induce ribosome congestion and affect
protein synthesis.

The main objectives and contributions of this paper are twofold.
First, to go beyond existing models by providing a more detailed
description of ribosome congestion, which contributes to a better
understanding of how the protein synthesis rate is deteriorated.
Probabilistic protein synthesis models derive stationary distribu-
tions of the location of ribosomes along mRNA strands (see Mehra
and Hatzimanikatis, 2006 and references therein). In order to pro-
vide a more detailed description of ribosome (and codon) states,
we use the blocking notion of finite capacity queueing theory, along
with a detailed state space formulation to distinguish between ac-
tive ribosomes and blocked ribosomes. This yields a more detailed
quantification of congestion and its effects.

The second contribution is to enable the analysis of large-scale
congested protein synthesis networks. An mRNA strand consists of
a sequence of codons. In a small-genome organism the number of
codons is of the order of 400,000 (Mehra and Hatzimanikatis,
2006). The study of protein synthesis involves large-scale net-
works. It requires scalable models that remain computationally
efficient under congested conditions. The proposed model consists
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Fig. 1. Ribosomes on an mRNA strand. Adapted from Mehra and Hatzimanikatis (2006).

of a system of linear and quadratic equations. It is therefore partic-
ularly tractable and appropriate to address large-scale problems.

In this paper, we consider the ribosome congestion problem
from a novel perspective, that of finite capacity queueing theory.
This formulation is derived from a project in collaboration with
the Laboratory of Computational Systems Biotechnology (LCSB)
at Ecole Polytechnique Fédérale de Lausanne. Probabilistic analyt-
ical modeling of other intra-cell processes have been investigated
by authors such as Gelenbe (2007, 2008).

In order to derive stationary distributions of the location of the
different ribosomes along mRNA'’s, we proceed as in Mehra and
Hatzimanikatis (2006) (hereafter referred to as the MH model).
We describe the location of the ribosomes based on the location
of their heads. Recall that a ribosome occupies L consecutive co-
dons (Fig. 1). The head of a ribosome refers to the part of the ribo-
some that occupies the most downstream of these L codons.
Similarly to the MH model, we consider each codon and derive
the stationary probability that there is a head of a ribosome at a gi-
ven codon of an mRNA. Each codon is modeled as a single server
bufferless queue. An mRNA consists of a series of codons, and is
therefore modeled as a tandem network of single server bufferless
queues.

This paper presents a general formulation that evaluates the
impact of congestion for tandem single server bufferless networks.
Since such networks are relevant for a variety of application fields,
including manufacturing systems (Papadopoulos and Heavey,
1996; Dallery and Gershwin, 1992), computer systems (Balsamo
et al., 2003) and telecommunication systems (Alfa and Liu, 2004;
Artalejo, 1999), the numerical efficiency and scalability of this
model is of wide interest.

Additionally, this paper defines a more general blocking con-
cept. Traditionally, blocking at a given queue is triggered due to
the state of the queues directly downstream. We allow blocking
to be caused by the state of an arbitrary set of queues. This gener-
alization allows for a variety of blocking phenomena to be
modeled.

This paper is structured as follows. We review the analytical ap-
proaches for tandem networks of finite capacity queues (Section 2).
The queueing model for bufferless single server tandem networks is
presented in Section 3. The protein synthesis model is detailed (Sec-
tion 4). We then use the model to evaluate ribosome congestion,
and illustrate its performance for large-scale networks (Section 5).

2. Finite capacity queueing networks

In networks with finite capacity queues (i.e. queues with finite
buffer sizes) the spread of congestion is modeled by what is known
as blocking. A job is the generic name for the units of interest that
flow through the network. In the application considered in this pa-
per, the jobs are ribosomes. Blocking occurs when a job cannot pro-
ceed to the next queue on its path because that queue is full. The
job is said to be blocked at its current location. Various types of
blocking mechanisms have been defined (Balsamo et al., 2001).

These blocking mechanisms lead to complex between-queue
dependencies. Describing this blocking phenomenon (i.e. where
and how often it occurs, as well as its duration) analytically is chal-
lenging; not to mention the added complexity of deriving a compu-
tationally efficient model. The analytical analysis of finite capacity
queueing networks (FCQN) is intricate, and is therefore limited to
the stationary regime.

An introductory book to FCQN is Balsamo et al. (2001). Several
reviews and historical overviews of FCQN methods exist (Perros,
2003; Balsamo et al., 2003; Artalejo, 1999; Papadopoulos and Hea-
vey, 1996; Perros, 1984). Exact methods to evaluate the stationary
performance measures of FCQN exist only for tandem networks
with two queues (e.g. Grassman and Derkic, 2000; Akyildiz and
von Brand, 1994). In order to evaluate the performance of larger
networks, approximation methods are developed.

Approximation methods may be either analytical or simulation-
based. Here we consider analytical models. Dallery and Frein
(1993) present a review of analytical approximate methods for
tandem finite capacity networks with exponentially distributed
service times. They also propose a classification of these methods.

