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Abstract

Most urban transportation optimization problems are formulated based on first-order

moments of network performance (e.g. expected trip travel times, expected through-

put). Formulations based on the use of higher-order information can lead, for instance,

to enhanced network reliability and enhanced network robustness. Problem formulations

that account for higher-order distributional information are rare and are usually based

on the use of low-resolution analytical traffic models. This paper proposes the use of

high-resolution stochastic traffic simulators to approximate and optimize higher-order in-

formation. This paper proposes a simulation-based optimization technique that enables

problems formulated with higher-order information to be addressed efficiently. The paper

addresses a simulation-based travel time reliable signal control problem. Travel time dis-

tributional estimates are obtained from a stochastic microscopic urban traffic simulator

and are embedded within a simulation-based optimization algorithm. Analytical approx-

imations of the simulated metrics are formulated and combined with the simulated data

in order to enhance the computational efficiency of the algorithm. A large-scale control

problem is tackled in a computationally efficient manner, when compared with a tradi-

tional simulation-based optimization method. The proposed approach enables the efficient
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use of higher-order distributional estimates obtained from stochastic traffic simulators to

address simulation-based reliable and robust transportation problems.

Key words : Simulation-based Optimization, reliability, signal control

1 Introduction

Most urban transportation optimization problems are formulated based on first-order mo-

ments of network performance (e.g. expected trip travel times, expected throughput).

Formulations based on the use of higher-order information can lead, for instance, to en-

hanced network reliability and enhanced network robustness. Enhancing the reliability of

transportation networks is currently recognized as a critical goal by major transportation

agencies. A Transport for London report identifies trip travel time reliability improvements

as their primary objective (Transport for London 2010). U.S. reports have also empha-

sized the importance of improving the reliability of our transportation systems (Texas

Transportation Institute 2012, Department of Transportation 2008).

Problem formulations that account for higher-order distributional information are rare

and are usually based on the use of low-resolution analytical models. Nonetheless, pro-

viding an analytical, let alone tractable, approximation of the distribution of the main

network performance measures is a major challenge (see for instance, Osorio and Flötteröd

(2014), Peterson et al. (1995), Odoni and Roth (1983)), and is often achieved by simplify-

ing, or even omitting, spatial-temporal dependencies. Stochastic simulation-based models

can yield distributional estimates that account for such intricate dependencies. Nonethe-

less, the efficient use of simulation-based higher-order information for optimization has

yet to be explored. This paper contributes to address the following question: how can

simulation-based higher-order distributional information be efficiently used for network

optimization?

This paper focuses on travel time reliability problems. For a description of other net-

work reliability metrics, see Clark and Watling (2005). The two most common metrics

used to address travel time reliability are trip travel time variability and trip travel time

percentiles (e.g., 95th percentile) (OECD 2010). A major challenge in improving travel

time reliability is the approximation of the network travel time distribution. An analyt-

ical and accurate expression for the full joint network distribution is difficult to derive

given the intricate between-link spatial-temporal dependencies. A variety of analytical

approximations have been proposed based on distributional assumptions ranging from:

1) knowledge of the functional form of the full joint network distribution (Mirchandani

and Soroush 1987); 2) knowledge of the functional form of the marginal link distributions

(Fu and Hellinga 2000); 3) knowledge of moments of the marginal link distributions (Ng

et al. 2011). Empirical (non-parametric) analysis of link travel time distributions have
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also been proposed (van Lint and van Zuylen 2005, Chen et al. 2003). This paper uses

simulated travel time distributional estimates. The estimates are obtained from detailed

stochastic microscopic traffic simulators that account for intricate vehicle-to-vehicle and

vehicle-to-infrastructure interactions.

This paper focuses on reducing travel time variability. In general, spatial-temporal

variations in both demand and supply can lead to increased variability (see Clark and

Watling (2005) or Noland and Polak (2002) for details on common underlying causes of

supply and demand variability). Increased variability leads to increased uncertainty for

travelers, and increased travel cost (Noland and Polak 2002). There is a substantial body

of research that studies the behavioral impacts of travel time variability. Noland and Polak

(2002) provide a review. Carrion and Levinson (2012) review methodologies to quantify

the value of travel time reliability. Such studies highlight that travel time variability is

accounted for by travelers in numerous travel decisions, and that its reduction is of high

value to travelers. Thus, there is a need to design and operate transportation systems

such as to mitigate it.

The optimization problems considered in this paper are travel time reliable traffic

signal control problems. The importance of accounting for travel time variability in signal

control has been emphasized by Yin (2008). The traditional signal control objectives are

network efficiency maximization, such as expected throughput maximization (Abu-Lebdeh

and Benekohal 1997), or minimization of expected travel time (Osorio and Chong 2015),

of the expected number of vehicle stops or of expected delay (Wong et al. 2002).

To the best of our knowledge, the few studies that have accounted for travel time

variability in the design of signal plans are based on analytical methods. Yin (2008) pro-

poses an analytical technique to reduce the standard deviation of delay and, ultimately,

enhance the robustness of signal plans to fluctuations in demand. The demand fluctua-

tion is represented by different demand scenarios. The technique is applied to an isolated

intersection. Zhang et al. (2010) extend the work of Yin (2008) to account for multi-

ple intersections along an arterial. Another extension is proposed by Li (2011), which

illustrates the method on an isolated intersection. Park and Kamarajugadda (2007) and

Kamarajugadda and Park (2003) develop an analytical approximation of delay variance.

Parametric distributions are assumed for link volumes and the corresponding parameters

are estimated with traffic count data. The analytical delay variances are then used to

address a signal control problem for an isolated intersection and then for a set of two

adjacent intersections. This analytical approach is not designed for use within a general

topology network.

Analytical techniques are computationally tractable and efficient, yet rely on strong

distributional assumptions, such as the choice of a given parametric distribution for link or

path delay. The use of stochastic simulators allows for more flexible and realistic assump-
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tions that can contribute to capture the intricate form that the travel time distribution

may take (e.g., multi-modal distribution).

This paper uses a class of urban traffic simulation models known as stochastic micro-

scopic simulators. The proposed methodology is suitable for any type of computationally

inefficient simulation-based traffic model (e.g., macroscopic, mesoscopic or microscopic;

deterministic or stochastic, etc.). For a review of traffic simulation models, see Bar-

celó (2010). Of the three main families of simulation models (macroscopic, mesoscopic

and microscopic), microscopic models embed the most detailed representation of both

demand and supply. They explicitly represent individual vehicles and can account for

vehicle-specific technologies/attributes. They also represent individual travelers and em-

bed detailed disaggregate behavioral models (e.g. response to en-route traffic information,

departure-time choice, route choice, lane-changing, car-following). They provide a de-

tailed representation of the underlying supply network (e.g. variable message signs, public

transport priorities). Thus, these traffic simulators can describe in detail the interactions

between vehicle performance (e.g., instantaneous energy consumption, emissions), traveler

behavior and the underlying transportation infrastructure, and yield a detailed description

of traffic dynamics in urban networks. Since they account for intricate local traffic dy-

namics and demand-supply interactions, they capture the between-link spatial-temporal

dependencies of the main performance measures, and can thus yield accurate estimates

of the full distribution of the main performance measures. These simulators are suitable

tools to design traffic management strategies that enhance travel time reliability, and more

generally network reliability.

The computational inefficiency of microscopic simulators has mostly limited their use

to what-if (i.e., scenario-based) analysis (as in, for instance, Bullock et al. (2004), Ben-

Akiva et al. (2003)). Their use within simulation-based optimization (SO) algorithms is

rare, and is limited to the use of first-order distributional information (Osorio and Selvam

2017, Osorio and Nanduri 2015a,b, Osorio and Chong 2015, Li, Abbas, Pasupathy and

Head 2010, Stevanovic et al. 2009, 2008, Branke et al. 2007, Yun and Park 2006, Hale

2005, Joshi et al. 1995). This paper proposes a methodology that enables the use of high-

resolution stochastic traffic simulators to efficiently address higher-order SO problems.

We consider signal control problems for congested urban networks and address large-

scale problems. The simulated travel time distributional estimates are embedded within a

simulation-based optimization (SO) algorithm and are used to identify signal plans with

reduced expectation and standard deviation of travel time metrics. By using simulated

distributional estimates, the proposed approach accounts for intricate spatial-temporal

fluctuations in demand-supply interactions, leading to intricate within-time-of-day travel

time variabilities.

