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1 Introduction

This paper focuses on the design of traffic signals for highly congested urban networks. It is motivated

by a case study of an intricate network within New York City, which we refer to as the Queensboro

Bridge (QBB) network. Figure 1 displays a map of central Manhattan, the QBB area of interest is

delimited by the black oval. Figure 2(a) displays a detailed map of the QBB area (left plot) and the

corresponding network model (right plot).

The design of suitable signal plans, and more generally of suitable traffic management strategies,

for this area is a major challenge due to the intricate traffic patterns, which arise for the following

reasons.

Highly congested. The network is highly congested. Morning peak period vehicular traffic, which

is the focus of this paper, is in the order of 12,000 trips per hour.

Uniformly congested. Congestion is homogenously distributed, i.e., it arises in all directions of

travel. Additionally, all cross-streets are considered important. Hence, there is no clear hier-

archy or priority between intersections or between roads.

Queensboro Bridge access. This area includes the Ed Koch Queensboro Bridge, which connects

Queens to Manhattan. This is the busiest New York City Department of Transportation (NY-

CDOT) bridge, with average weekday traffic in the order of 178,000 vehicles (NYCDOT; 2015).
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Figure 1: Central Manhattan network with area of interest delimited by an oval (MapQuest.com,

Inc; 2015).

During the morning peak hour 8-9am, which is the focus of this paper, an estimated 5770 ve-

hicles cross the bridge in the Manhattan-bound direction (NYCDOT; 2012). The Queensboro

Bridge also serves as a key transit corridor that carries 694 buses and approximately 16,000

bus passengers on a typical weekday. It is the busiest express bus route exiting Manhattan,

connecting neighborhoods in Midtown Manhattan and eastern Brooklyn and Queens (NYC-

DOT; 2011). During peak period traffic, streets adjacent to the bridge are typically congested,

and travel times along the bridge increase significantly (NYCDOT; 2010). The occurence of

congestion along access/egress links to the bridge can have significant impacts on congestion

both in Manhattan-side links and Queens-side links, and on transit service. Vehicular queues

during peak periods often require traffic enforcement agents (TEAs) to prevent spillback and

gridlock. This motivates the design of signal plans that mitigate the spatial propagation of

congestion. The importance of this bridge for both Manhattan and Queens traffic indicates

that even small local changes to traffic operations in this area can trigger significant larger-scale

impacts.

The FDR Drive access. The FDR Drive, i.e., the Franklin D. Roosevelt East River Drive, is an
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(a) (b)

Figure 2: Queensboro bridge network of interest: map (left plot) (MapQuest.com, Inc; 2015) and

model (right plot).
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important limited-access facility. It allows traffic to travel along Manhattan’s east edge. It

consists mostly of three lanes in each direction. Several of its exits and entrances are located

within the study area (i.e., northbound exit at East 61st Street to NY 25 (Queensboro bridge),

northbound entrance at East 62nd Street, southbound entrance/exit at East 63rd Street to NY

25 (Queensboro bridge)). Local streets near the FDR Drive (e.g. York Avenue at 63rd Street)

often experience heavy turn volumes and high levels of congestion during peak hour.

Heavy pedestrian traffic. The network has intricate multi-modal traffic patterns (e.g., cars, trucks,

buses, bikes and pedestrians). It has considerable pedestrian traffic. For instance, the pedes-

trian volume at the 1st Avenue intersection with 59th Street can be of the order of 500 pedes-

trians per hour during morning peak period (NYCDEP; 2006). Hence, the design of traffic

signals for vehicular traffic is constrained by non-negligeable pedestrian crossing times, and

this at every intersection.

Short links. Most links of this network are short links. Such links are prone to the occurence of

spillbacks, and more generally to a rapid spatial propagation of congestion.

Grid topology. The links are configured in a grid topology. This allows for complex traveler be-

havior, such as high-dimensional route choice alternatives. This makes the prediction of how

traffic (i.e., travelers) will respond to changes in the traffic operations a greater challenge.

The combination of the above factors makes the design of signal control strategies a challenge.

Traditional signal control strategies are difficult to tailor to the specific needs of such networks. For

instance, they are designed based on low-resolution macroscopic traffic models which do not provide

a detailed description of traveler behavior (e.g., route choice), of the underlying network supply

(e.g., prevailing traffic operations), or of their interactions. They are designed such as to improve

pre-determined objective functions (e.g., average link travel times, average number of stops), which

may not be suitable for the network of interest.

