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This paper proposes a simulation-based optimization (SO) method that enables the efficient use of complex stochastic urban
traffic simulators to address various transportation problems. It presents a metamodel that integrates information from a
simulator with an analytical queueing network model. The proposed metamodel combines a general-purpose component (a
quadratic polynomial), which provides a detailed local approximation, with a physical component (the analytical queueing
network model), which provides tractable analytical and global information. This combination leads to an SO framework
that is computationally efficient and suitable for complex problems with very tight computational budgets.

We integrate this metamodel within a derivative-free trust region algorithm. We evaluate the performance of this method
considering a traffic signal control problem for the Swiss city of Lausanne, different demand scenarios, and tight compu-
tational budgets. The method leads to well-performing signal plans. It leads to reduced, as well as more reliable, average
travel times.
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1. Introduction
Microscopic urban traffic simulators embed the most
detailed traffic models. They represent individual vehicles
and can account for vehicle-specific technologies/attributes.
They represent individual travelers and embed detailed dis-
aggregate behavioral models that describe how these travel-
ers make travel decisions (e.g., departure time choice, mode
choice, route choice, how travelers respond to real-time traf-
fic information, how they decide to change lanes). They also
provide a detailed representation of the underlying supply
network (e.g., variable message signs, public transport pri-
orities). Thus, these traffic simulators can describe in detail
the interactions between vehicle performance (e.g., instan-
taneous energy consumption, emissions), traveler behavior,
and the underlying transportation infrastructure, and yield a
detailed description of traffic dynamics in urban networks.

These simulators can provide accurate network perfor-
mance estimates in the context of what-if analysis or sen-
sitivity analysis. They are therefore often used to evaluate
a set of predetermined transportation strategies (e.g., traffic
management or network design strategies). Nevertheless,
using them to derive appropriate strategies, i.e., to perform
simulation-based optimization (SO), is an intricate task.

We focus on transportation problems of the following
form:

min
x∈ì

f 4x3p5≡E6F 4x3p570 (1)

The objective function f is usually the expected value of a
stochastic network performance measure, F . The probabil-
ity distribution function of F depends on the deterministic
decision or control vector x and on deterministic exoge-
nous parameters p. The feasible space ì consists of a set
of general (e.g., nonconvex) constraints that link x to p
and f . Closed-form differentiable expressions are available
for the constraints.

For instance, a traffic signal control problem can take
F as the vehicle travel time and x as the green times for
the signalized lanes. Elements such as the total demand
or the network topology are captured by p. Every simula-
tion run leads to realizations of F and involves sampling
from the numerous probability distributions that account
for uncertainty in, for instance, driver behavior (e.g., route
choice for individual drivers) or traffic generation (e.g.,
headways of vehicles entering the network). For a given x,
assume we have observed r independent realizations of F ,
denoted F14x3p51 0 0 0 1 Fr4x3p5. Then, the objective function
is approximated by the sample average:

f̂ 4x3p5=
1
r

r
∑

i=1

Fi4x3p50 (2)

In this methodology, the sample size r is kept constant
across all points and iterations. Its value for the empirical
results of §6 is given in §4.3.
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The various disaggregate traffic models embedded within
a microscopic simulator make it a detailed model, but lead to
nonlinear objective functions containing potentially several
local minima. These objective functions have no available
closed form; we can only derive estimates for them. Addi-
tionally, evaluating these estimates accurately is computa-
tionally expensive because it involves running numerous
replications. As nonlinear, stochastic, generally constrained,
and computationally expensive problems, simulation-based
urban transportation problems are complex to address.

To efficiently address the challenging urban transporta-
tion problems that arise in practice, SO algorithms that can
identify strategies with improved performance within few
simulation runs are needed. This paper proposes a meta-
model SO technique that identifies such strategies under
very tight computational budgets (i.e., it has good short-
term performance). The technique is based on a novel meta-
model formulation that enables the combination of detailed,
yet intractable, simulated information with less detailed,
yet highly tractable, information from an analytical traf-
fic model.

The computational budget is defined as a maximum num-
ber of simulation runs nmax. Microscopic traffic simulators
are typically used in practice under very tight computa-
tional budgets. This paper considers similar budgets. For
problems with decision vectors of dimension d, the total
number of simulation runs (i.e., the computational budget)
ranges between d and 5d. For instance, in §6.2 we consider
a constrained traffic signal control problem with a decision
vector of dimension 51 and a computational budget of 150.
Recent work has extended the approach proposed in this
paper, enabling it to address larger-scale constrained prob-
lems (d = 100) considering the same tight computational
budget of 150 simulation runs (Osorio and Chong 2012).

This paper is structured as follows. We present a litera-
ture review of metamodel SO methods (§2). We present the
metamodel in §3. The metamodel is then embedded within
a derivative-free trust region algorithm, which is tailored
to the needs of our context (§4). We then show how this
methodology applies to a fixed-time traffic signal control
problem (§5) and present empirical results evaluating its
performance (§6).

2. Literature Review
There are three types of approaches to address SO prob-
lems: (1) direct-search methods (for reviews see Conn
et al. 2009b, Kolda et al. 2003), (2) stochastic gradient
methods (where the gradient of the simulation response
is estimated), and (3) metamodel (or surrogate) meth-
ods. The stochasticity inherent in traffic simulation outputs
along with their high computational cost, and their often
unavailable source code, makes the accurate estimation of
derivatives an expensive task. To derive SO techniques for
problems with very tight computational budgets, we focus
on metamodel SO techniques.