In order to reduce the dimensionality and complexity of analyt-
ically analyzing FCQN, approximation methods decompose the
network into subnetworks. Each subnetwork is then analyzed
independently, yielding performance measures at the subnetwork
level. Existing approaches for tandem networks have decomposed
the network into subnetworks of one or two queues.

Decomposing the network into single queues is the most com-
mon approach to analyze FCQN. Methods for tandem networks in-
clude Jun and Perros (1990), Altiok (1989) and Altiok (1982). These
three methods present numerical results for networks with up to
six queues. A method developed to address larger tandem net-
works is presented in Gershwin (1987). The numerical examples
include instances with up to 20 queues. The Expansion Method
(Kerbache and Smith, 2000) has been used for tandem networks
(Cruz et al., 2005). Considering more general topologies, it has been
used to address larger networks allowing for 70 queues (Kerbache
and Smith, 2000). Single queue decomposition methods have been
investigated for feed-forward topologies with up to 630 queues
(Osorio and Bierlaire, 2009), and for tandem topologies with 144
queues (Osorio, 2010).

Two-queue decomposition methods derive stationary perfor-
mance measures for pairs of queues. Various two-queue decompo-
sition methods for open tandem networks have been proposed
(e.g. van Vuuren et al., 2005; Alfa and Liu, 2004). Such methods
yield marginal distributions for pairs of queues, rather than sin-
gle queues, and can therefore lead to more accurate results. Nev-
ertheless, they are computationally more demanding (Perros,
1994).

Most analytical approximation methods for tandem networks
have limited their analysis to networks with less than 100 queues.
We are interested in large-scale networks, with several thousand
queues. This paper proposes a model for single server bufferless
queues in a tandem topology. The model consists of a computa-
tionally tractable set of linear and quadratic equations. Such a
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formulation is scalable, and enables us to evaluate the performance
of large-scale congested networks.

3. Model

The queueing model proposed in this work builds upon the
model presented in Osorio and Bierlaire (2009), which is referred
to as the base model. In this section, we introduce the assumptions
and notations of the base model that are of interest for the current
framework. We then prove that for single server tandem bufferless
network, the system of equations of the base model is equivalent to
a system of linear and quadratic equations that can be decoupled,
leading to a tractable and scalable model. For a more detailed
description and derivation of the base model, we refer the reader
to Osorio and Bierlaire (2009).

3.1. Base model

3.1.1. Describing congestion through blocking

The base model considers a network of multiple-server queues
in an arbitrary topology network. The main feature of the base
model is the explicit modeling of the blocking phase. We use the
blocking mechanism known as blocking-after-service, where block-
ing occurs as follows. A job:

. arrives to a queue,

. waits if all the servers are occupied,

. is served (this is called the active phase),

. is blocked if the next queue on its path is full (this is called the
blocking phase),

5. leaves the queue.

AW N =

The blocking phase is explicitly modeled via a novel formula-
tion of the state space. The state of queue i is described by the
number of active jobs A;, blocked jobs B; and waiting jobs W;. Thus,
the stationary marginal distribution of queue i is given by the prob-
abilities: P(A;=a,B;=b,W;=w), for all feasible triplets (a,b,w).

Other finite capacity queueing models derive stationary mar-
ginal queue length distributions, i.e. they yield the probabilities
P(A; + B+ W;=a + b +w). The base model derives marginal distri-
butions that distinguish between active and blocked states. This al-
lows for a detailed description of blocking and congestion.

3.1.2. Structural parameters

In order to approximate the stationary marginal distribution of
the queues, the base model introduces a set of structural parame-
ters that approximately capture the between-queue interactions.
We first introduce their notation, we then detail their structural
interpretation and present the corresponding equations. The index
i refers to a given queue.y;

external arrival rate

i total arrival rate

28 effective arrival rate

Wi service rate

i unblocking rate

T effective service rate

Pi probability of being blocked at queue i
t; probability that queue i is not full

Arrivals. Three types of arrival rates are considered. Arrivals that
arise from outside of the network are called external arrivals,
they arise to queue i with rate y; The total arrival rate, /;,
accounts for both internal arrivals (that arise from upstream
queues) and external arrivals. In the base model, all external
arrivals that arrive to queue i while queue i is full are assumed

to be lost. This type of queueing models are known as loss models.
This leads to an effective arrival rate /¥, which accounts only for
the arrivals that are actually processed, i.e. it excludes all lost
arrivals.

Service, blocking and unblocking. Blocking at a given queue i is
described by two main parameters that approximate its occur-
rence and its duration. The first is captured by the probability
with which a job at queue i is blocked P;. The second is captured
by the unblocking rate ;.

The probability that a queue is full corresponds to the probability
that it will block upstream jobs. In finite capacity queueing theory,
this probability is known as the blocking probability. Here it is given
by 1 — t;. Thus, P; is determined by the blocking probabilities of the
downstream queues of queue i.