Given the computational inefficiency of stochastic microscopic simulators, this paper
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focuses on the development of computationally efficient SO techniques. We consider tight

computational budgets, which are defined as a maximum (and small) number of simulation

runs. The objective is to identify within this budget signal plans that improve first- and

second-order distributional information, and do so at the city-scale. In order to achieve

efficiency, information from the (inefficient) simulator is coupled with information from

an efficient (i.e. tractable and differentiable) analytical approximation of the objective

function. The role of the simulator is to provide a highly detailed approximation of the

distributions of interest, whereas that of the analytical model is to provide structural in-

formation to the SO algorithm, enhancing its efficiency. This paper formulates a tractable

analytical approximation of the simulation-based higher-order performance metrics, this

analytical approximation is embedded within the SO algorithm and is used to enhance

the computational efficiency of the SO algorithm.

To the best of our knowledge, this paper constitutes the first to: 1) use higher-order

distributional information from stochastic simulators to solve transportation optimization

problems, 2) use higher-order distributional information, analytical or simulation-based,

to solve large-scale signal control problems, and 3) enable higher-order simulation-based

transportation optimization problems to be solved in a computationally efficient way. In

particular, the problem addressed in Section 3.3 is considered a large-scale traffic sig-

nal control problem, as well as a difficult high-dimensional simulation-based optimization

problem.

Section 2 presents the proposed methodology. Section 3 applies the methodology to

two case studies: the Lausanne city center and the full city network. Section 4 presents

the main conclusions and discusses areas of ongoing and future research. The Appendix

contains: the formulation of the analytical network models used as part of the SO frame-

work (Section 5), the SO algorithm (Section 6) and the formulation of the optimization

problem solved at every iteration of the SO algorithm (Section 7).

2 Methodology

Section 2.1 describes the general SO framework of this paper. The reliable simulation-

based signal control problem is formulated in Section 2.2. The SO algorithm uses an

analytical approximation of the simulation-based objective function derived from analyti-

cal network models. These analytical approximations are derived in Sections 2.3 and 2.4.

Section 2.5 summarizes the proposed methodology.

2.1 Simulation-based optimization framework

For reviews of SO methods, see Hachicha et al. (2010), Barton and Meckesheimer (2006)

and Fu et al. (2005). We use the SO framework proposed by Osorio and Bierlaire (2013).
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1. Determine current iterate

2. Fit metamodel mk

3a. Optimize mk(x) 3b. Sampling strategy

4. Simulate

xk

βk

Trial point
Model improvement

point

Evaluate new point x

New performance estimate: f̂(x)

Figure 1: Metamodel simulation-based optimization methods (Chong and Osorio 2017).

This section briefly presents the framework. For details regarding its formulation, we re-

fer the reader to Osorio and Bierlaire (2013). The formulation of the method has been

extended to successfully address difficult constrained simulation-based problems in a com-

putationally efficient manner (Osorio and Nanduri 2015a,b, Osorio and Chong 2015, Osorio

and Selvam 2017, Zhang et al. 2017).

This algorithm can address continuous nonlinear generally constrained optimization

problems where the objective function is derived from a stochastic simulator, i.e. a closed-

form expression is not available for the objective function, whereas closed-form analytical

expressions are available for all constraints. Such problems can be formulated as:

min
x

f(x, z; p) (1)

subject to

g(x, z; p) = 0. (2)

The feasible space is defined by g which is a set of general, typically non-convex, determinis-

tic, analytical and differentiable constraints. The objective function f can be, for instance,

the expected value of a given stochastic performance measure G: f(x, z; p) = E[G(x, z; p)].

The decision vector x is real-valued (e.g., green splits), z denotes other endogenous simu-

lation variables (e.g., departure-time/mode/route choice probabilities), and p denotes the

deterministic exogenous simulation parameters (e.g., network topology).

This SO method is a metamodel method. A metamodel is an analytical approximation

of the objective function f . The main ideas of metamodel SO methods are illustrated in

Figure 1. At a given iteration k, the SO algorithm iterates over the following steps. First,

determine what point, among the points simulated so far, has the best performance. This
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point is denoted xk and is known as the current iterate. Second, fit the metamodel, mk,

based on the set of simulation observations collected so far. The metamodel parameter

vector is denoted βk. Use mk to perform optimization and derive a trial point (step

3a). An optional step, which not all SO algorithms embed, is step 3b. In this step,

points that may not be solutions to the metamodel optimization problem are simulated.

These points are known as model improvement points. Step 4 evaluates via simulation

the performance of the new points (the trial point and any model improvement points).

Step 4 leads to new simulation observations. As new simulated observations become

available, the accuracy of the metamodel can be improved (Step 2), leading to trial points

with improved performance (Step 3a). These steps are iterated until, for instance, the

computational budget is depleted. The SO algorithm is given in detail in the Appendix

(Section 6).

At every iteration of the SO algorithm, the metamodel optimization problem is solved

(step 3a). The main idea of the metamodel optimization problem is to replace the (un-

known) simulation-based objective function (Equation 1) with the analytical metamodel

function, m, such that efficient deterministic optimization techniques can be used. A

detailed formulation of the metamodel optimization problem of this paper is given in

the Appendix (Section 7). Reviews of metamodels are given by Conn et al. (2009b),

Barton and Meckesheimer (2006) and Søndergaard (2003). Metamodels are classified in

the literature as either physical or functional metamodels (Søndergaard 2003, Serafini

1998). Physical metamodels consist of application-specific metamodels, their functional

form and parameters have a physical or structural interpretation. Functional metamod-

els are general-purpose (i.e. generic) functions that are chosen based on their analytical

tractability but do not take into account any information with regards to the specific

objective function, let alone the structure of the underlying problem.

The Osorio and Bierlaire (2013) framework proposes a metamodel that combines a

functional and a physical component and has the following form:

m(x, y;α, β, q) = αfA(x, y; q) + ϕ(x;β), (3)

where ϕ denotes the functional component, fA (the physical component) represents the

approximation of the objective function (f of Equation (1)) as derived by an analytical

macroscopic traffic model, y are endogenous macroscopic model variables (e.g., queue-

length distributions), q are exogenous macroscopic parameters (e.g., total demand), α

and β are parameters of the metamodel. The metamodel is fitted based on simulation

observations of the objective function via regression. At each iteration, the simulator and

the queueing model are evaluated at a set of points, and then the metamodel is fitted by

solving a least squares problem based on both the current iteration simulation observations

and all the previous simulation observations.
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The functional component ϕ is defined as a quadratic polynomial in x with diagonal

second-derivative matrix:

ϕ(x;β) = β1 +

d∑
j=1

βj+1xj +

d∑
j=1

βj+d+1(xj)2, (4)

where d is the dimension of x, xj and βj are the jth components of x and β, respectively.

The physical component fA is derived by evaluating an analytical macroscopic traffic

model, which is referred to as the auxiliary traffic model. It provides a problem-specific

approximation of the objective function, i.e. its functional form will depend on the un-

derlying problem formulation. It also provides a global approximation of the objective

function (i.e., an approximation across the entire feasible region). The metamodel is

therefore a linear combination of an analytical global and problem-specific approximation

of the objective function and a quadratic error term.

In this paper, the physical component is an analytical and differentiable macroscopic

traffic model formulated based on probabilistic finite capacity queueing network theory. It

provides structural information about the problem at hand. It enables the identification

of well performing alternatives (e.g. trial points) with very small samples (i.e. good short-

term algorithmic performance). The use of an auxiliary model that is probabilistic allows

us to address problems that are formulated based on higher-order (i.e., beyond first-order)

distributional information.

As stated above, at every iteration of the SO algorithm, the metamodel optimization

problem is solved (step 3a of Figure 1). This problem is also referred to as the trust region

subproblem. When using a macroscopic traffic model as the physical component of the

metamodel, the subproblem solved at every iteration is constrained by the macroscopic

traffic model. For this subproblem to be solved efficiently, it is necessary to use a macro-

scopic model that is both: (i) scalable, such that problems for large-scale networks can be

addressed, and (ii) computationally efficient, such that the subproblem can be solved fast.