A metamodel (or surrogate model) is an analytical
approximation of the objective function. Metamodel opti-
mization methods iterate over two main steps. First, the
metamodel is fitted based on a set of simulated observa-
tions. Second, it is used to perform optimization and derive
a trial point (in this paper the term point refers to a given
decision vector value x). The performance of the trial point
can be evaluated by the simulator, which leads to new
observations. As new observations become available the
accuracy of the metamodel can be improved (step 1), lead-
ing ultimately to better trial points (step 2).

Metamodels are typically deterministic functions that are
much less expensive to evaluate than the underlying sim-
ulator. By replacing the stochastic response of the simula-
tion by a deterministic function, deterministic optimization
techniques can be used. Furthermore, by using metamodels
that are inexpensive to evaluate, the number of objective
function evaluations is no longer a limitation. The main
limitation remains the number of simulation runs needed
such that an accurate metamodel can be built and well-
performing trial points can be derived.

Recent reviews of metamodels are given by Conn
et al. (2009b), Barton and Meckesheimer (2006), and
Søndergaard (2003). Metamodels are classified in the
literature as either physical or functional metamodels
(Søndergaard 2003, Serafini 1998). Physical metamodels
consist of application-specific metamodels. Their func-
tional form and parameters have a physical or structural
interpretation.

Functional metamodels are generic (i.e., general-pur-
pose) functions that are chosen based on their analytical
tractability, but do not take into account any information
with regards to the specific objective function, let alone the
structure of the underlying problem. They are often a linear
combination of basis functions from a parametric family.

The most common choice for a functional metamodel is
the use of low-order polynomials (e.g., linear or quadratic).
Quadratic polynomials are used, at least asymptotically,
as surrogates in most trust region methods (Conn et al.
2000). They are also used in sequential response surface
methodologies for unconstrained and constrained SO prob-
lems (Marti 2008, Kleijnen 2008). Spline models have also
been used, although their use within an SO framework has
focused on univariate or bivariate functions, and as Barton
and Meckesheimer (2006, p. 541) mention: “unfortunately,
the most popular and effective multivariate spline meth-
ods are based on interpolating splines, which have little
applicability for SO.” Radial basis functions (Oeuvray and
Bierlaire 2009, Wild et al. 2008) and Kriging surrogates
(Kleijnen et al. 2010, Booker et al. 1999) have also been
proposed.

Functional metamodels are the most common metamod-
els used to perform simulation-based optimization, since
they can be used to approximate any objective function.
Nonetheless, they capture little information about the struc-
ture of the underlying problem and often require a large
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number of simulation runs to be fitted. They can provide
accurate local approximations (i.e., approximations of the
objective function near simulated points), yet often fail to
provide suitable approximations in nonsimulated regions.
This limits their use for applications with tight computa-
tional budgets.

We propose a metamodel that combines a functional
component with a physical component. The purpose of
the functional component is to provide a detailed local
approximation of the function. The physical component
should provide a good, yet less detailed, global approxima-
tion. It improves the computational tractability of the SO
method, by overcoming the limitations of the simulation
model, namely, an inability to provide closed-form contin-
uous expressions for the performance measures and their
first-order derivatives.

3. Metamodel
The metamodel combines information from two traffic
models: a simulation model and an analytical network
model. We first present these two models, we then describe
how they are combined.

Simulation model. We use a microscopic traffic simula-
tor that models the behavior of individual drivers within the
network. Trips are generated based on an origin-destination
matrix, along with a headway model. Driver behavior is
modeled using car following, lane changing, gap accep-
tance and route choice models. In this work we use the
Aimsun simulator. For a detailed description of its behav-
ioral models see TSS (2008). When simulating the perfor-
mance of a set of points 8x11 x21 0 0 09 we obtain estimates
of their performance 8f̂ 4x13p51 f̂ 4x23p51 0 0 09 (presented in
Equation (2)).

Analytical queueing network model. The analytical urban
traffic model is formulated in Osorio and Bierlaire (2009b),
it is based on the more general queueing network model
of Osorio and Bierlaire (2009a). Alternatively, for large-
scale networks the model of Osorio and Chong (2012) can
be used, and for dynamic control problems the models in
Osorio and Flötteröd (2013) and in Osorio et al. (2011)
are suitable. In this paper, we use the queueing model of
Osorio and Bierlaire (2009b) to formulate a metamodel for
simulation-based optimization.

The queueing model formulation combines ideas from
traditional urban traffic models, several national urban
transportation norms, and queueing theory. An urban road
is mapped into a set of queues. Finite capacity queues are
used in order to account for the limited space capacity of
roads. The finite capacity queueing theory (FCQT) notion
of blocking is used to describe where congestion arises
and how it propagates throughout the network. By resort-
ing to FCQT, the model captures the key traffic interactions
and the underlying network structure, e.g., how upstream
and downstream queues interact, and how this interac-
tion is linked to network congestion. The model consists

of a system of nonlinear equations (which are given in
the online appendix available as supplemental material at
http://dx.doi.org/10.1287/opre.2013.1226). It is formulated
based on a set of exogenous parameters q that capture the
network topology, the total demand, as well as the turning
probabilities. A set of endogenous variables y describe the
traffic interactions, e.g., spillback probabilities, spillback
diffusion rates. For a detailed description of the elements
of q and y, we refer the reader to the online appendix.
For a given decision vector x, the network model yields
the objective function T 4x1 y3 q5, which is a deterministic
approximation of f 4x3p5 (Equation (1)).