A job is served (with rate y;), it is blocked (with probability 7;) and
is eventually unblocked (with rate ;). The effective service rate of
queue i, u£™, accounts for both service and blocking.

The base model approximates these structural parameters.
For instance, the total and the effective arrival rates to a given
queue are a function of upstream arrival rates. Similarly, the
effective service rate takes into account blocking due to down-
stream queues. These structural parameters are used, along with
the global balance equations, to approximate the marginal
distributions.

To ensure tractability, the base model resorts to classical distri-
butional assumptions and approximations. For each queue, the
base model assumes independent and exponentially distributed
service times. The times between successive arrivals and unbloc-
kings are approximated as independent and exponentially distrib-
uted random variables. More details concerning the distributional
assumptions and approximations are given in Osorio (2010).

The base model was validated by comparison with exact results,
simulation results and existing methods on networks with various
topologies, including tandem topologies, and varying scenarios,
namely under high intensity traffic (Osorio, 2010; Osorio and
Bierlaire, 2009).

3.2. Arbitrary blocking structure

The traditional concept of blocking, assumes that blocking
events at queue i are triggered by queues that are directly down-
stream, i.e. by any queue j such that a transition from queue i to
queue j can take place. Recall that a ribosome is L codons long
(Fig. 1). If there is a head of a ribosome at a given codon i, then
blocking can occur if there is a head of a ribosome L codons down-
stream. In order to capture this type of blocking, we generalize the
blocking concept captured by the base model. We allow for block-
ing events to be triggered due to an arbitrary queue being full. We
introduce the following notation:

D; set of downstream queues of queue i;
T; set of queues that can trigger blocking at queue i (referred
to as trigger queues).

The set of downstream queues, D;, consists of the set of queues
from which a transition from queue i can take place. It is deter-
mined by the transition probabilities:

D; = {j.p; > 0}. (1)

For each queue j in D;, the probability that it is chosen is given by p;;.
Similarly, for a given queue j in 7;, we denote g;; the probability that
it is chosen. The elements D;, 7, (p;) and (g;) allow us to generalize
the blocking concept.

In the traditional blocking concept, a job at queue i can be
blocked by its downstream queues, i.e. the set of trigger queues
consists of the set of downstream queues:
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T =D, (2a)
4 =Dy VieT (2b)

In the protein synthesis case, a job at queue i can be blocked if
queue i+ L is full. This corresponds to:

Ti={i+L}, 3)

1 ifj=i+L

- ’ 4

i {0 otherwise. @)

3.3. Single server networks

We model each codon of an mRNA as a single server queue. The
system of equations of the base model applied to single server
queues and allowing for an arbitrary blocking structure is given by:

(1)g (4, W, 4, Pi) = 0, (5a)
="/t (5b)
K=ty it (5¢)
JED;
1 1 N
— =, T Pi/lh, 5d
T /1 (5d)
1 Zkal:j;“sz
== ) e e 5e
,Ui jezT:, ;ufff,ll]-eff ( )
Pi=> q;(1-t), (5f)
JET;
gij = q;(1 = t;)/ P, (58)

where 71(i) represents the stationary marginal distribution of queue
i, and (q;) are the trigger probabilities conditional on a job being
blocked at queue i (i.e. given that a job is blocked at queue i, g;; rep-
resents the probability that it is blocked by queue j).

We summarize the main features of these equations, and refer
the reader to Osorio and Bierlaire (2009) for a detailed description.
Eq. (5a) corresponds to the global balance equations, it determines
the marginal distribution for queue i. All other equations approxi-
mate the structural parameters of queue i.

The total and effective arrival rates are given by combining flow
conservation with loss model information (Egs. (5b) and (5c)). The
effective service rate (Eq. (5d)) is approximated as a function of the
service rate, the probability that blocking occurs and the unblock-
ing rate.

Blocking at queue i is described by the probability with which it
occurs, as well as the rate with which it dissipates. The probability
with which blocking occurs at queue i,P;, is determined by the
blocking probabilities of its trigger queues (Eq. (5f)). This equation
states that a given trigger queue j is chosen among 7; with proba-
bility g; once chosen it triggers blocking if it is full with probability
1 —t;. Eq. (5e) approximates the unblocking rate f; at queue i. A
detailed description of how this equation is derived is provided
in the Appendix.

This system of equations is valid for single server queues with
an arbitrary finite capacity, organized in an arbitrary topology net-
work. For each queue, the exogenous parameters are (py), (q;), ti
and y;. All other variables are endogenous.

3.4. Tandem network model

Since each mRNA is modeled as a set of queues in a tandem
topology, hereafter we consider a network of N queues in a tandem
topology. The queues are indexed 1 to N, where queue 1 is the most
upstream and queue N the most downstream. We assume that

external arrivals only arise at the first queue, and that departures
only occur at the last queue. This corresponds to transition proba-
bilities given by:

7{1 ifi<N and j=i+1,
Pi=0 otherwise.