For such networks, the most critical shortcoming of existing signal control methods

is the lack of a detailed modeling or estimation of the between-link interactions, which

trigger the spatial propagation of congestion. Most signal control strategies do not account for

between-queue interactions. They are based on the use of vertical queues (also called point queues)

that do not account for the spatial propagation of the vehicular queues, hence they do not describe

phenomena such as spillbacks. They are appropriate for low to moderate levels of congestion. They

are unsuitable for highly congested networks (Papageorgiou et al.; 2003; Abu-Lebdeh and Benekohal;

2003).
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For congested networks, mitigating the spatial propagation of congestion, as well as the occurrence

of spillbacks, is recognized as a major goal (Chow and Lo; 2007; Abu-Lebdeh and Benekohal; 2003).

For instance, in the QBB network, the occurence of spillbacks can affect access/egress from the QBB,

leading to significant impacts on Manhattan-Queens traffic throughput. The work of Geroliminis

and Skabardoni (2011); Skabardonis and Geroliminis (2008) emphasize the importance of controlling

queue spillbacks (or spillovers): “when spillovers occur, the travel delay can increase by 50%-100%

for short distance links between successive intersections.”

Several signal control methods based on queue-length information have been proposed. Examples

include Abu-Lebdeh and Benekohal (2003); Diakaki et al. (2002); Michalopoulos and Stephanopou-

los (1977a,b). They are all based on the use of macroscopic traffic models. The vast majority of

the research in the field of macroscropic traffic modeling has focused on the development of link

models, and, in the context of urban traffic, on the description of the within-link propagation of

congestion. A description of the across-node (i.e., the between-link) interactions in an urban envi-

ronment is limited (Lebacque and Khoshyaran; 2005; Tampère et al.; 2011; Flötteröd and Rohde;

2011; Corthout et al.; 2012). This is arguably due to the complexity of providing an analytical, let

alone differentiable, description of node priorities. Existing approaches therefore embed a highly

simplified description of between-link interactions, and are mostly based on non-differentiable ex-

pressions, which limits their use within traditional gradient-based optimization algorithms. Detailed

and differentiable descriptions of between-link interactions are needed to account for the impact of

spillbacks.

More recently, various signal control methods that rely on real-time queue-length estimates and

are based on feedback control laws have been proposed (Gregoire et al.; 2014; Lioris et al.; 2014;

Varaiya; 2013; Wongpiromsarn et al.; 2012). These algorithms are highly scalable, yet most urban

networks currently do not have sensors deployed to provide accurate queue-length measurements

(Papageorgiou and Varaiya; 2009). The extension of these algorithms to model between-queue in-

teractions in the abscence of accurate queue-length estimates is a topic of ongoing research.

The challenges of developing analytical differentiable network models that provide a suitable

description of between-link interactions while remaining sufficiently tractable for large-scale traffic

control have led to an increased focus on the use of simulation-based models. For a review, see

Barceló (2010). In particular, high-resolution simulators, known as microscopic simulators, can

provide a detailed description of the intricate between-queue interactions. This is because these

simulators represent individual vehicles, and they embed a detailed description of the network supply

(e.g., prevailing traffic management strategies). Hence, they yield a high-resolution description of

intricate local traffic phenomena, such as spillbacks. Nonetheless, the computational inefficiency of
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these high-resolution models has mostly limited their use to what-if analysis (i.e., scenario-based

analysis), such as in Bullock et al. (2004); Ben-Akiva et al. (2003). Their use within simulation-

based optimization (SO) algorithms is limited (Osorio and Nanduri; 2015a,b; Osorio and Chong;

2015; Osorio and Selvam; 2015; Osorio and Bierlaire; 2013; Li et al.; 2010; Stevanovic et al.; 2009,

2008; Branke et al.; 2007; Yun and Park; 2006; Hale; 2005; Joshi et al.; 1995).

There is a need for SO algorithms that can identify solutions to transportation problems in a

computationally efficient manner, i.e., algorithms that can identify points with improved perfor-

mance within few simulation runs. Such algorithms would enable an efficient use of these inefficient

simulators. They are of particular importance and relevance for transportation practitioners, who

typically address the optimization problems under tight computational budgets (i.e., few simulation

runs are carried out).