We recall here the notation that we have introduced
so far:
x decision vector,
T approximation of the objective function derived by the

queueing model,
f̂ estimate of the objective function derived by the simu-

lation model,
y endogenous queueing model variables,
q exogenous queueing model parameters, and
p exogenous simulation model parameters.

We now describe how f̂ and T are combined to derive
the metamodel m. The proposed metamodel m combines
a functional component with a physical component as
follows.

m4x1 y3�1�1q5= �T 4x1 y3 q5+�4x3�51 (3)

where � is the functional component, and � and � are
parameters of the metamodel.

In this paper, the metamodel is embedded within a trust
region (TR) derivative-free algorithm. The main idea of
trust region methods is to build, at each iteration, a model
of the objective function that one “trusts” in a neighbor-
hood of the current iterate, the trust region. The most com-
mon model choice is a quadratic polynomial. Addition-
ally, numerical experiments for derivative-free TR methods
indicate that quadratic polynomials with a diagonal second
derivative matrix are often more efficient than full quadratic
polynomials (Powell 2003). We therefore define � as a
quadratic polynomial in x with a diagonal second derivative
matrix.

�4x3�5= �1 +

d
∑

j=1

�j+1xj +

d
∑

j=1

�j+d+1x
2
j 1 (4)

where d is the dimension of x, xj and �j are the jth com-
ponents of x and �, respectively. Other formulations, such
as minimum Frobenius norm quadratic models, can also be
suitable for this framework.

At each iteration of a trust region algorithm the objec-
tive function is evaluated at a set of points. The metamodel
is then constructed based on objective function observa-
tions. Traditionally, trust region methods fit the polynomial
via interpolation. In this framework, we fit the metamodel

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.5

8.
6.

19
7]

 o
n 

13
 J

an
ua

ry
 2

01
4,

 a
t 1

2:
00

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Osorio and Bierlaire: Simulation-Based Optimization for Urban Transportation Problems
1336 Operations Research 61(6), pp. 1333–1345, © 2013 INFORMS

via regression. At each iteration of the SO algorithm,
the metamodel is fitted using the simulated observations
obtained at the current iteration, as well as all simulated
observations collected at previous iterations.

The parameters � and � of the metamodel are fitted by
solving a least squares problem. At a given iteration, the
model approximates the objective function in a neighbor-
hood of the current iterate. To give more importance to
observations that correspond to points that are near the cur-
rent iterate, we associate weights with each observation.
Assume at iteration k we have simulated the performance
of a set of nk distinct points 8x11 x21 0 0 0 1 xnk9, then the least
squares problem is formulated as follows:

min
�1�

nk
∑

i=1

{

wki4f̂ 4x
i3p5−m4xi1yi3�1�1q55

}2
+4w0 ·4�−1552

+

2d+1
∑

i=1

4w0 ·�i5
21 (5)

where xi represents the ith point, with corresponding
endogenous queueing model variables yi and simulated
estimate f̂ 4xi3p5. The weight associated at iteration k with
the ith estimate is denoted wki. The parameter w0 represents
a fixed weight.

The first squared term of Equation (5) represents the
weighted distance between the simulated estimates and the
metamodel predictions. The next two squared terms mea-
sure the distance between the parameters and their initial
values. These terms ensure that the least squares matrix is
always of full rank (regardless of the number or location
of the simulated points). The initial values used here (one
for � and zero for �) lead to an initial metamodel that is
based only on the queueing model. This is of interest when
starting off the algorithm with few or even no simulated
observations.

The weights, wki, capture the importance of each point
with regards to the current iterate. We use what is known as
the inverse distance weight function (Atkeson et al. 1997)
along with the Euclidean distance. This leads to the follow-
ing weight parameters: wki = 1/41 + �xk − xi�25, where xk
is the current iterate, and xi is the ith point.

The weight of a given point is therefore inversely propor-
tional to its distance from the current iterate. This allows us
to approximately have a Taylor-type behavior, where obser-
vations corresponding to local points have more weight.
The least squares problem is solved using the Matlab rou-
tine lsqlin (Mathworks, Inc. 2008).

4. Optimization Algorithm

4.1. Multimodel Algorithms

To integrate the proposed metamodel within an existing
optimization method, we resort to multimodel (or hybrid)
algorithms, which allow for an arbitrary metamodel to be
used. These methods share a common motivation, which

is to combine the use of models with varying evalua-
tion costs (low versus high-fidelity models, or coarse ver-
sus fine models). Multimodel algorithms include that of
Carter (1986) (see references herein for previous multi-
model frameworks), Booker et al. (1999), Alexandrov et al.
(2001), and Bandler et al. (2006). Alexandrov and Lewis
(2001) give a comparison of some of these multimodel
algorithms.