In tandem networks with a classical blocking structure, a job is
blocked at queue i if upon service completion queue i + 1 is full. In
this paper we consider that a job is blocked at queue i if upon ser-
vice completion queue i+ L is full. The classical setting can there-
fore be retrieved by setting L equal to 1.

Queues that cannot be blocked are referred to as terminal
queues, as opposed to non-terminal queues. Terminal queues corre-
spond to queues such that the set 7; is empty. For the considered
scenario where 7; = {i + L}, the terminal queues are the queues in-
dexed N — L+ 1 to N, whereas all other queues are non-terminal.

In the next two sections, we show how the System of Eq. (5)
simplifies for tandem topology networks. We first present the
equations for the structural parameters (Egs. (5b)-(5g)), we then
detail the global balance equations (Eq. (5a)).

(6)

3.4.1. Structural parameters
External arrivals arise only at the first queue with rate 7, i.e.:

y ifi=1,
hi= {6 otherwise. @)
Inserting Egs. (6) and (7) into (5c) yields:
25 =2 i1, (8a)
{ BT =yt (8b)

That is, the effective arrival rate is constant across queues. Eq. (5b)
yields:

Vi 26T — J;t; = constant, (9)
where the constant is given by Eq. (8b):
Vi 28T = ity =yt (10)

We first present the system of equations for the structural parame-
ters, we then detail their derivation.
Terminal queues

it =t (11a)
- 1" = g, (11b)
Vie [N—L+1,N],

telN-L+ 1N 1o, (11¢)
P =0, (11d)

Non-terminal queues
20 =ty (12a)

1 1 1

— =+ (1 —tiy) —, 12b
viefN-1, T T e (125
i = pth (12¢)
Pi=1—tus. (12d)

Let us show that the Systems (11), and (12) are equivalent to
the system of equations for the structural parameters of the base
model (Egs. (5b)-(5g)). Eqs. (11a) and (12a) result from Eq. (10).
The System (11) concerns terminal queues. By definition these
queues cannot be blocked, thus their expected blocked time (Eq.
(11c)) and their probability of being blocked (Eq. (11d)) are null.
Their conditional trigger probabilities are not defined (Eq. (5g)).
Inserting Eqs. (11¢) and (11d) in (5d) yields Eq. (11b).

For non-terminal queues, inserting Eqs. (3) and (4) into (5f)
yields (12d). By inserting Eqs. (3), (4) and (5f) into (5g) leads to:
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(1 ifj=itL,
%=10 otherwise.

Inserting Eqgs. (3), (10) and (13) into (5e) yields (12c). Eq. (12b) is
obtained by inserting Eqs. (12c) and (12d) into (5d).

(13)

3.4.2. Global balance equations

Recall that each codon is modeled as single server queue with
no buffer. So far, the assumption of bufferless queues was not nec-
essary. All previous equations are therefore valid for single server
queues with an arbitrary finite capacity. To simplify the global bal-
ance equations, we will use the bufferless assumption. Hereafter,
we assume bufferless queues.

Recall from Section 3.1.1 that the state space of each queue is
defined as the sample space of the triplet of random variables (A;, -
B;,W;), where A;, B; and W; denote respectively the number of ac-
tive, blocked and waiting jobs at queue i.

For single server bufferless queues the state space consists of
three states. A queue can be in one of the following three states:

e empty: (A, B, W;)=(0,0,0),

e active: (A; B;, W;) =(1,0,0), (i.e. the server of the queue is occu-
pied by an active job),

e blocked: (A;,B;,W;) =(0,1,0), (i.e. the server of the queue is occu-
pied by a blocked job).

We denote the probability of these three states as follows:

t; probability that queue i is empty;
Vi probability that queue i is blocked;
Zi probability that queue i is active.

The marginal distribution of queue i is given by: n(i) = (t;,¥:zi).
Note that t; is also the probability that the queue is not full,
whereas the blocking probability (i.e. the probability that the
queue is full) is given by y;+z. We show that for single server
bufferless queues in a tandem topology the global balance
equations given by Eq. (5a) lead to the following systems of
equations:

Terminal queues

ti+z =1, (14a)
Vie[N-L+1,N], {y =0, (14b)
Wz = yty. (14c¢)

Non-terminal queues
ti+yi+zi=1, (15a)
Vie[LN=L, Y= Wi +2za) (15b)
pzi =yt (150)

Let us detail how these equations are derived. In the case of ter-
minal queues the global balance equations are defined by:

ti+zi=1, (16a)
yi=0, (16b)
Aiti — Wizi = 0. (16C)

Note that Eq. (16c) balances arrival and service events, and Eq. (16b)
states that terminal queues cannot be blocked. Since Vi /;t; = yt; (Eq.
(10)), then the Systems of Eqs. (14) and (16) are equivalent. In the
case of non-terminal queues, the global balance equations are de-
fined by:

ti—&-yi—&-z,-:l, (173)
—[y; + Pipzi = 0, (17b)
Aiti — Hizi = 0. (]7(:)

Note that Eq. (17b) balances blocking and unblocking events, while
Eq. (17c) balances arrival and service events. Let us show that the
Systems (15) and (17) are equivalent.