The macroscopic models used in this paper achieve both of these goals. Their full formula-

tion is given in the Appendix (Sections 5.1 and 5.2). First, they are both computationally

efficient because they are defined as a differentiable system of nonlinear equations, which

can be evaluated with a variety of standard numerical techniques. Second, they are both

scalable: the dimension of the system of equations scales linearly with the number of links

in the network and is independent of the space capacity of the links in the network. The

proposed framework can be used with any other macroscopic model that is scalable and

efficient.

2.2 Reliable signal control problem

The most common approach to account for both expected travel time and travel time

variability information is to use a linear combination: tE + rtV , where tE denotes the
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expected trip travel time, tV denotes a measure of trip travel time variability, and r

is a weight parameter known as the reliability ratio. The reliability ratio is defined as

the marginal rate of substitution between expected travel time and travel time reliability

(Carrion and Levinson 2012). The value of the reliability ratio can vary according to, for

instance, the network, the time-of-day or the trip purpose. In practice, travel time and

travel time variability valuation studies based on travel surveys are carried out in order to

obtain an estimate for r. This linear combination approach is used in various studies, such

as in Yin (2008) and in the traditional “mean-variance” approach (Jackson and Jucker

1982).

Often, the variability metric tV consists of the trip travel time standard deviation.

The objective function of this paper follows that same functional form, i.e., we combine

expectation and standard deviation information of a given travel time performance metric.

The travel time metric used is the total link travel time, i.e., the sum of travel times over all

links in the area/network of interest. Link travel time metrics are easier to both measure

in the field and to approximate analytically, compared to trip travel time metrics. Link

metrics are also more suitable metrics when controlling a small area within a larger network

(e.g. a small set of intersections within a full city).

We consider a fixed-time signal control problem, where the decision variables are the

green splits. In this problem, the stage structure is given, the offsets, the cycle times and

the all-red durations are fixed. For a more detailed description of this terminology see

Osorio (2010, Section 4.2.2 and Appendix A). Fixed-timed plans are determined offline.

They are traditional control strategies that do not exploit real-time traffic data. They

are broadly used in many cities with a low, or inexistent, deployment of traffic sensors.

For cities with abundant real-time traffic data, fixed-time plans are often chosen for areas

where congestion is both high and uniformly distributed, such as in New York City (Osorio

et al. 2015) or for areas with intricate network topologies (e.g., grid topologies).

The choice of green splits as the decision vector is based on insights obtained as part

of our collaboration with the New York City Department of Transportation (NYCDOT).

For many fixed-time controlled intersections within Manhattan, the main variables regu-

larly updated are the green splits. More general problem formulations, can also optimize

the offsets, which can lead to performance improvements through enhanced coordination

between adjacent intersections and the stage structure. A discussion of these extensions

is given in Section 4.
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In order to formulate the problem, we introduce the following notation:

Ti Travel time along link i;

x(j) green split of phase j;

xL vector of minimal green splits;

ai available cycle time of intersection i;

ci cycle time of intersection i;

L set of links within the area of interest;

Q set of queues that represent the links of L ;

I set of intersection indices;

PI(i) set of phase indices of intersection i;

r reliability ratio.

The signal control problem is formulated as follows:

min
x

f(x, z; p) = E[
∑
i∈L

Ti(x, z; p)] + rSD[
∑
i∈L

Ti(x, z; p)], (5)

subject to ∑
j∈PI(i)

x(j) =
ai
ci
, ∀i ∈ I (6)

x ≥ xL. (7)

The performance metric used,
∑

L Ti, is the total link travel time. Hereafter, we no

longer indicate the dependence of Ti on x, z and p. The objective function of this problem

(Equation (5)) consists of a linear combination of the expected total link travel time,

E[
∑

L Ti(x, z; p)], and the standard deviation of total link travel time SD[
∑

L Ti(x, z; p)].

Constraints (6) guarantee that for a given intersection the sum of green splits of the

endogenous phases equals the available cycle time. Constraints (7) correspond to the

lower bound value for the green splits. In the case studies of this paper it is set to 4

seconds following Swiss transportation norms (VSS 1992).

For the case studies of this paper (Section 3), the simulators used are stochastic dy-

namic microscopic traffic models. The dynamic traffic assignment is based on the use

of a stochastic C-logit route choice model (Cascetta et al. 1996). The deterministic part

of the route choice utility function depends only on travel times. When evaluating via

simulation the performance of a given signal plan (this is done at every iteration of the SO

algorithm), the route travel times change in response to signal plan changes. This leads to

changes in the route choice probabilities. In other words, the traffic assignment is endoge-

nous and varies as a function of the signal plans. This is a suitable representation of the

route choice behavior observed in practice. For a comparative study of user equilibrium,

stochastic user equilibrium and system optimum assignments, see, for instance, Prashker

and Bekhor (2000).
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2.3 Physical component

Recall that the metamodel formulation of Equation (3) requires an analytical expression

for fA, which is the approximation of the objective function f (Equation (5)) as derived

by the auxiliary traffic model. This section derives the analytical (and differentiable)

approximation of the two components of f provided by the auxiliary traffic model. That

is, we derive analytical approximations for E[
∑

L Ti] and for SD[
∑

L Ti]; or equivalently

E[
∑

Q Ti] and SD[
∑

Q Ti].

The auxiliary model used is an analytical queueing network model based on finite

capacity queueing theory. Each lane in the road network is modeled as one (or a set of)

queues. Each queue of the model is a finite capacity M/M/1/k queue. The model is based

on a stationary regime assumption. It consists of a system of nonlinear equations that

relate the arrival and service rates of a queue to the demand and supply of its upstream and

downstream queues. It describes spillbacks through the queueing theory notion of blocking.

The model is suitable for large-scale analysis, as mentioned above, it’s complexity is linear

in the number of links in the network and is independent of the links space capacity. We

briefly recall the main variables and parameters that define each queue. For a given queue

i, we use the following notation.

λi arrival rate;

µ̂i effective service rate (accounts for both service and eventual blocking);

ki space capacity;

Ni number of vehicles in queue i;

P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;

ρi traffic intensity (defined as the ratio of arrival rate and effective service rate).

The queueing variables are related to the signal plans as defined by Equation (43) (in

Appendix 7). This equation states that for a given lane its service rate is defined as the

proportion of time (during a signal cycle) it has a green signal multiplied by the saturation

rate. This proportion of time is the sum of the endogenous green splits (i.e., the decision

variables of the signal control problem) and any fixed (exogenous) green time.

2.3.1 Expected total travel time

The expected total travel time is obtained by summing the expected travel times of the

queues (or equivalently links) of interest:

E[
∑
i∈Q

Ti] =
∑
i∈Q

E[Ti]. (8)

The expected travel time of a given queue i is derived by applying Little’s law (Little

2011, 1961):

E[Ti] =
E[Ni]

λi(1− P (Ni = ki))
, (9)
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where the expected queue-length of queue i, E[Ni], is derived in Osorio and Chong (2015)

and is given by:

E[Ni] = ρi

(
1

1− ρi
− (ki + 1)

ρkii
1− ρki+1

i

)
. (10)

2.3.2 Total travel time standard deviation

We now describe the approximation for SD[
∑

Q Ti]. By definition:

SD[
∑
Q

Ti] =

√
V AR[

∑
Q

Ti]. (11)

In order to derive a tractable analytical expression, we make the following approximation:

V ar[
∑
i∈Q

Ti] ≈
∑
i∈Q

V ar[Ti]. (12)

The latter expression is exact only if all queues have independent travel times. This may

be an inaccurate approximation in various congestion regimes. Nonetheless, recall that

the main role of the physical component is to provide a tractable approximation of the

objective function. Given the difficulty of accurately modeling between-link dependencies

while preserving tractability (Osorio and Yamani 2014, Flötteröd and Osorio 2017, Osorio

and Wang 2017), this independence approximation ensures tractability. By definition:

V ar[Ti] = E[T 2
i ]−E[Ti]

2. (13)

Equation (9) gives the expression for E[Ti]. An expression for E[T 2
i ] is derived in

Section 2.4 and is given by:

E[T 2
i ] =

1

µ̂i
2

(
4ρi − 2ρ2i
(1− ρi)2

−
2kiρ

ki+1
i

(1− ρkii )(1− ρi)
+

2− (ki + 1)(ki + 2)ρkii
1− ρkii

)
. (14)

V ar[Ti] is therefore given by:

V ar[Ti] =
1

µ̂i
2

(
4ρi − 2ρ2i
(1− ρi)2

−
2kiρ

ki+1
i

(1− ρkii )(1− ρi)
+

2− (ki + 1)(ki + 2)ρkii
1− ρkii

)

−

ρi

(
1

1−ρi
− (ki + 1)

ρ
ki
i

1−ρ
ki+1
i

)
λi (1− P (Ni = ki))


2

.