Conn et al. (2009a) recently proposed a trust region
derivative-free framework for unconstrained problems.
It builds upon the basic TR algorithm of Conn et al. (2000).
In this paper, we choose to tailor the algorithm of Conn
et al. (2009a) and integrate the proposed metamodel within
it. Other approaches, such as that of Booker et al. (1999),
can also be tailored to integrate the proposed metamodel.
Our choice is based on the following reasons. Among the
two main strategies used to ensure global convergence, line
search and trust region methods, the latter are more appro-
priate for our context since they “extend more naturally
than line search methods to models that are not quadrat-
ics with positive definite Hessians” (Carter 1986, p. 13).
The most common approach for fitting metamodels within
a trust region framework is interpolation. Nevertheless, for
noisy functions we believe that regression is more appro-
priate since it is less sensitive to the inaccuracy of the
observations. This algorithm allows for arbitrary metamod-
els and makes no assumption on how these metamodels are
fitted (interpolation or regression). Given the difficulty and
cost of obtaining accurate gradient estimates for simulation-
based urban transportation problems, derivative-free (DF)
methods are appealing since they do not require derivative
estimations.

4.2. Algorithm

In this section, we omit references to the exogenous param-
eters of the simulation model, i.e., we denote f 4x3p5
as f 4x5.

0. Initialization. Define for a given iteration k2 mk4x1 y;
�k1 q5 as the metamodel (denoted hereafter as mk4x5); xk as
the iterate; ãk as the trust region radius; �k = 4�k1�k5 as
the vector of parameters of mk; nk as the total number of
simulation runs carried out up until and including iteration
k; uk as the number of successive trial points rejected; and
�k as the measure of stationarity (norm of the derivative of
the Lagrangian function of the TR subproblem with regards
to the endogenous variables) evaluated at xk.

The constants �1, �, �inc, �c, �̄ , d̄, ū, ãmax are given
such that 0 < �1 < 1, 0 < � < 1 < �inc, �c > 0, 0 < �̄ < 1,
0 < d̄ < ãmax, ū ∈ �∗. Set the total number of simulation
runs permitted (across all points) nmax, this determines the
computational budget. Set the number of simulation repli-
cations per point r (defined in Equation (2)).

Set k = 0, n0 = 1, u0 = 0. Determine x0 and ã0 (ã0 ∈

401ãmax7).
Compute T and f̂ at x0, fit an initial model m0 (i.e.,

compute �0).
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1. Criticality step. If �k ¶ �c, then switch to conservative
mode (detailed in §4.3).

2. Step calculation. Compute a step sk that reduces the
model mk and such that xk + sk (the trial point) is in the
trust region (i.e., approximately solve the TR subproblem).

3. Acceptance of the trial point. Compute f̂ 4xk +sk5 and

�k =
f̂ 4xk5− f̂ 4xk + sk5

mk4xk5−mk4xk + sk5
0

— If �k ¾ �1, then accept the trial point: xk+1 = xk + sk,
uk = 0.

— Otherwise, reject the trial point: xk+1 = xk1 uk =

uk + 1.
Include the new observation in the set of sampled points
(nk = nk + r), update the weights w and fit the new
model mk+1.

4. Model improvement. Compute �k+1 = ��k+1 − �k�/
��k�. If �k+1 < �̄ , then improve the model by simulating
the performance of a new point x, which is sampled from a
distribution such as the one defined in §4.3. Evaluate T and
f̂ at x. Include this new observation in the set of sampled
points (nk = nk + r). Update mk+1.

5. Trust region radius update.

ãk+1 =











min8�incãk1ãmax9 if �k >�1

max8�ãk1 d̄9 if �k ¶ �1 and uk ¾ ū

ãk otherwise0

If �k ¶ �1 and uk ¾ ū, then set uk = 0.
If ãk+1 ¶ d̄, then switch to conservative mode.
Set nk+1 = nk, uk+1 = uk, k = k+ 1.
If nk <nmax, then go to Step 1. Otherwise, stop.

4.3. Algorithmic Details

Asymptotic properties. Recall that the primary purpose
of the proposed methodology is to enable the identifica-
tion of points with improved performance under very tight
computational budgets. To achieve this, we tailor the Conn
et al. (2009a) algorithm such as to yield an algorithm with
good short-term performance.

To ensure global convergence for unconstrained prob-
lems, the Conn et al. (2009a) algorithm requires that within
a uniformly bounded number of steps a certifiably fully
linear model (i.e., a model that satisfies first-order Taylor-
type bounds) can be obtained. Whenever a certificate of full
linearity is required, our algorithm switches to the conser-
vative mode. For the complex transportation problems and
the tight computational budgets that we consider, this mode
has never been triggered in any of our experiments.

If the asymptotic performance (and therefore the con-
servative mode) of the algorithm is of interest, we suggest
to follow the lines of traditional SO techniques that use a
quadratic polynomial as a metamodel (i.e., set � of Equa-
tion (3) to zero), along with traditional sampling strate-
gies and statistical tests at various steps of the algorithm

(Shapiro et al. 2009, Bharadwaj and Kleywegt 2008, Bastin
et al. 2006, Kleywegt and Shapiro 2001, Shapiro 2000).
Nonetheless, this will come at the cost of a much larger
computational budget, and is therefore out of the scope of
this paper.

Criticality step. The criticality step of the algorithm
ensures that if the measure of stationarity goes under a
given threshold, then the model can be made certifiably
fully linear so that its stationarity measure can be trusted.

Step calculation. Details regarding the TR subproblem
are given for the traffic signal control problem in §5.2.

Acceptance of the trial point. The actual reduction of the
objective function is compared to the reduction predicted
by the model, this determines whether the trial point is
accepted or rejected.

Model improvement step. This step aims to sample
points that can improve the accuracy of the metamodel.
Such points can, for instance, improve the geometric prop-
erties of the sampled space (e.g., attempting to fully span
the feasible space such that a full rank least squares matrix
is obtained, or in the case of interpolation methods improv-
ing the poisedness of the sample (Conn et al. 2008a, b)).
To sample we draw uniformly from the feasible space.