As for terminal queues, we use Eq. (10) to obtain the equiva-
lence between Eqs. (15¢) and (17c). Thus, to show that the Systems
(15) and (17) are equivalent we need to show the equivalence be-
tween Egs. (15b) and (17b). To do so, we use the following lemma.

Lemma 1. Let H(i) denote the hypothesis that Eq. (15b) holds for
queue i. H(N — L) holds, and if H(k) holds Vk € [i + 1,N — L], then H(i)
holds.

To prove this lemma we proceed by recursion. The proof is gi-
ven in the Appendix. Thus, the global balance equations for single
server bufferless queues in a tandem topology are given by the Sys-
tems (14) and (15).

The initial formulation of the global balance equations (Systems
(16) and (17)) involves four structural parameters: 4;, f;, it; and P;.
The parameter y; is exogenous, the other three parameters are
endogenous. The equivalent formulation that we have just derived
(Systems (14) and (15)) no longer involves any endogenous struc-
tural parameters. Thus, the system of equations can be decoupled.
We can solve Systems (14) and (15) to obtain the marginal distri-
butions for each queue, and if the structural parameters are of
interest we can then solve Systems (11) and (12).

The system of equations for the structural parameters consists
of 4N — 2L equations, of which 3N — L are linear, and the remain-
ing N — L are quadratic. The global balance equations consist of
3N — L equations, of which 2N are linear and the remaining N — L
are quadratic.

4. Protein synthesis network

In this section, we build upon the model for tandem single ser-
ver bufferless networks of Section 3.4 to derive the protein synthe-
sis network model. The main aspects of protein synthesis that we
are interested in modeling are described in Section 1. For a more
detailed description of the protein synthesis process see Mehra
and Hatzimanikatis (2006). We follow the same reasoning and
assumptions as the MH protein synthesis model.

4.1. Stationary distributions

The MH model is an analytical codon-scale model of the trans-
lation of mRNAs into proteins. This model explicitly describes the
phases of initiation, elongation and termination, and yields station-
ary distributions for each codon. A slightly modified version of this
model is presented in Mier-y-Teran-Romero et al. (2009).

As described in Section 1, we proceed similarly to the MH mod-
el. We model each codon and yield the stationary probabilities that
it is occupied by the head of a ribosome. Each codon is modeled as
a bufferless queue with one server. Thus, an mRNA consists of a
network of single server bufferless queues in tandem.

The main novelty of the MH method is to account for the block-
ing of ribosomes. The MH model does this by reducing the elonga-
tion rates using the conditional probability that codon i+1 is
empty given that codon i is occupied. This conditional probability
is used to approximate the blocking probability.

We provide a more detailed description of ribosome blocking,
by considering that each codon can be in one of three states:

e the codon is occupied by the head of an active ribosome;

e the codon is occupied by the head of a blocked ribosome;

e the codon is not occupied by the head of a ribosome, i.e. it is
either not covered by a ribosome at all, or it is covered by a part
of the ribosome that is not the head.
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In other words, given that a codon is occupied by the head of a
ribosome, we distinguish between whether the ribosome is active
or blocked.

The marginal stationary distribution is composed of:

t;: the probability that codon i is not occupied by the head of
a ribosome;

Vi the probability that codon i is occupied by the head of a
blocked ribosome;

Zi the probability that codon i is occupied by the head of an

active ribosome.

By modeling the ribosome blocking problem with a finite capac-
ity queueing approach that distinguishes between active and
blocked queues, we provide a finer description of ribosome block-
ing, and thus a more detailed quantification of congestion along an
mRNA strand. This more disaggregate state space formulation can
lead to a better understanding of how ribosome congestion affects
the protein synthesis rate.

4.2. Structural parameters

In this protein synthesis context, there are two differences with
the model presented in Section 3.4.

1. There is a fixed and limited number of ribosomes that can bind
to the mRNAs. The external arrival rate, ), is therefore a function
of the expected number of available (i.e. non-binding) ribo-
somes. It is no longer exogenous. This model therefore assumes
a finite population of jobs (i.e. ribosomes). The approximation
for y is based on that of the MH model:

V:ao+alz(1 - t). (18)
i=1

Eq. (18) concerns the external arrival rate, and approximates it as a

function of the number of available (i.e. non-binding) ribosomes

and of two exogenous parameters ao and a;. The expression is taken
from Egs. (5) and (6) of Mehra and Hatzimanikatis (2006), or equiv-
alently from their scaled versions which appear as Eq. (11a) in Mier-

y-Teran-Romero et al. (2009).