(15)

The approximation of the objective function (Equation (5)) provided by the physical

component is a differentiable closed-form expression that depends on three endogenous

variables per queue: ρi, λi and P (Ni = ki). The Appendix (Section 5) gives the formulation

of two auxiliary traffic models used in this paper to approximate Equation (5). That of
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Section 5.1 is derived in Osorio (2010, Chapter 4) and is used in this paper to address

a signal control problem for the Lausanne city-center (Section 3.2). That of Section 5.2

is a formulation that is more efficient for large-scale problems (Osorio and Chong 2015).

It is used in this paper to address a signal control problem for the full Lausanne city

(Section 3.3).

The use of probabilistic models can lead to differentiable formulations of their non-

differentiable deterministic counterparts. For instance, the work in Osorio and Flötteröd

(2014) has formulated a probabilistic differentiable formulation of Newell’s (deterministic

and non-differentiable) simplified theory of kinematic waves (Newell 1993).

In this paper, the queueing network models are not derived from deterministic tra-

ditional traffic theoretic models. In particular, they assume a stationary traffic regime,

which implies that they do not capture the temporal variations of the probability distri-

butions of network performance. They are simplified models. This simplicity is the key

to ensuring the computational efficiency of the underlying SO algorithm. More recently,

time-dependent queueing network models that also are sufficiently efficient for simulation-

based optimization have been proposed (Chong and Osorio 2017).

2.4 Analytical approximation of E[T 2]

We derive the expression for E[T 2], where T denotes the sojourn time at a given queue.

We represent an urban road network as a finite capacity queueing network as in Osorio

(2010, Chapter 4). Each lane is modeled as one (or a set of) M/M/1/k queue(s). For an

M/M/1/k queue the cumulative distribution function F̃ (t) of the sojourn time is given

by (cf. Gross et al. (1998), pages 587-641):

F̃ (t) =
1− ρ

1− ρk

k−1∑
n=0

ρn

(
1−

n∑
m=0

(µ̂t)me−µ̂t

m!

)
, t ≥ 0, (16)

with µ̂, ρ and λ defined in Section 2.3. The probability density function f̃(t) is obtained

as follows:

f̃(t) =
dF̃ (t)

dt
= − 1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

dh(t)

dt
, (17)

where h(t) is defined by:

h(t) = tme−µ̂t, t ≥ 0. (18)

Since:

dh(t)

dt
= mtm−1e−µ̂t − µ̂tme−µ̂t, (19)
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then:

f̃(t) =
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

(
µ̂tme−µ̂t −mtm−1e−µ̂t

)
. (20)

By definition:

E[T 2] =

∫ ∞

0
t2f̃(t)dt =

∫ ∞

0

1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

(
µ̂tm+2e−µ̂t −mtm+1e−µ̂t

)
dt. (21)

E[T 2] =
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

∫ ∞

0

(
µ̂tm+2e−µ̂t −mtm+1e−µ̂t

)
dt. (22)

According to Gradshteyn and Ryzhik (2007) (pages 247-386):∫ ∞

0
tae−ctbdt =

Γ(a+1
b )

bc(a+1)/b
, (23)

where Γ denotes the gamma function defined as Γ(x) = (x− 1)!.

Using the expression of Equation (23), we obtain the following two equalities:∫ ∞

0
µ̂tm+2e−µ̂tdt = µ̂

Γ(m+ 3)

µ̂m+3
=

(m+ 2)!

µ̂m+2
(24)

∫ ∞

0
mtm+1e−µ̂tdt = m

Γ(m+ 2)

µ̂m+2
= m

(m+ 1)!

µ̂m+2
. (25)

Inserting the expressions of Equations (24) and (25) into (22), leads to:

E[T 2] =
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

(
(m+ 2)!

µ̂m+2
−m

(m+ 1)!

µ̂m+2

)
(26)

=
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

(
(m+ 1)(m+ 2)

µ̂2
− m(m+ 1)

µ̂2

)
(27)

=
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

2(m+ 1)

µ̂2
(28)

=
1− ρ

1− ρk

k−1∑
n=0

ρn
2

µ̂2

(
n(n+ 1)

2
+ (n+ 1)

)
(29)

=
1

µ̂2

1− ρ

1− ρk

k−1∑
n=0

(n+ 1)(n+ 2)ρn. (30)

The above summation can be further simplified, for ρ ̸= 1, as follows:

k−1∑
n=0

(n+ 1)(n+ 2)ρn =

k−1∑
n=0

d2(ρn+2)

dρ2
=

d2
(∑k−1

n=0 ρ
n+2
)

dρ2
=

d2
(
ρ2 1−ρk

1−ρ

)
dρ2

. (31)
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We first calculate the first derivative with regards to ρ:

d
(
ρ2 1−ρk

1−ρ

)
dρ

=
2ρ− (k + 2)ρk+1

1− ρ
+

ρ2 − ρk+2

(1− ρ)2
. (32)

We then take the first derivative of (32) with regards to ρ:

d
(
2ρ−(k+2)ρk+1

1−ρ + ρ2−ρk+2

(1−ρ)2

)
dρ

=
2− (k + 1)(k + 2)ρk

1− ρ
+

2ρ− (k + 2)ρk+1

(1− ρ)2

+
2ρ− (k + 2)ρk+1

(1− ρ)2
+

2(1− ρ)(ρ2 − ρk+2)

(1− ρ)4

=
2(ρ2 − ρk+2)

(1− ρ)3
+

4ρ− 2(k + 2)ρk+1

(1− ρ)2
+

2− (k + 1)(k + 2)ρk

1− ρ
.

(33)

Inserting the above expression into (30), we obtain:

E[T 2] =
1− ρ

µ̂2(1− ρk)

(
2(ρ2 − ρk+2)

(1− ρ)3
+

4ρ− 2(k + 2)ρk+1

(1− ρ)2
+

2− (k + 1)(k + 2)ρk

1− ρ

)
(34)

=
1

µ̂2

(
2ρ2

(1− ρ)2
+

4ρ

1− ρ
− 2kρk+1

(1− ρk)(1− ρ)
+

2− (k + 1)(k + 2)ρk

1− ρk

)
(35)

=
1

µ̂2

(
4ρ− 2ρ2

(1− ρ)2
− 2kρk+1

(1− ρk)(1− ρ)
+

2− (k + 1)(k + 2)ρk

1− ρk

)
. (36)

2.5 Methodological summary

Let us summarize the proposed methodology. The considered reliable SO problem is given

by Equations (5)-(7). It is addressed with the metamodel SO framework described in Sec-

tion 2.1. At every iteration of the algorithm, a metamodel optimization problem is solved

(Step 3a of Figure 1). The exact formulation of this problem is given by Equations (40)-

(46) and is detailed in the Appendix (Section 7).

The key idea of this framework is that the metamodel (defined by Equation (3)) is

based upon an analytical approximation of the simulation-based objective function (Equa-

tion (5)) derived from an analytical network model. This analytical approximation is

represented by the term fA of Equation (3). The analytical expression of fA is

fA(x, y; q) = E[
∑
i∈Q

Ti(x, y; q)] + r

√∑
i∈Q

V ar[Ti(x, y; q)], (37)

where E[
∑

i∈Q Ti(x, y; q)] is given by Equations (8), (9) and (10), V ar[Ti(x, y; q)] is given

by Equation (15) and Q represents the set of queues (or lanes) in the network. The

analytical network models used to derive fA in the two case studies of this paper are

formulated in the Appendix (Sections 5.1 and 5.2).

At every iteration of the SO algorithm, the metamodel combines information from

the simulation-based network model with information from the analytical network model.
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Traffic model

Simulation-based microscopic Analytical macroscopic

Metamodel m
√ √

Metamodel ϕ
√

Table 1: Comparison of different metamodel approaches.

More specifically, at every iteration, the parameters of the metamodel (α and β of Equa-

tion (3)) are fitted such as to minimize a distance metric between the simulation observa-

tions and the metamodel approximations at the set of sample points.