TR radius update. In the Conn et al. (2009a) algorithm
the TR radius can be reduced if the model is fully linear but
has not performed well. As long as � 6= 0, we cannot certify
whether the model is fully linear. We therefore reduce the
TR radius after ū successive trial points have been rejected.
If the TR radius reaches a lower bound d̄, then we switch
to the conservative mode in order to obtain a fully linear
model. In our experiments, this was never necessary.

Sample sizes. The simulator is called at steps 3 and 4 of
the algorithm to evaluate the performance of a trial point
and a model improvement point, respectively. Given the
tight computational budgets considered in this paper, each
time the simulator is used to evaluate the performance of
a point only one replication is run (i.e., r of Equation (2)
equals 1).

Algorithmic parameters. The following values are used
for the parameters of the TR algorithm: ãmax = 1010,
ã0 = 103, �1 = 10−3, � = 009, �inc = 102, �c = 10−6,
�̄ = 001, d̄ = 10−2, ū= 10, w0 = 001. Typical values for TR
parameters are given in Carter (1986).

Convergence of constrained DF TR algorithms. As de-
tailed by Conn et al. (2009b), DF TR methods are a rel-
atively recent topic. The Conn et al. (2009a) algorithm
ensures global convergence for unconstrained problems.
Conn et al. (1998) propose a method to solve problems
with general constraints using an unconstrained TR algo-
rithm. The transportation problems that we are interested
in solving fall into the category of what they call easy
constraints. These are general constraints that are contin-
uously differentiable and whose first-order partial deriva-
tives can be computed relatively cheaply (with regards
to the cost of evaluating the objective function). In their

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.5

8.
6.

19
7]

 o
n 

13
 J

an
ua

ry
 2

01
4,

 a
t 1

2:
00

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Osorio and Bierlaire: Simulation-Based Optimization for Urban Transportation Problems
1338 Operations Research 61(6), pp. 1333–1345, © 2013 INFORMS

approach, they include such constraints in the TR subprob-
lem, which ensures that all trial points are feasible. Conn
et al. (2009b) mention that such an approach is often suffi-
cient in practice.

Here we use the TR algorithm proposed by Conn et al.
(2009a) for unconstrained methods, and extend its use to
constrained problems as Conn et al. (1998) suggest. That is,
we include the constraints in the TR subproblem to ensure
that all trial points are feasible. Section 5.2 formulates the
TR subproblem for a signal control problem.

5. Traffic Signal Control

5.1. Problem Formulation

We illustrate the use of this framework with a traffic signal
control problem. A review of signal control formulations is
given in Appendix A of Osorio (2010). Traffic signal set-
ting strategies can be either fixed-time or traffic-responsive
strategies. In this paper we consider fixed-time (also called
pre-timed) strategies. These strategies use historical traffic
data, and yield one traffic signal setting for the consid-
ered time of day. The traffic signal optimization problem is
solved offline.

We consider the same problem as in Osorio and Bierlaire
(2009b). In this problem, the signal plans of several inter-
sections are determined jointly. For a given intersection and
a given time interval (e.g., evening peak period), a fixed-
time signal plan is a cyclic (i.e., periodic) plan that is
repeated throughout the time interval. The duration of the
cycle is the time required to complete one sequence of sig-
nals. For example, the cycle times of the model considered
in §6 are of 90 or 100 seconds. A phase is defined as a
set of traffic streams that are mutually compatible and that
receive identical control.

The cycle of a signal plan is divided into a sequence
of periods called stages. Each stage consists of a set of
mutually compatible phases that all have green. The cycle
may also contain all-red periods, where all streams have red
indications. The difference between the cycle time and the
sum of the all-red times is called the available cycle time.
The ratio of the available cycle time and the cycle time is
called the available cycle ratio.

To coordinate the signals of adjacent intersections (e.g.,
to create green waves along arterials), offset variables are
used. An offset is the difference in time between the refer-
ence points of the cycles of two intersections. The ratio of
green time to cycle time is known as the green split.

In this paper, we consider a fixed-time signal control
problem where the offsets, the cycle times, and the all-red
durations are fixed. The stage structure is also given, i.e.,
the set of lanes associated with each stage as well as the
sequence of stages are both known. This is known as a
stage-based approach. The decision variables of this prob-
lem consist of the green splits of the different intersections.

This is a traditional signal control problem, which is easy
to solve for a single intersection. For multiple intersec-
tions this problem becomes difficult because of the need to
account for the interactions between the vehicular queues
of adjacent intersections.

To formulate this problem we introduce the following
notation:

bi available cycle ratio of intersection i,
x4j5 green split of phase j ,
xL vector of minimal green splits,
I set of intersection indices, and

PI4i5 set of phase indices of intersection i.
The problem is traditionally formulated as follows:

min
x

4x3p5≡E6F 4x3p57 (6)

subject to
∑

j∈PI 4i5

x4j5= bi1 ∀ i ∈I1 (7)

x¾ xL0 (8)

The decision vector x consists of the green splits for each
phase. The objective is to minimize the expected travel
time (Equation (6)). The linear constraints (7) link the
green times of the phases with the available cycle time for
each intersection. The bounds (8) correspond to minimal
green time values for each phase. These have been set to
four seconds according to the Swiss transportation norm
(VSS 1992).