2. To start the translation process, a ribosome binds to the first
codon of the mRNA. If this first codon is full, the ribosome can-
not bind. Since a ribosome covers L consecutive codons, the first
codon is full if there is a head of a ribosome on any of the first L
codons. These first L codons are called the initiation site. The
probability that the first codon is free, i.e. that the initiation site
does not contain a head of a ribosome, is denoted w;. Its
approximation is based on that of the MH model (Eq. (5) in that
paper), and is given by:

L
wi=1->(1-1t) (19)
i=1

The model of Section 3.4 assumes that external arrivals may be lost

if the first queue is full. In this protein synthesis application, we as-

sume that external arrivals may be lost if the initiation site is full.

Thus Eqgs. (11a) and (12a) become:

= pw. (20)
That is, the effective arrival rate is now a function of the probability
that the initiation site is free wy, rather than the probability that the
first queue is free t;.

4.3. System of equations

The system of equations is given by:

ti+zi=1, (21a)
Vie [N-L+1,N], y; =0, (21b)
Wizi = ywy, (21¢)
tityi+zi=1, (22a)
Vie [LN - L]v Yi= (yi+L +Zi+L)27 (22b)
Wizi = Yws. (22¢)
L
wi=1-3(1-1), (23a)
i=1
N
y=ao+a ) (1-1t), (23b)
i=1

260 = ywy, (24a)
. e = g, (24b)

Vie N-L+1,N
i€l +1,N], 1o, (240)
Pi=0, (24d)
28— ywy, (25a)
dr=L4+(1—ti)Jr, 25b
vie[I,N-L), {4 (1= tiet) o (25b)
fui = gt} (25¢)
Pi=1-tiy, (25d)

The Systems (21), (22), (24) and (25) are obtained by combining
Eq. (20) and the Systems 11, 12, 13, 14, 15. The System (23) is given
by Egs. (18) and (19).

Here, the only exogenous parameter is y, all other variables are
endogenous. These systems can be decoupled. In particular, if the
parameters of interest are the stationary distributions, it is suffi-
cient to implement Eqs. 21, 22 and 23. In this case, for a set of N
codons, the system of equations consists of 3N + 2 equations. There
are N+ L + 2 linear equations and 2N — L quadratic equations. Let
us compare the main properties of this formulation to that of the
MH model.

Congestion decomposition. One of the contributions of the MH
model is to acknowledge the interactions between the initia-
tion, elongation, termination and protein synthesis rates. In par-
ticular, given a set of ribosomes on an mRNA, the model
acknowledges that their translation rate may be deteriorated
by the presence of downstream ribosomes, that prevent the
ribosome from advancing (this is captured by the fraction of
Eq. (8) of the MH model).

We go beyond this by describing these ribosome congestion
effects in more detail. By using the blocking phenomenon of
finite capacity queueing theory, and the detailed state space
formulation of the finite capacity queueing model, we disaggre-
gate the state “a codon is occupied” into two states “occupied
and blocked” and “occupied and active”. By distinguishing
between active and blocked codons, we provide more detailed
distributional estimates. Additionally, the endogenous parame-
ters of the proposed model provide a fine decomposition of
congestion (e.g. in terms of its sources, frequency, impact).
Computational efficiency. To evaluate the stationary distribu-
tions of each codon, two procedures have been used in Mehra
and Hatzimanikatis (2006) and in Mier-y-Teran-Romero et al.
(2009). The first solves a bilevel nonlinear optimization prob-
lem, the second solves a system of ordinary differential equa-
tions. The procedure proposed in this section consists of a
system of linear and quadratic equations, its implementation
is straightforward, and it can be solved with less complex
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numerical methods. Nonetheless, if transient distributions are
of interest these can only be derived by the method of Mier-
y-Teran-Romero et al. (2009).

Scalability. The number of equations that need to be imple-
mented can be substantially reduced by identifying the queues
that have equal service rates, y;. In this case, Eqs. (21c) and
(22c) indicate that these queues also have a common value
for z;, since

Z; = YW /4; = constant. (26)

If among the N queues there are D distinct service rates, then the
number of equations reduces to 2N — L + D + 2. In the case of pro-
tein synthesis, this can occur if the codons have common elongation
rates. There are then three distinct service rates: initiation rate, ter-
mination rate and elongation rate, and the number of equations be-
comes 2N — L +5.

5. Empirical analysis
5.1. Ribosome blocking

In this section, we use the protein synthesis model (Egs. 21, 22,
23, 24, 25) to evaluate ribosome congestion. The exogenous
parameters of the queueing model are calibrated based on typical
translation parameters provided by the members of the Laboratory
of Computational Systems Biotechnology. We consider a single
mRNA species with 144 codons, and assume that each ribosome
covers 12 codons, i.e. N=144, L =12, as in Mier-y-Teran-Romero
et al. (2009).