3 Case studies

3.1 General description

We evaluate the performance of this framework based on a calibrated microscopic traffic

simulation model of the Lausanne city center developed by Dumont and Bert (2006). It is

calibrated for the Lausanne city road network during evening peak period (17h-18h). It is

implemented in Aimsun (TSS 2011). For a more detailed description of the network and

the demand, see Osorio (2010, Chapter 4). We address signal control problems within two

networks: (i) the Lausanne city center (Section 3.2), (ii) the full city network (Section 3.3).

We compare the performance of the following SO metamodel approaches:

• the proposed metamodel, m (of Equation (3));

• a quadratic polynomial with diagonal second-derivative matrix, (i.e. the metamodel

consists of ϕ as defined in Equation (3)). In this approach, the metamodel consists

of only a functional component, there is no physical component.

A comparison of these two approaches is presented in Table 1. This table indicates that the

proposed metamodel m combines information from both the simulation-based microscopic

model and from the analytical macroscopic model (the queueing network model), whereas

the metamodel ϕ uses only information obtained from the microscopic simulator. Hence,

the comparison of methods m and ϕ indicates the added value of coupling the microscopic

simulated information with macroscopic analytical information.

We evaluate the performance of both metamodel methods by addressing three different

signal control problems that vary according to their objective function.

• P1: this is a traditional signal control problem which uses only first-order moment

information (i.e., travel time expectation information) in the objective function,

which is given by E[
∑

L Ti(x, z; p)].
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• P2: this is the reliable signal control problem, with the objective function given by

Equation (5).

• P3: this signal control problem uses only standard deviation information in the

objective function, which is given by SD[
∑

L Ti(x, z; p)].

Problem P2 requires the estimation of the reliability ratio parameter r. Recall that

the mean-variance approach considers functions of the form tE + rtV , where tE denotes

the expected trip travel time and tV denotes the standard deviation of trip travel time.

In order to identify a suitable r value, we reviewed travel time and travel time variability

valuation studies. The estimates for r vary according to, for instance, the network, the

time-of-day and the trip purpose. In past work, where tV is defined as the standard

deviation of trip travel time, estimates of r have varied between 0.1 (Hollander 2006) and

2.1 (Batley and Ibáñez 2009). Black and Towriss (1997) estimate an r value of 0.79 for

commuters traveling with a car. More recently, Li, Hensher and Rose (2010) derived a

value of 1.43 for car commuters.

We consider evening peak period traffic, where most trips consist of commuters. Ad-

ditionally, the simulation model that we use represents only car traffic. Thus, we use the

value of 1.43, which was estimated for car commuters by Li, Hensher and Rose (2010).

Additionally, the largest r value found in the literature (value of 2.1) is used to evaluate

the sensitivity of our approach to r (Section 3.4).

Note that the r estimates derived from these surveys are obtained by using trip travel

time as the travel time metric, whereas in this paper we use total link travel time. Thus,

the actual r value derived from an analysis that would consider total link travel time for

the evening peak period of Lausanne, may differ from the value of 1.43 that we use.

For all experiments the computational budget is set to 150 runs, i.e., a signal plan

with improved performance needs to be identified within 150 simulation runs. Given the

stochasticity of the simulation outputs as well as the large-scale problems that we are

addressing, these are considered very tight computational budgets. For a description of

how the simulation runs are allocated across iterations see Appendix (Section 6) and also

Osorio and Bierlaire (2013).

When evaluating the performance of a given method, we need to account for the fact

that the outputs of the simulator are stochastic. For a given experiment (i.e., a given

combination of: metamodel, objective function, network, initial point and computational

budget) we run the SO algorithm five times. Each algorithmic run yields a proposed signal

plan. Thus a given experiment yields 5 signal plans. We then compare the performance

of these proposed signal plans across experiments.

In order to evaluate the performance of a proposed signal plan, 50 simulation replica-

tions are run. This yields 50 observations of the expected total link travel time and total

link travel time standard deviation. We then plot the empirical cumulative distribution
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Figure 2: Lausanne city network model with city center delimited by a circle (left), city

center of interest (right).

function (cdf) of each of these 2 performance metrics, and compare the cdf’s obtained by

different methods.

3.2 Lausanne city center

The Lausanne city network is represented in Figure 2. The city center of interest is

delimited by an oval. It contains 48 roads and 15 intersections, 9 of which are signalized

and control the traffic on 30 roads.

A total of 51 signal phases are endogenous. The queueing model of this network

consists of 102 queues. The trust region subproblem that is solved at each iteration of

the SO algorithm (which is defined in the Appendix by Equations (40)-(46)) consists of

621 endogenous variables with their corresponding lower bound constraints, 408 nonlinear

equality constraints and 171 linear equality constraints.

Figure 3 displays six plots. The plots in a given column correspond to a given initial

point. The plots of a row correspond to a given performance measure. The upper (resp.

lower) row displays the cdf’s of the standard deviation (resp. expectation) of total link

travel time (within the city center). Each plot displays 7 cdf’s: the solid blue cdf corre-

sponds to the cdf of the initial signal plan (denoted x0), the remaining 6 cdf’s correspond

to solving a given problem (P1, P2 or P3) with a given metamodel method (m or ϕ). The

red (resp. black) cdf’s correspond to the signal plans obtained when using m (resp. ϕ).

The initial points are uniformly drawn from the feasible space (Equations (6) and (7))

using the code of Stafford (2006).

Recall that when solving a given problem with a given metamodel, we run the SO

algorithm 5 times, yielding 5 signal plans, and then evaluate each of the 5 proposed signal

plans by running 50 simulation replications. The cdf’s displayed in Figure 3 are obtained

by aggregating (for a given problem and a given metamodel) the observations from all 5
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Figure 3: Performance of the signal control methods when applied to the Lausanne city

center. These plots consider various initial points and various problem formulations.
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signal plans, i.e. they consist of 5*50 observations.

For the first initial point (column 1), the signal plans with best performance both in

terms of expectation and standard deviation are obtained by solving P2 (i.e., a problem

that combines expectation and standard deviation information) and using the proposed

metamodel, m. The signal plans derived by using m outperform those derived by the

traditional metamodel ϕ regardless of the problem formulation (i.e., for all P1, P2 and

P3). Similar conclusions hold for both the second initial point (column 2) and the third

initial point (column 3).

All plots of Figure 3 indicate that using metamodel m to solve problem P2 leads to

signals plans with both: (i) the lowest average standard deviation (i.e., highest travel time

reliability), as well as (ii) the lowest variance across simulation replications (i.e., the signal

plans are robust to the stochasticity of the simulator, in other words they are robust to

the uncertainty represented by the simulator). Both contribute to a more reliable and

predictable system performance.

Figure 3 also indicates that when using ϕ, the best signal plans are obtained when

using only expected total travel time (P1), and the performance deteriorates when higher-

order information is included (P2 and P3). This illustrates: 1) the inability of a general-

purpose metamodel (in this case a quadratic polynomial) to approximate, in the entire

feasible region, intricate objectives functions, such as those that account for higher-order

distributional information, as well as 2) the added value of using auxiliary traffic models

(in this case a queueing network model) to solve such problems.

When comparing the use of ϕ to address the formulation that includes only standard

deviation (P3) with the formulation that includes both expectation and standard devia-

tion (P2), the latter leads to standard deviations that are either similar or better, which

is counterintuitive. This may be explained as follows. Firstly, formulation P1 (only ex-

pectation information) leads to low standard deviation values, thus the expectation and

standard deviation metrics may be positively correlated. Second, the expectation metric

has less variability across simulation replications, thus it can be estimated more accu-

rately with few simulation replications, leading to a better algorithmic performance for

tight computational budgets. For these 2 reasons,the formulations that include expecta-

tion information (P1 and P2) lead to improved standard deviation, and particularly when

considering tight computational budgets.

Figure 4(a) considers all 3 initial points and all solutions obtained from addressing

problem P2 with methods m and ϕ of Figure 3. Figure 4(a) displays 9 cdf’s of the

simulation-based objective function (Equation (5)). Since we consider a minimization

problem, the more a cdf curve is shifted to the left, the better the performance of the

corresponding method. The 3 blue dotted cdf’s correspond to the 3 initial points. The

three red solid (resp. black dashed) cdf’s correspond to method m (resp. ϕ). Each of the
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Figure 4: Performance of the methods when applied to problem P2 with 3 different initial

points.

red and black cdf curves corresponds to the solutions obtained with a given initial point.