5.2. Trust Region Subproblem

At a given iteration k the TR subproblem includes three
more constraints than the previous problem. It is formulated
as follows:

min
x1 y

{

mk = �kT 4x1 y3 q5+�4x3�k5
}

(9)

subject to
∑

j∈PI 4i5

x4j5= bi1 ∀ i ∈I1 (10)

h24x1 y3 q5= 01 (11)

�x− xk�2 ¶ãk1 (12)

y ¾ 01 (13)

x¾ xL1 (14)

where xk is the current iterate, ãk is the current trust region
radius, �k and �k are the current metamodel parameters,
and h2 of Equation (11) represents the queueing model
(system of equations given in the online appendix). Con-
straint (12) is the TR constraint, using the Euclidean norm.
The endogenous variables of the queueing model are sub-
ject to positivity constraints (Equation (13)). Thus, the TR
subproblem consists of a nonlinear objective function sub-
ject to nonlinear and linear equalities, a nonlinear inequality
and bound constraints. The analytical form of T for the
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signal control problem considered in this paper is given in
the online appendix.

For a problem with l lanes (i.e., queues), s signalized
lanes, n endogenous phases, and r controlled intersections,
there are 5l+ s+n endogenous variables, which consist of
5 endogenous queueing model variables per lane, the green
splits for each signalized lane, and the green splits for each
phase. There are l + s + r linear and 4l nonlinear equa-
tions, as well as 5l + s + n + 1 inequalities (lower bound
constraints for all endogenous variables and the trust-region
constraint).

This problem is solved with the Matlab routine for con-
strained nonlinear problems, fmincon, for which one option,
which we use, resorts to a sequential quadratic program-
ming method (Coleman and Li 1996, 1994). We set the
tolerance for relative change in the objective function to
10−3 and the tolerance for the maximum constraint viola-
tion to 10−2.

5.3. Signal Plan Features

Sampling. The model improvement step of the algorithm
attempts to diversify the set of sampled points by drawing
points uniformly from the feasible space. A feasible signal
plan is defined by Equations (7) and (8) (or equivalently
Equations (10) and (14)). We draw uniformly from this
space, using the code of Stafford (2006). Given this signal
plan, we solve the network model (Equation (11)) following
the procedure described in Osorio and Bierlaire (2009a).

Explanatory/independent variables. The polynomial
component of the metamodel, �, is a quadratic polynomial
in the decision variables x, which are the phase variables
of the different intersections. For a given intersection the
phase variables are linked through the linear Equation (7)
(or equivalently Equation (10)). To use independent
explanatory variables, we exclude one phase per intersec-
tion. Thus for a set of i intersections and p phases, the
polynomial is a function of p− i phase variables, and has
a total of 24p− i5+ 1 coefficients.

6. Empirical Analysis
We evaluate and illustrate the use of this framework with
case studies based on road networks within the Swiss city
of Lausanne. We use a calibrated microscopic traffic sim-
ulation model of the Lausanne city center. This model
(Dumont and Bert 2006) is implemented with the Aimsun
simulator (TSS 2008). Details regarding the Lausanne net-
work are given in Osorio and Bierlaire (2009b).

We consider two Lausanne city subnetworks. Firstly, we
consider a simplified demand distribution. Secondly, we
analyze the performance of the method given the demand
of the city of Lausanne for the evening peak hour, and
control the plans of a larger set of intersections. For both
subnetworks, we consider tight computational budgets to
evaluate the ability of the proposed approach to address

important traffic control problems in a computationally effi-
cient manner. More detailed results can be found in Osorio
and Bierlaire (2010).

To refer to the different metamodels we use the notation
of Equation (3). In both sections, we compare the perfor-
mance of the signal plans derived by the use of three mod-
els: (i) the proposed metamodel, m; (ii) a quadratic polyno-
mial with diagonal second derivative matrix, (i.e., the meta-
model consists of �); and (iii) the queueing model, T . Pro-
cedure (iii) is proposed in Osorio and Bierlaire (2009b), and
resorts to the same algorithm as the one used to solve the
TR subproblem. The corresponding algorithms are referred
to as Am, A�, and AT , respectively.

6.1. Lausanne Subnetwork with Simplified
Demand Distribution

We consider the Lausanne road network with a simplified
demand distribution. We control a set of two adjacent sig-
nalized intersections. Demand arises at the nine centroids
nearest to these two intersections. The simulation setup
considers a 20 minute run time, preceded by a 15 minute
warm-up time.

The subnetwork consists of 12 roads with 21 lanes, 13
of which are signalized. A total of 13 phases are consid-
ered variable (i.e., the dimension of the decision vector
is 13). This leads to a polynomial � with 23 coefficients.
Since each lane is modeled as a queue, this subnetwork is
modeled as a set of 21 queues. The corresponding TR sub-
problem consists of 131 endogenous variables with their
corresponding lower bound constraints, 84 nonlinear and
36 linear equalities.

Firstly, we consider a tight computational budget, which
is defined as a maximum number of simulation runs that
can be carried out. The computational budget is set to
150 runs. We consider the performance of the signal plans
derived by Am and A�. We run each algorithm 10 times.
We then compare their performance for increasing total
number of simulation runs, which we denote n. Initially, no
simulated observations are available, i.e., we start off with
an empty sample. We initialize all runs with the same sig-
nal plan, which is a uniformly drawn signal plan generated
with the method of Stafford (2006).