We solve the system of equations for all queues simultaneously,
with the Matlab routine for nonlinear systems of equations, fsolve
(Mathworks, Inc., 2008). For a given tolerance, tol, convergence is
attained when either the absolute values of all equations are smal-
ler than tol or when both the sum of squares of the system of equa-
tions is smaller than v'tol and the change of its relative value is
smaller than max(tol? eps), where eps is the machine precision
which is of magnitude 107!, The tolerance is chosen as tol = 107
This choice is based on the criteria given in Dennis and Schnabel
(1996). The distributions are initialized wusing uniform
distributions.

We consider a set of scenarios with fixed initiation and elonga-
tion rates, and increasing termination rates. In queueing theory
terms, this corresponds to the fixed service rates for all but the
most downstream queue (indexed N), and increasing service rate
for queue N.

Fig. 2 displays for the different scenarios the probability that
there is a head of a ribosome for the most downstream quarter
of queues (indexed 109-144). For a given codon i, this probability
is given by y; + z;.

The first scenario clearly illustrates how the model captures
ribosome blocking. This scenario is the one with the smallest ter-
mination rate. Its probabilities are displayed with crosses. Since
the termination rate is the limiting factor, the probability that a
ribosome head remains at codon N (i.e. codon 144) is high. This
leads to blocking L codons upstream, i.e. a high probability for co-
don 132. This blocking also propagates 2L codons upstream to co-
don 120.

As the termination rate increases, these probabilities decrease.
For scenario 2, the impact of the termination rate on the occupa-
tion of codon 120 is low, yet the occupation of codons 132 and
144 remains high. For scenarios 3-5, the impact on codon 132 de-
creases. As the termination rate increases, the occupation probabil-
ities of codons 120, 132 and 144 (i.e. N—2L, N-L and N)
decreases. For all scenarios, the computation time needed to eval-
uate the model is less than 0.3 seconds.

Probability that there is a head of a ribosome

0.5
x  scenario 1
O scenario 2
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0.4H scenario 4
scenario 5
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Fig. 2. Probability that a codon is occupied by the head of a ribosome for scenarios
with increasing termination rates.

We now show how the queueing model disaggregates these co-
don occupation probabilities, into “occupied and active” versus
“occupied and blocked”. Fig. 3 considers the same scenarios and
codons. The left plot of Fig. 3 displays the probabilities that a codon
is occupied by the head of an active ribosome. For a given codon i,
this is denoted in the model by z;. This plot shows that as the ter-
mination rate increases, only the probabilities of the last codon are
affected, zy.

The right plot presents the probabilities that a codon is occu-
pied by the head of a blocked ribosome. For a given codon i, this
is denoted in the model by y;. This plot shows that the codons in-
dexed 120 and 134 have large blocking probabilities. These de-
crease as the termination rate increases. Note that codons
indexed 135-144 have null probabilities, since they are terminal
codons and cannot be blocked.

5.2. Performance on large-scale networks

We evaluate the scalability of the model for general tandem sin-
gle server bufferless networks (Systems (14) and (15)). We con-
sider a classical setting where blocking is triggered by the queue
directly downstream being full, i.e. L= 1.

We solve the Systems of Egs. (14) and (15) for all queues simul-
taneously with the procedure described in Section 5.1. The distri-
butions are initialized with the point: (t;,y;,z) = (3,1,1).

We consider networks with varying number of queues, N. The
number of queues varies from 100 to 1000 with a step size of
100 (i.e. 100,200,300, ...,1000), from 2000 to 10,000 with a step
size of 1000, and from 20,000 to 100,000 with a step size of
10,000. That is we consider a total of 28 network sizes varying from
100 to 100,000 queues.

For each network size, we consider a set of four scenarios with
varying levels of congestion, i.e. we fix the service rate for all
queues and vary the external arrival rates. For all four scenarios
all queues have a common service rate equal to 1. The external ar-
rival rates are given in Table 1. These four scenarios have increas-
ing levels of congestion.

For all four scenarios and all network sizes convergence was
reached with either 5 or 6 iterations. Since the number of iterations
is constant across these scenarios, it is not sensitive to the level of
congestion. Furthermore, the number of iterations is also insensi-
tive to the network size. That is, convergence is reached for
large-scale networks with few iterations.

We also evaluate the performance of this method, by analyzing
the total time until convergence. Figs. 4-6 display the time until
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Probability that there is a head of an active ribosome
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Probability that there is a head of a blocked ribosome
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Fig. 3. The left (resp. right) plot displays the probability that a codon is occupied by the head of an active (resp. blocked) ribosome for scenarios with increasing termination
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Table 1
External arrival rate scenarios.
Scenario 1 2 3 4
Y 0.5 0.6 0.7 0.8

convergence for all four scenarios and 28 network sizes. Figs. 4 and
5 indicate that for small and medium-scale networks (with less
than 10,000 queues) and for various congestion levels, the time in-
creases linearly, and remains under 0.2 min. For large-scale net-
works (Fig. 6), the time also increases linearly, and is of the order
of several minutes.