Just as for Figure 3, each of these curves aggregates the observations from all 5 solutions

derived by the 5 SO runs of the algorithm.

Figure 4(a) shows that the solutions of method m outperform those of method ϕ, and

this for all initial points. In other words, the aggregate performance of the 15 solutions

proposed by method m outperforms the 15 solutions of method ϕ. Figure 4(a) shows

that the different initial points have very different performance (i.e., the three blue dotted

curves have very different performance). Nonetheless, all three curves of method m have

very similar performance. This indicates that the solutions of method m are not sensitive

to the quality of the initial points. For method ϕ, one of its three curves has very different

performance compared to the other two. Hence, the solutions of method ϕ are sensitive

to the initial points. Additionally, the three curves of method m have similar variability.

This indicates that the solutions of the method are not sensitive to the stochasticity of the

simulator. For method ϕ, the cdf curves have a higher variability, i.e., there is a higher

variance in the performance of the method for a given initial point. This indicates that

method ϕ is more sensitive than method m to the simulator’s stochasticity. Figure 4(a)

also indicates that for method ϕ the magnitude of the variance depends on the inital

point. Recall that methods m and ϕ only differ in whether or not they use information

from the analytical macroscopic model. Hence, this figure illustrates that by providing the

algorithm with this analytical information, we improve the robustness of the SO algorithm

to both: (i) initial points, and (ii) simulator stochasticity.

Figure 4(b) presents in more detail the performance of method m for different initial

points. It displays the 15 cdf’s of the 15 solutions obtained when solving problem P2.

While Figure 4(a) displayed one cdf per initial point (i.e., the cdf aggregated the perfor-
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mance of all 5 solutions), this figure displays one cdf per initial point and per solution.

The cdf’s that correspond to solutions obtained with the same initial point have the same

color. This figure shows that all cdf’s are similar regardless of their color. This means

that the solutions are robust to the quality of the initial point.

The cdf’s presented so far display the performance aggregated across all links of the city

center. Figure 5 illustrates the performance at the link level. This figure displays two plots

of the city center network. The links of the network are color coded according to their link

travel time standard deviation. The colors green, yellow and red correspond, respectively,

standard deviations that are lower than 20 seconds, are between 20 and 40 seconds, and

are greater than 40 seconds. These standard deviation estimates are obtained by running

50 replications of a given signal plan. The top network considers the initial plan (that of

column 1 of Figure 3), the bottom network considers one of the plans proposed by using

that initial plan and the metamodel m to solve the reliable signal control problem P2.

Figure 5 shows that there is an improvement across the entire city center. This illustrates

that the proposed approach leads to both improvements when aggregating across links

(e.g., total link travel time), as well as systematic improvements at the link level.

3.3 Lausanne city

In this section, we address a signal control problem that controls intersections across the

entire city of Lausanne. Figure 6 displays the road network of the city, Figure 7 displays the

corresponding network model. The full network contains 603 roads and 231 intersections,

we determine the plans for 17 intersections, which are represented as filled rectangles in

Figure 7.

A total of 99 signal phases are endogenous. The queueing model consists of 902 queues.

The trust region subproblem that is solved at each iteration of the SO algorithm (which

is defined in the Appendix by Equations (40)-(46)) consists of 2805 endogenous variables

with 1821 nonlinear equality constraints and 902 linear equality constraints. The problem

we address in this section is considered a large-scale traffic signal control problem and a

difficult high-dimensional simulation-based optimization problem.

In order to compare the performance of the methods across various problems, we pro-

ceed as for the city center (i.e., Section 3.2). Figure 8 displays six plots: each column

corresponds to a given initial point, each row corresponds to a given performance mea-

sure. The upper (resp. lower) row displays the cdf’s of the standard deviation (resp.

expectation) of total link travel time within the full city network. Each cdf aggregates 250

(i.e., 5*50) simulation observations.

For the first initial point (column 1), the signal plans with best performance both in

terms of expectation and standard deviation are obtained by solving P2 (i.e., a problem

that combines expectation and standard deviation information) and using the proposed
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Figure 5: Link based travel time standard deviation for initial plan (top plot) and plan

obtained by solving problem P2 with metamodel m (standard deviation estimates are

obtained by averaging over 50 replications).

Figure 6: Lausanne city road network (adapted from Dumont and Bert (2006)).
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Figure 7: Lausanne network model with the 17 controlled intersections displayed as grey

rectangles.

metamodel, m. The signal plans derived by using m and solving any of the three problems

outperform those derived by the traditional metamodel ϕ. Similar conclusions hold for

initial points 2 (column 2) and 3 (column 3).

The plans obtained by using only standard deviation information (i.e. solving P3)

with metamodel m still provide improvement in terms of expected travel time (see row-

wise plots) when compared to the initial point, whereas those derived by ϕ fail to do so

for initial points 1 and 3.

As for the city center case study, the plots of Figure 8 indicate that using metamodel

m to solve problem P2 leads to signals plans with low average and variance of the standard

deviation. Both indicators enhance the travel time reliability of the network.

We proceed just as for the city center case study and analyse the sensitivity of the SO

algorithms to the quality of the initial points and to the simulator’s stochasticity. Figure 9

considers all 3 initial points and all solutions obtained from addressing problem P2 with

methods m and ϕ of Figure 8. Figure 9 displays 9 cdf’s of the simulation-based objective

function (Equation (5)): the 3 blue dotted cdf’s correspond to the 3 initial points, the 3

red solid (resp. black dashed) cdf’s correspond to method m (resp. ϕ). Just as for the

city center case study, Figure 9 shows that the solutions of method m outperform those

of method ϕ, and this for all initial points. In other words, the aggregate performance

of the 15 solutions of method m is better than that of the 15 solutions of method ϕ.
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Figure 8: Performance of the signal control methods when applied to the full city of

Lausanne. These plots consider various initial points and various problem formulations.
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Figure 9: Performance of the methods when applied to the full city problem P2 with 3

different initial points.

Figure 9 shows that the different initial points have very different performance, while all

three curves of method m are very similar. The curves of method ϕ are also similar, yet

less so than for method m. This indicates that both methods are robust to the quality of

the initial solution. Also for both methods, their 3 curves have similar variability. The

variability of the curves of method m is smaller than those of method ϕ.

We now compare the performance of methods m and ϕ with different computational

budgets. We proceed as in Figure 9, i.e., we consider problem P2 and all three initial

points. Figure 10 displays 12 plots. The plots in a given column correspond to a given

computational budget. Columns 1, 2, 3, and 4, respectively, consider budgets of 20, 50,

100, and 150 simulation runs.

Let us first present and analyse the plots in the first 2 rows. The plots in the first

(resp. second) row consider method ϕ (resp. m). Each plot displays 18 cdf’s: the 3 dotted

blue cdf’s correspond to the 3 different initial signal plans (denoted x0), the remaining 15

cdf’s correspond to solving problem P2 with a given metamodel method (m or ϕ) 5 times

for each initial point (for a total of 5*3=15 times). The black (resp. red) cdf’s correspond

to solutions derived by ϕ (resp. m). All plots have the same x-axis limits, i.e., they can

be directly compared. The first row of plots indicates that as the computational budget

increases, so does the performance of the solutions proposed by ϕ. For small budgets

(e.g., 20 or 50) the signal plans proposed by ϕ tend to have similar or worse, performance

compared to the initial points. For larger budgets (e.g., 100 or 150), their performance

is similar or slightly better than that of the best initial point. The second row of plots

indicates that the signal plans proposed by m have consistently good performance even

for very small budgets. In other words, for all budgets (20, 50, 100 or 150), the method

m identifies signal plans with good performance. Additionally, for a given budget (i.e., a

given plot in the second row) the performance of the 15 plans proposed by m have similar

performance. This indicates the robustness of the method to both the quality of the initial

point, as well as to the stochasticity of the simulator.

The third row of plots considers the performance of P2 across both computational
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Figure 10: Performance of the methods when applied to the full city problem P2 with 4

different computational budgets.
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budgets and initial points. Each plot displays 6 cdf’s: 3 dotted blue cdf’s that correspond

to the initial points and 3 red cdf’s that correspond to the aggregate performance of method

m for a given initial point. In other words, each red cdf considers a given initial point

and aggregates the performance of all 5 SO runs (hence each red curve consists of 5*50

simulation observations). For each budget, the 3 red cdf’s are very similar. This indicates

that, for a given computational budget, the performance of method m is robust to the

initial point. This holds true for all four plots of the third row, i.e., for all computational

budgets, method m is robust to the quality of the initial point.