To compare the performance of both methods for a
given number of simulation runs (i.e., a given n), we con-
sider the 10 signal plans derived and evaluate their perfor-
mance by running 50 replications of the simulation model.
We then compare the empirical cumulative distribution
function (cdf) of the average travel times over all 10 signal
plans and 50 replications, i.e., each cdf consists of a set of
500 observations.

Figure 1 considers a set of four plots. Each plot displays
results for the initial plan, and the plans derived by both
methods for a given n. Each plot considers a different n
value. Plots 1(a)–1(d) consider, respectively, n values of 10,
50, 100, and 150. The cdf labeled x0 denotes the cdf of the
initial random plan. The numbers denote the corresponding
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Figure 1. Empirical cdfs of the average travel times considering an initial random signal plan.
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(d) n = 150

n values, e.g., the cdf labeled “A� 10” corresponds to the
signal plans proposed by A� after running 10 simulation
runs (n= 10).

For all four n values, Am leads to signals plans with
improved average travel times, when compared to both the
initial plan and the plans proposed by A�. It also yields
reduced variance in the average travel times across signal
plans and replications. The plan proposed by A� for n =

10 (plot 1(a)) has worse performance than the initial plan.
Once n reaches 50 (plot 1(b)), A� leads to signal plans
with improved performance compared to the initial plan.
For n values of 100 and 150 (plots 1(c) and 1(d)), the plans
derived by Am and A� have similar performance, with Am
leading to signal plans with smaller variance.

Secondly, we allow for a larger computational budget.
We allow for a total of 750 simulation runs. We run each
method once. As before, we initialize both methods with
a uniformly drawn initial signal plan and start off with an
empty sample.

Figure 2(a) considers the signal plans derived by Am and
A� for n ∈ 8101201301409. For each signal plan, the figure
displays the empirical cdf of the average travel times over
the 50 replications. Once again, the cdf denoted x0 corre-
sponds to the initial random plan. The signal plan derived
by Am is the same when running 10120130 and 40 simula-
tion runs. For n= 10, the plans of both Am and A� lead to
improved average travel times, when compared to the ini-
tial plan. As the number of simulation runs increases, A�
leads to plans with improved performance. At n = 40, its
performance is similar to that of the signal plan proposed
by Am. The latter leads to reduced variance in the average
travel time.

Figure 2(b) considers the signal plans proposed by Am
and A� at n = 750, as well as the initial signal plan and
the signal plan proposed by the queueing method, AT .
It displays for each method the cdf of the average travel
times. All three methods, Am, A�, and AT , lead to signal
plans with improved performance compared to the random
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Figure 2. Empirical cdfs of the average travel times considering an initial random signal plan and evaluating the per-
formance as n increases from 10 to 40 (left plot) and at n= 750 (right plot).
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initial signal plan. The methods that use simulated obser-
vations throughout the optimization process, Am and A�,
lead to improved signal plan performance when compared
to the queueing method AT . The proposed method, Am,
also yields the signal plan with the smallest variance in the
average travel times.

6.2. Lausanne Subnetwork with Evening Peak
Hour Demand

We evaluate the performance of the proposed method by
considering a larger subnetwork of the Lausanne city cen-
ter. The Lausanne city road network model is displayed
in Figure 3(a). The considered subnetwork is located in
the city center, and is delimited in Figure 3(a) by an oval.
The subnetwork is displayed in detail in Figure 3(b). It is
presented in detail in Osorio and Bierlaire (2009b). We use
the demand of the evening peak period (17h–18h). The

Figure 3. Lausanne city road network model (left) and subnetwork model (right).

(a) (b)

simulation outputs used both to fit the metamodel and to
evaluate the performance of the derived signal plans are the
subnetwork average travel times.

This subnetwork contains 48 roads and 15 intersections.
The signalized intersections have a cycle time of either 90
or 100 seconds. Nine intersections are signalized and con-
trol the flow of 30 roads. There are 102 lanes, 60 of which
are signalized. There are a total of 51 phases that are con-
sidered variable.

The queueing model of this subnetwork consists of 102
queues (one queue for each lane). The TR subproblem con-
sists of 621 endogenous variables with their corresponding
lower bound constraints, 408 nonlinear equality constraints,
171 linear equality constraints, and one nonlinear inequality
constraint.

Note that this problem is considered a large-scale prob-
lem for existing unconstrained DF methods, not to mention
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Figure 4. Empirical cdfs of the average travel times considering an initial random signal plan.
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the added complexity of the nonlinear constraints. In par-
ticular, the problem has 51 decision variables. Thus if one
were to resort to a classical interpolation-based quadratic
polynomial surrogate, the evaluation of the performance of
1,378 points would be necessary to fit the full polynomial,
and in order to obtain an accurate evaluation, a large num-
ber of replications would need to be carried out at each
point. This is because for a problem with n decision vari-
ables 4n + 154n + 25/2 suitably sampled points (i.e., well
poised (Conn et al. 2000, 2009b)) are necessary to fit the
full quadratic.

We allow for a maximum number of 150 simulation
runs that can be carried out, and no initial observation
available. For a given initial signal plan, we run the cor-
responding algorithm 10 times, deriving 10 signal plans.
We then evaluate the performance of each of these signal
plans by running 50 replications of the simulation model.

Figure 5. Empirical cdfs of the average travel times considering an initial random signal plan, running 10 instances of
each method, and evaluating their performance at different n values.
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All simulations are preceded by a 15 minute warm-up
period. To compare the methods, we consider the empirical
cdf of the average travel times.