6. Conclusions

This paper presents an analytical queueing model to evaluate
congestion in tandem single server bufferless networks, and in par-
ticular in protein synthesis networks. Each codon of an mRNA is
modeled as a queue. Each mRNA strand is modeled as a tandem
network of single server bufferless queues. The methodology de-
rives a distribution for each codon, that evaluates whether or not
there is a head of a ribosome on that codon, and in particular iden-
tifies whether ribosomes are blocked by downstream ribosomes.
This state space formulation leads to a more detailed quantification
of the performance of congested networks. The model generalizes
the concept of blocking: blocking events can be triggered by an
arbitrary set of queues.

This approach builds upon the model in Osorio and Bierlaire
(2009). The model consists of a system of linear and quadratic
equations, that can be decoupled. We illustrate the use of this
model to evaluate the location of the ribosomes along an mRNA
strand, and in particular to quantify ribosome blocking. We evalu-
ate the scalability of this method, by considering networks with
varying levels of congestion with up to 100,000 queues. The meth-
od is numerically efficient, and is therefore suitable for large-scale
instances.

We are currently working with the Laboratory of Computational
Systems Biotechnology to compare the distributional estimates of
this approach versus those proposed by other protein synthesis
methods, including that of Mehra and Hatzimanikatis (2006).
Given the lack of experimental data, it is intricate to draw conclu-
sions from the differences in these estimates. Nevertheless, it is
of interest to investigate their numerical performance and in
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Fig. 4. Time until convergence for scenarios 1-4 and small-scale networks.
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Fig. 5. Time until convergence for scenarios 1-4 and medium-scale networks.

particular to compare their scalability. Once the validation phase
has been completed, this model will be applied to a more general
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Fig. 6. Time until convergence for scenarios 1-4 and large-scale networks.

contexts considering multiple mRNA species and codon-specific
elongation rates. These factors are captured by the exogenous
parameters of our model; taking them into account is therefore
straightforward.
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Appendix A

A.1. Derivation of the unblocking rate for an arbitrary blocking
structure

We detail how the unblocking rate is derived when allowing
for an arbitrary blocking structure. This description follows that
of Osorio and Bierlaire (2009) (Section 4.2.3.1 in that paper).
The scalar j; denotes the rate at which a trigger queue of queue
i unblocks jobs that are blocked at queue i. We denote by s;, the
proportion of jobs blocked by queue j that are blocked at queue i,
i.e.

S,‘j = Qg}v?ﬁ/ <Z (/]\l:j;uiff> .
k

Suppose queue j is blocking jobs. It is therefore full and is serving at
rate ,uf“. It unblocks jobs that are blocked at queue i at the rate
sl-j,uj?ff. By averaging over the possible trigger queues of queue i we
obtain an approximation for j;:

1 _ S
E = zj: qij Sij,ujeff = Z Seff | off * (27)

jer 4K

Proof of Lemma 1. We first show that H(N — L) holds. Combining
Egs. (17¢) and (10) yields:

Hy_12N-1 = Yt (28)
Inserting this into (17b) gives:

Ynor = (Pnotyth)/ Nt (29)

Hereafter, we denote in brackets the equations used at each
step. Since queue N — L is non-terminal, System (12) applies:

Pn-Lyts

YN = ,ueff []ZC}
N
(30)
_(d -ty ’#?f’f)ytl . [12d
N
Since queue N is terminal, Systems (11) and (14) apply:
1—ty)yt
YN = d=toph (11b]
Ky
Nyt
= NVN’ [14d] (31)
=274 [14c]

= (yy+2n)>. [14b]

This gives H(N — L). We assume that H(k) holds Vk € [i+1,N — L].
Since queue i is non-terminal, we can proceed as for H(N — L):

)
DB gy
Hi
DAY g
Hi
P,"/ﬁ
=" 110 32
L 10 (32)
Piyty
=— [12¢]
It
:(1_;#, 12d]
i+L

We distinguish between two cases. Firstly, if queue i + L is terminal
we have:

(1 —tiy)yt

yi=—7—— [11}]
i+L
Zi vt
£
=(z1)? [14q

= Vi +Z,-+L)2. (14b]

Secondly, if queue i + L is non-terminal, then:
1= (1= )yt (14 (1= i) 1120
5 i+2L
=(1-ti)t <ﬁ+ (1- fi+2L)ﬁ> [12¢]
= (1 =ty (G + Pragl) 124

= (1 =ty stia (s + Pragly) 110

i+L

(34)

Vi= (U= ten)y 2 (7 + Pragly) (176
o (yi+L + Zi+L) <Zi+L + Pi+L ,UH,_ ZiyL ﬁ) [1 7(1} (35)
= Vier +Zis1) (Ziis +Yi) (17D
=i + Zi+L)2~

This concludes the recurrence. O
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