Figure 11 displays the link-level results for a part of the city network. Each plot

displays the link standard deviation (averaged over 50 simulation replications). The top

plot considers initial point 2, and the bottom plot considers a signal plan proposed by

solving P2 and using the metamodel m, given initial point 2. The colors green, yellow and

red correspond, respectively, to values smaller than 20 seconds, from 20 to 40 seconds, and

greater than 40 seconds. Just as for the city center, there is a systematic improvement at

the link level. This shows that the proposed plan reduces both the total variability as well

as the individual link travel time variability.

3.4 Sensitivity to reliability ratio

In this section, we evaluate the sensitivity of our proposed approach to the value of the

reliability ratio parameter r. We choose the highest r value found in the literature, namely

2.1. We address the reliable signal control problem P2 with the proposed metamodel m.

We compare the performance of an approach that sets r to 1.43 to one that sets r to 2.1.

The sensitivity analysis serves the purpose of illustrating that the proposed methodology

performs well for various values of r.

We proceed as in Sections 3.2 and 3.3: we consider an initial point, and run each

approach 5 times, deriving 5 signal plans. We then evaluate the performance of each of

these signal plans by running 50 simulation replications.

Figure 12 displays two plots. The left (resp. right) plot displays the cdf’s of the

standard deviation (resp. expectation) of total link travel time. Each cdf consists of 5*50

simulation observations (i.e., 5 signal plans with 50 simulation replications for each signal

plan). The cdf of the initial signal plan corresponds to the dash-dotted curve, the cdf for

the signal plans derived with r = 1.43 (resp. r = 2.1) is the solid (resp. dashed) curve.

Solving the problem P2 with these two different reliability ratio values leads to signal

plans with similar performance. The methodology seems insensitive to such changes in

the reliability ratio values. Recent research has indicated a positive correlation between

the expectation and the standard deviation of travel time metrics (Mahmassani et al.

2012, 2013). This may contribute to the insensitivity of the approach to the value of the

reliability ratio.
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Figure 11: Link travel time standard deviation for initial plan (top plot) and plan obtained

by solving problem P2 with metamodel m (standard deviation estimates are obtained by

averaging over 50 replications).
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Figure 12: Empirical cdf’s of the total link travel time standard deviation (left plot) and

expected total link travel time (right plot) with different reliability ratio values.

3.5 Computational Efficiency

Each iteration of the SO algorithm involves two computational intensive tasks: 1) running

the simulator; 2) solving the trust region subproblem (defined by Equations (40)-(46)).

In this section, we compare the run time needed for each of these tasks. We solve the

subproblem with the Matlab (Mathworks, Inc. 2011) fmincon routine for constrained

nonlinear problems, and use its sequential quadratic programming algorithm (Coleman

and Li 1996, 1994). Details on how the subproblem is solved are given in Osorio and

Bierlaire (2013).

For a given initial point, we solve problem P2 five times allowing each time for 150

SO iterations. The computer used for calculation has a processor of Intel Core i7, 3.50

Ghz and RAM of 8GB. Figure 13 displays the cdf of all 5*150 computational run time

observations. The left (resp. right) plot displays the run times for the Lausanne city

center (resp. full Lausanne city). The solid cdf curve displays the run time needed for

the convergence of the trust region subproblem, whereas the dashed cdf curve displays the

run time for one simulation replication. The simulation run time is relatively constant

across iterations, with run times of the order of 30 seconds, and not exceeding 60 seconds.

The trust region subproblem is solved quicker than a single simulation run in the city

center case study. For the full city case study, it can be of the order of several minutes

(i.e., several simulation replications). This illustrates the computational efficiency of the

overall SO framework.
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Figure 13: Computational run time for Lausanne city center (left) and full Lausanne city

(right).

4 Conclusion

This paper presents a method to address a reliable signal control problem by using higher-

order distributional information derived from a stochastic simulator. The objective func-

tion is a linear combination of the expectation and the standard deviation of total link

travel time. Distributional travel time estimates are derived from a detailed stochastic

microscopic urban traffic simulator. They are combined with analytical approximations,

which are obtained from differentiable probabilistic macroscopic traffic models. A meta-

model simulation-based optimization (SO) algorithm is used.

The proposed SO approach is compared to a traditional SO approach. Three differ-

ent signal control formulations are considered. Experiments on the Lausanne city center

network and the full city network are carried out. The SO methods are evaluated within

tight computational budgets, where the simulator can only be evaluated a total of 150

times. The proposed SO approach outperforms the traditional approach, in particular for

formulations including the standard deviation of link travel time. The use of the proposed

method to solve a reliable signal control problem leads to signal plans with the lowest

expected total link travel time and the lowest standard deviation of total link travel time.

These signal plans also have the lowest variability across simulation replications of the

travel time standard deviation. The proposed approach systematically outperforms the

traditional approach. It leads to aggregate improvements (total link metrics), as well as

link-level improvements.

The proposed method enables the use of highly detailed distributional information

provided by these stochastic simulators to inform the design and operations of urban

transportation networks. Such an approach can be used to efficiently address other reliable

31



and robust formulations of traditional transportation problems. Of ongoing interest is

also the development of traffic-responsive reliable traffic management strategies. We have

recently proposed a tractable traffic-responsive SO algorithm (Chen et al. 2015). Such

ideas could be combined with the ideas presented in this paper to develop traffic-responsive

reliable strategies.

As high-resolution urban mobility data (e.g., smart-phone data, vehicle trajectory

data) becomes more readily available, it opens the way for more intricate optimization

problems to be addressed (e.g., network reliability , network robustness). To enable the

use of detailed traffic models to address such problems will require proper calibration and

validation of these novel performance metrics (e.g., reliability metrics, robustness metrics).

This opens the way for a variety of novel and challenging calibration problems that aim

to fit higher-order distributional metrics. Metamodels can play an important role in this

area. For instance, as part of ongoing work we are exploring the use of the analytical

travel time expressions derived in this paper to design calibration algorithms that fit both

first- and second-order moments of the data (e.g., travel time, flows).

In this paper, we considered green splits as the decision vector. The proposed frame-

work can be used to address other types of problems with continuous decision variables.

First, any continuous variable can be included in the polynomial term of the metamodel

(ϕ in Equations (3) and (4)). In other words, the framework can be directly applied to the

optimization of any continuous simulation-based optimization problem. Second, a compu-

tationally efficient formulation can be obtained by including the decision variable both in

the polynomial term and in the physical component term (fA in Equation (3)). The latter

can be achieved by using a macroscopic model formulation that explicity depends on all

decision variables. For instance, in Equation (43) (of the Appendix Section 7), the cycle

times, c, are related to the flow capacities of the controlled lanes, µ, and to the green splits,

x. The current formulation can therefore be directly used for cycle time optimization. For

offset optimization, we would recommend the use of a time-dependent macroscopic model.

We have recently formulated a tractable and scalable time-dependent analytical network

model that has been used succesfully for dynamic simulation-based optimization (Chong

and Osorio 2017). It is being used, as part of an ongoing collaboration with a regional

transportation agency to study offset optimization problems. On the other hand, stage

structure optimization is typically formulated as a discrete optimization problem. This

requires the formulation of a (non-convex and constrained) simulation-based optimiza-

tion algorithm for mixed-integer problems. We are unaware of computationally efficient

algorithms for such problems.

Every iteration of the proposed SO algorithm, evaluates the performance of a set of

points (i.e., signal plans) with two types of traffic models: (i) a stochastic dynamic mi-

croscopic traffic model (simulation-based model), (ii) a probabilistic stationary analytical
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macroscopic traffic model. The purpose of the analytical model is to enhance the com-

putational efficiency of the algorithm. It should therefore be a highly efficient model. In

this paper, the microscopic simulator considers dynamic and endogenous traffic assigne-

ment (i.e., the assignement depends on time-varying congestion levels and on network

supply conditions such as signal plans), while the macroscopic analytical model considers

time-independent and exogenous traffic assignement. One extension of this work is to use

a macroscopic model with time-dependent and endogenous assignement. Computation-

ally efficient analytical formulations with endogenous assignement suitable for SO and for

large-scale networks have been recently proposed for both traffic management problems

(Osorio and Selvam 2017), as well as for calibration problems for the Berlin metropolitan

area (Zhang et al. 2017). The extension of such formulations for reliable SO problems is of

interest. As discussed in Section 2.1, the proposed framework can be used with any macro-

scopic model that is scalable and efficient. Ongoing work studies the use of traditional

traffic flow theoretic network models for SO.