Each plot of Figure 4 considers one method. The left
plot considers Am, the right plot considers A�. Each plot
displays 11 cdfs: the cdf of the initial plan (dotted curve),
and the cdfs of the 10 signal plans obtained with the cor-
responding method (solid curves). All 10 plans proposed
by Am yield improved average travel times compared to
the initial plan. For A�, there are cases where after 150
simulation runs the algorithm does not identify a plan with
improved performance compared to the initial plan.

Hereafter, we consider the empirical cdf of the average
travel times over all 10 signal plans and 50 replications, i.e.,
each cdf consists of a set of 500 observations. Each plot
of Figure 5 considers one method, and displays the cdfs
of the initial plan, and of the plans derived after running
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Figure 6. Empirical cdfs of the average travel times considering different initial random signal plans and allowing for
3,000 simulation runs.
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101501100, and 150 simulation runs. For all n values, Am
(left plot) yields signal plans with improved distributions.
The distributions also improve as n increases. For n values
of 10 and 50, A� (right plot) yields signal plans with worse
performance compared to the initial plan. For n values of
100 and 150, it identifies plans with improved performance.

We now consider a case with a higher computational
budget. We allow for 3,000 simulation runs and consider
a random initial point. In this case, we run the algorithm
once. We then evaluate the performance of the derived
plans by running 50 replications of the simulation model.

Figure 6(a) presents the cdfs of the average travel times
across the 50 replications, considering the plans derived by
Am, A� and AT . It also presents the performance of an
existing signal plan for the city of Lausanne (denoted Base).

All three methods (Am, A� and AT ) lead to improve-
ment compared to the existing plan for the city of Lau-
sanne. All three methods have similar performance, with
Am leading to signal plans with slightly lower travel times.
The method that consists of only the queueing model and
does not resort to the use of simulated observations, AT ,
has very good performance.

We perform the same experiment, allowing for 3,000
simulation runs, with a different initial point. Figure 6(b)
presents the corresponding results. The same conclusions
as for Figure 6(a) hold.

We evaluate the computational time required by Am.
We consider the two instances of 3,000 simulations, previ-
ously presented. The TR optimization algorithm run time is
instantaneous (less than one second) in more than 95% of
the runs, whereas the simulation run time for one replica-
tion is typically between one and two minutes. This illus-
trates the computational cost of each simulation and the
need to limit the number of evaluations of the simulation
model.

The results of §6 indicate that the proposed meta-
model systematically yields signal plans with improved

performance when compared to the initial plans, whereas
limiting the metamodel to a quadratic polynomial may
fail to do so. The proposed technique also leads to plans
with reduced variance in the average travel times, i.e., it
increases travel time reliability.

7. Conclusions
This paper presents a simulation-based optimization frame-
work for the design and management of congested urban
networks. It proposes a metamodel that combines informa-
tion from a traffic simulation tool and an analytical net-
work model. It builds upon the classical approach of using
a general-purpose quadratic polynomial as a metamodel,
by combining the polynomial with the analytical network
model. It integrates this metamodel within a derivative-free
trust region optimization algorithm.

The performance of this approach is evaluated on a fixed-
time signal control problem with two subnetworks of the
city of Lausanne. We consider cases with tight computa-
tional budgets, and initialize all runs with an empty set
of simulated observations. The analytical information pro-
vided by the queueing network model enables the identifi-
cation of well-performing trial points within few simulation
runs, and continues to perform well as the number of runs
increases. This illustrates the added valued of the structural
information provided analytically by the network model.
The method is computationally efficient and suitable for
complex problems with tight computational budgets.

Efficiently tackling unconstrained high dimensional
problems (e.g., more than 200 variables) is one of the main
limitations of existing derivative-free methods, not to men-
tion the added complexity of constrained and stochastic
problems. The generic metamodels used in these algorithms
require a moderate to large number of simulation runs to
initially fit the metamodel of interest. The proposed com-
bination of generic metamodels with application-specific
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physical metamodels allows the algorithm to do the follow-
ing: (1) overcome the need for a substantial initial sample,
(2) identify trial points with good performance since the
first iterations, and thus (3) address high dimensional prob-
lems under tight computational budgets.

The accuracy and the computational efficiency of this
method can be improved by investigating different sample
size calculation and allocation strategies, as well as by inte-
grating statistical tests at various steps of the algorithm,
such as those presented in Shapiro et al. (2009).

This simulation-based optimization method enables the
use of stochastic traffic simulators to go beyond a what-
if analysis. With this framework, we can address complex
problems that account, in detail, for the performance of
individual vehicles (e.g., energy consumption, emissions),
the behavior of individual drivers (e.g., reaction to real-
time traffic information), as well as their impact at an urban
scale. Recent work has used this framework to address
energy-efficient traffic management problems (Osorio and
Nanduri 2012), as well as to propose novel formulations for
traditional transportation problems that account for higher-
order distributional information (Chen et al. 2012). Such
formulations can improve, for instance, the reliability or the
robustness of transportation systems.

The proposed approach of combining a functional meta-
model with an analytical queueing network model is of
interest to efficiently address SO problems for other net-
worked systems, ranging from healthcare networks (Osorio
and Bierlaire 2009a) to biological protein synthesis net-
works (Osorio and Bierlaire 2012).
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Supplemental material to this paper is available at http://dx.doi
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