In our past work, we have proposed efficient SO algorithms. In order to achieve efficiency in-

formation from the simulator has been combined with information from analytical traffic models.

The latter provide analytical and differentiable structural problem-specific information to the SO

algorithms. For various types of signal control problems, we have shown that SO algorithms that

embed analytical information from the macroscopic models outperform those that do not (Osorio

and Nanduri; 2015a; Osorio and Chong; 2015; Osorio and Nanduri; 2015b; Chen et al.; 2012; Osorio

and Bierlaire; 2013). In this paper, we study the tailor and use these SO algorithms to address signal

control problems for networks with particularly intricate traffic patterns.

This paper compares the performance of two SO methodologies that differ only in the analytical

traffic information provided to the SO algorithm. The first method uses an analytical traffic model,

which has been used in our past SO work and which provides an analytical description of the between-

link interactions. We formulate a second analytical traffic model that differs from the first only in the

description of the between-link interactions. The second model does not account for between-queue

interactions. The second SO method embeds this simplified traffic model. Both SO methods are

used to address a signal control problem for morning peak period in the QBB network. The main

contributions of this paper are the following.

SO methodologies. The main methodological question addressed in this paper is: what is the

key information provided by the macroscopic models to the SO algorithms that ensures their

computational efficiency? We show that it is necessary to provide an analytical description

of between-link interactions in order to systematically and efficiently identify well performing

signal plans.

The results of this paper therefore emphasize the need and importance of formulating analytical
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and differentiable macroscopic models that both quantify these interactions and can be used

for large-scale optimization. These results also highlight the need to develop methodologies

that can improve our understanding of the relationship between spatial network dependencies

and traffic operations.

The findings of this paper contribute to inform the design of the next-generation of SO algo-

rithms. For instance, analytical between-queue dependency can be used to improve sampling

strategies (e.g., sampling of model improvement points (Osorio and Bierlaire; 2013)) or to de-

velop more efficient statistical comparisons of point performance (e.g., ranking and selection

strategies).

Signal control. This paper contributes to the field of signal control. It provides evidence that

detailed modeling or estimation of between-link interactions is critical for the control of urban

networks with such intricate traffic patterns. Past simulation-based signal control studies have

considered small-scale networks with a couple of arterials at most, and with simple (mostly

linear) network topologies (Park and Kamarajugadda; 2009; Stevanovic et al.; 2008; Yun and

Park; 2006). This paper considers a large-scale microscopic model of a grid-topology network

with over 130 roads and over 30 signalized and non-signalized intersections. The signal control

problem controls a set of 26 adjacent intersections, this is considered a complex and large-scale

problem in the field of urban signal control.

The problem considered in this paper is a simulation-based non-convex constrained problem

with a decision vector of dimension 64. This is considered a challenging problem in the field of

SO.

State-of-practice. Current practice in the design of signal plans for this QBB area uses commercial

software to design the signal plans. The software relies on simple traffic models. The derived

signal plans are then embedded within these high-resolution simulators in order to provide a

more detailed evaluation of their performance. Hence, the simulator is only used after the

signal design process as an evaluation or validation tool. The results of this paper contribute

to the state-of-practice by enabling the agency to systematically and efficiently use their high-

resolution simulator within the signal design process. In other words, this work allows the

agency to go one step further and to systematically use the simulation model within the signal

optimization algorithm.

Manhattan case studies. In this paper, we control a set of 26 signalized intersections within an

area of Manhattan. Other signal control strategies illustrated with Manahattan case studies

7



include a simulation analysis for a nine-intersection network (Spall and Chin; 1997) and both a

simulation and an empirical analysis for a seven-intersection network (Rathi; 1988). To the best

of our knowledge, this paper considers the largest and most intricate Manhattan simulation-

based optimization problem addressed so far.

This paper is structured as follows. Section 2 presents the SO methodologies studied in this

paper. Section 3 presents the signal control problem of interest. The QBB case study is presented

in Section 4. The main conclusions are presented in Section 5.

2 Methodology

Section 2.1 gives a brief description of the types of urban traffic simulators considered in this paper.

Section 2.2 presents the general SO methodology that is used in this paper. The methodology com-

bines information from a simulation-based traffic model and an analytical traffic model. Section 2.3

presents the two analytical traffic models that are compared in this paper. Section 2.3.1 presents

the model that has been used in past SO work. Section 2.3.2 formulates a simplified traffic model,

which differs only in the description of the between-link interactions.