The simulation-based traffic model accounts in detail for the between-link dependen-

cies, while the auxiliary analytical traffic model has a high-level description of these de-

pendencies. We have recently formulated an analytical technique that is both based on

traditional traffic flow theory and that accounts in more detail for the between-link in-

teractions: it derives the joint queue-length distribution of adjacent links (Flötteröd and

Osorio 2017). This can enable a more accurate approximation of the link travel time

distributions. Ongoing work formulates more tractable formulations of this novel network

model, such as to enable its use as an auxiliary traffic model for SO.
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Appendix

5 Physical components

5.1 Physical component used in Section 3.2

Recall from Section 2.3 that the analytical approximation of the objective function (Equa-

tion (5)) provided by the physical component is a function of three endogenous variables

per queue: ρi, λi and P (Ni = ki). We present below the analytical traffic model that

derives these variables. This model is based on the general queueing network model of

Osorio and Bierlaire (2009). Its formulation for an urban traffic network is given in Osorio

(2010, Chapter 4). Each lane of an urban road network is modeled as one or a set of

finite capacity queues. The model describes the between-link interactions (e.g., spillbacks)

through the queueing theory notion of blocking. It provides an analytical description of

how congestion arises and propagates through the network. In the following notation the

index i refers to a given queue.

γi external arrival rate;

λi arrival rate (also referred to as total arrival rate);

µi service rate;

µ̃i unblocking rate;

µ̂i effective service rate (accounts for both service and eventual blocking);

ρi traffic intensity;

P f
i probability of being blocked at queue i;

ki upper bound of the queue length;

Ni total number of vehicles in queue i;

P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;

pij transition probability from queue i to queue j;

Di set of downstream queues of queue i;

The queueing network model is defined through the following system of nonlinear

34



equations: 

λi = γi +

∑
j pjiλj(1− P (Nj = kj))

(1− P (Ni = ki))
(38a)

1

µ̃i
=
∑
j∈Di

λj(1− P (Nj = kj))

λi(1− P (Ni = ki))µ̂j
(38b)

1

µ̂i
=

1

µi
+ P f

i

1

µ̃i
(38c)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii (38d)

P f
i =

∑
j

pijP (Nj = kj) (38e)

ρi =
λi

µ̂i
. (38f)

The exogenous parameters are γi, µi, pij and ki. All other parameters are endoge-

nous. When used to solve a signal control problem (as in this paper), the capacity of

the signalized lanes become endogenous, which makes the corresponding service rates, µi,

endogenous.

5.2 Physical component used in Section 3.3

This model builds upon the model of Osorio and Bierlaire (2009) and of Osorio (2010,

Chapter 4) (for its detailed derivation see Osorio and Chong (2015)). It approximates

the traffic intensity of queue i, ρi, by the effective traffic intensity, ρeffi , where ρeffi =

ρi(1 − P (Ni = ki)). It considers the System of Equations (38), and replaces ρ with ρeff.

The following model is obtained.

λi = γi +

∑
j pjiλj(1− P (Nj = kj))

(1− P (Ni = ki))
(39a)

ρeffi =
λi(1− P (Ni = ki))

µi
+

∑
j∈Di

pijP (Nj = kj)

∑
j∈Di

ρeffj

 (39b)

P (Ni = ki) =
1− ρeffi

1− (ρeffi )ki+1
(ρeffi )ki . (39c)

6 SO algorithm

This SO algorithm is formulated in detail in Osorio and Bierlaire (2013) and is based on

the derivative-free trust region algorithm of Conn et al. (2009a). The parameters of the

algorithm are set according to the values in Osorio and Bierlaire (2013).

0. Initialization.

Define for a given iteration k: mk(x, y;αk, βk, q) as the metamodel (denoted hereafter
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as mk(x)), xk as the iterate, ∆k as the trust region radius, νk = (αk, βk) as the vector

of parameters of mk, nk as the total number of simulation runs carried out up to

and including iteration k, uk as the number of successive trial points rejected, εk as

the measure of stationarity (norm of the derivative of the Lagrangian function of the

trust region (TR) subproblem with regards to the endogenous variables) evaluated

at xk.

The constants η1, γ, γinc, εc, τ̄ , d̄, ū,∆max are given such that: 0 < η1 < 1, 0 < γ <

1 < γinc, εc > 0, 0 < τ̄ < 1, 0 < d̄ < ∆max, ū ∈ N∗. Set the total number of sim-

ulation runs permitted (across all points) nmax, this determines the computational

budget. Set the number of simulation replications per point r̃ (here we use r̃ = 1).

Set k = 0, n0 = 1, u0 = 0. Determine x0 and ∆0 (∆0 ∈ (0,∆max]).

Given the initial point x0, compute fA(x0) (analytical approximation of Equa-

tion (1)) and f̂(x0) (simulated estimate of Equation (1)), fit an initial model m0

(i.e., compute ν0).

1. Criticality step. If εk ≤ εc, then switch to conservative mode.

2. Step calculation. Compute a step sk that reduces the model mk and such that

xk + sk (the trial point) is in the trust region (i.e. approximately solve the TR

subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.

- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.

Include the new observation in the set of sampled points (nk = nk + r̃), and fit the

new model mk+1.

4. Model improvement. Compute τk+1 =
∥νk+1−νk∥

∥νk∥ . If τk+1 < τ̄ , then improve the

model by simulating the performance of a new point x, which is uniformly drawn

from the feasible space. Evaluate fA and f̂ at x. Include this new observation in

the set of sampled points (nk = nk + r̃). Update mk+1.

5. Trust region radius update.

∆k+1 =


min{γinc∆k,∆max} if ρk > η1

max{γ∆k, d̄} if ρk ≤ η1 and uk ≥ ū

∆k otherwise.

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.
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If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, k = k + 1.

If nk < nmax, then go to Step 1. Otherwise, stop.

7 Trust region subproblem

The considered SO problem is given by Equations (5)-(7). As described in Section 2.1,

every iteration of the SO algorithm solves a metamodel optimization problem (Step 3a of

Figure 1). The latter is also referred to as a trust-region subproblem. For a given iteration

k, the problem is formulated as follows.

x vector of green splits (i.e., decision variables);

x(j) green split of signal phase j;

xL vector of minimal green splits;

xk current iterate at iteration k;

µd service rate of lane d;

y vector of endogenous macroscopic model variables;

q vector of exdogenous macroscopic model parameters;

(αk, βk) metamodel parameters at iteration k;

∆k trust region radius at iteration k;

ai available cycle time of intersection i;

ci cycle time of intersection i;

ed fixed green time of signalized lane d;

s saturation flow rate;

PD(d) set of endogenous phase indices of lane d;

I set of intersection indices;

I (d) intersection index of lane d;

PI(i) set of phase indices of intersection i;

min
x

mk(x, y; q, αk, βk) (40)

subject to

∑
j∈PI(i)

x(j) =
ai
ci

∀i ∈ I (41)

h(x, y; q) = 0 (42)

µd −
∑

j∈PD(d)

x(j)s =
ed

cI (d)
s, ∀d ∈ D (43)
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∥x− xk∥2 ≤ ∆k (44)

y ≥ 0 (45)

x ≥ xL. (46)

The objective function is the metamodel mk(x, y; q, αk, βk, ) (defined by Equation (3)).

It is an iteration-specific approximation of the simulation-based objective function of Equa-

tion (5). Equations (41) and (46) are the signal control constraints, they correspond to

Equations (6) and (7). The function h of Equation (42) represents the analytical macro-

scopic model. It represents, respectively, the System of Equations (38) for the case study

of Section 3.2, and the System of Equations (39) for the case study of Section 3.3. Equa-

tion (43) associates the green splits of a phase with the flow capacity of the underlying

lanes (i.e., the service rate of the queues). Constraint (44) is the trust region constraint,

where ∆k is the trust region radius. The endogenous variables of the queueing model are

subject to positivity constraints (Equation (45)).
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