2.1 High-resolution traffic simulators

The high-resolution traffic models considered in this paper are stochastic microscopic urban traffic

simulators. They describe demand at the scale of individual travelers or individual vehicles. For

instance, they embed models that describe how travelers make travel decisions such as mode choice,

route choice, or how drivers behave (e.g., car-following, lane-changing). These models account for

the hetereogenity of traveler behavior. A given simulation run involves sampling a population of

travelers, each with their own set of travel decisions. For instance, in the QBB case study of this

paper, one simulation run samples approximately 12,000 travelers/vehicles distributed across a set of

55 origin-destination pairs. The en-route behavior of each traveler is then simulated by sampling from

a variety of probabilistic behavioral models (e.g., car-following, lane-changing). These simulators also

provide a detailed description of the underlying network supply (e.g., traffic management strategies).

2.2 Simulation-based optimization algorithm

We briefly describe the main ideas of the considered algorithm (Osorio and Bierlaire; 2013). The

algorithm is given in Appendix A. For algorithmic details, we refer the reader to Osorio and Bier-

laire (2013). The algorithm considers a broad family of SO problems. The problems have continuous
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decision variables. They have a simulation-based objective function, i.e., the objective function is

derived from the simulator, no closed-form analytical expression is available. The problems have gen-

eral (e.g., nonconvex) constraints. Closed-form analytical and differentiable expressions are available

for all constraints (i.e., the constraints are not simulation-based).

This family of problems can be formulated as follows.

min
x∈Ω

f(x, z; p) ≡ E[G(x, z; p)], (1)

where the purpose is to minimize the expected value of a given stochastic performance measure G,

x denotes the deterministic continuous decision vector, z denotes other endogenous variables, and p

denotes the deterministic exogenous parameters. For example, in a signal control problem, G can

represent link or network queue-lengths, x can denote signal timing variables such as green times.

The vector z can represent route choice decisions or signalized link flow capacities, while p accounts

for network topology, lane attributes (length, grade, speed limits) or other exogenous prevailing

traffic management strategies (e.g., lane-use priorities, pricing). The feasible region, Ω, consists of a

set of general, typically nonconvex, deterministic, analytical and differentiable constraints. In signal

control, these include lower bounds for green times and cycle time constraints.

High-resolution simulation models are computationally inefficient to evaluate. The simulation-

based functions (e.g., f of Equation (1)) are not known in closed-form, they can only be estimated via

simulation. In order to obtain an accurate estimate, numerous simulation replications are needed.

Given their high-resolution, the estimates of network performance are typically nonlinear, often

nonconvex, functions. Hence, Problem (1) is difficult to address. The algorithm of Osorio and

Bierlaire (2013) has enabled to address such problems in a computationally efficient manner. It has

been used to address various signal control problems (Osorio and Chong; 2015; Osorio and Nanduri;

2015a,b).

The algorithm is known as a metamodel simulation-based optimization (SO) algorithm. At iter-

ation k of the algorithm, it considers an analytical approximation of the simulation-based objective

function (f in Equation (1)), denoted mk(x;βk), it then uses this approximation to solve a subprob-

lem, which can be generally formulated as:

min
Ωk

mk(x;βk). (2)

The analytical approximation, mk, is known as a metamodel and is a function of the decision vector

x and of an iteration-specific parameter vector βk. At a given iteration k of the algorithm, a set of

simulation observations are available and are used to fit the metamodel parameter vector, βk, such

that the metamodel approximates well the underlying simulation-based objective function f . As the
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algorithm advances (i.e., as k increases), more simulation observations become available, and hence

the accuracy of the metamodel is expected to increase.

In Osorio and Bierlaire (2013) the metamodel is formulated as follows:

mk(x, y;βk, q) = βk,1fA(x, y; q) + φ(x; β̃k), (3)

where:

• φ denotes a general-purpose analytical and differentiable model. It is specified as a quadratic

polynomial in x with diagonal second-derivative matrix. The parameter vector β̃k denotes the

polynomial coefficients.

• fA(x, y; q) denotes the approximation of the simulation-based objective function f (of Equa-

tion (1)) provided by an analytical and differentiable traffic model, with endogenous traffic

model variables y (e.g., link densities) and exogenous parameters q (e.g., total travel demand).

In Equation (3), fA is multiplied by the scalar βk,1, which is the first element of the parameter

vector βk, i.e., βk = (βk,1, β̃k).

In the metamodel literature, φ is known as a functional model, while fA is known as a physical

model. The purpose of φ is to enable a general-purpose approximation of the objective function

f , and the choice of a quadratic polynomial allows to guarantee asymptotic convergence of the

algorithm. The purpose of fA is to provide a problem-specific approximation of the simulation-based

objective function f . Additionally, since this approximation is derived from a traffic model, it can

provide the algorithm with a good and global (i.e., across the entire feasible region) approximation

of the relationship between the decision vector and the objective function. The key to achieving

computational efficiency lies in the function fA. The latter allows the algorithm to identify points

with good performance even when few simulation observations are available. Since it provides an

approximation in the entire feasible region, it allows the algorithm to quickly (i.e., with few simulation

observations) identify subregions with good performance.

Since the Subproblem (2) is solved at every iteration of the SO algorithm, it is critical to be able

to solve it efficiently. In order to achieve this, the metamodel mk should be a highly tractable and

computationally efficient model. Thus, when using the SO algorithm of Osorio and Bierlaire (2013)

to address a specific optimization problem, the key to achieving computational efficiency lies in the

formulation of a computationally efficient expression for fA.

Past signal control work has shown that the above metamodel (Equation (3)) outperforms both:

(i) a metamodel that consists only of the general-purpose component (i.e., the metamodel consists

only of φ), and (ii) a metamodel that consists only of the physical component (i.e., the metamodel
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consists only of fA) (Osorio and Nanduri; 2015a; Osorio and Chong; 2015; Osorio and Nanduri; 2015b;

Chen et al.; 2012; Osorio and Bierlaire; 2013). Past studies have therefore shown the added value

of providing the SO algorithm with analytical information from a macroscopic traffic model. This

paper investigates what information provided by the macroscopic model is key for signal control. In

particular, we show that it is key to provide the algorithm with an analytical differentiable description

of between-link interactions.

2.3 Analytical traffic models

2.3.1 Analytical model with between-link interactions

The analytical traffic model used to derive fA (of Equation (3)) is based on a combination of traffic

flow theory ideas and queueing network theory ideas. Its formulation for general queueing networks

is given in Osorio and Bierlaire (2009). Its formulation for urban road networks is given in Osorio

(2010, Chap. 4). The main idea is that each lane of a road network is modeled as a finite (space)

capacity queue. The model uses the queueing theoretic notion of blocking to describe the occurence

and effects of vehicular spillbacks. Link (rather than network) models of vehicular traffic based on

queueing theory include Osorio and Flötteröd (2015); Osorio et al. (2011); Heidemann (2001); Jain

and Smith (1997); Heidemann (1996, 1994); Tanner (1962). The considered model is formulated as

follows. The index i refers to a given queue.

γi external arrival rate;

λeff
i effective arrival rate;

µi service rate;

µ̂i effective service rate;

ρi traffic intensity;

ℓi space capacity;

Ni queue-length;

P (Ni = ℓi) probability of queue i being full;

pij routing probability from queue i to queue j;

Di set of downstream queues of queue i.
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i = γi(1− P (Ni = ℓi)) +

∑
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P (Ni = ℓi) =
1− ρi

1− ρℓi+1
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ρℓii (4b)
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∑

j∈Di

λeff
j

λeff
i µ̂j



 . (4d)

Equation (4a) is a flow conservation equation that defines the (expected) flow of a given queue i

as the sum of the flow arising from outside the network (this external flow corresponds to the term γi,

which is the rate at which vehicles start trips at queue i) and of the flow arising from upstream links

(this is given by the summation term). Equation (4b) defines the probability that a queue is full.

This probability is also known as the spillback probability or the blocking probability. It represents

the probability that the underlying lane spills back. This expression is obtained by modeling the

underlying lane as an M/M/1/ℓ queue (e.g., Bocharov et al.; 2004). This probability is a function of

the lane’s space capacity ℓi and the lane’s traffic intensity ρi. The latter is defined by Equation (4c),

and can be interpreted as the ratio of expected demand to expected supply. Note that the use of

finite (space) capacity queues (i.e., assuming ℓi < ∞) allows for any non-negative value of ρi. In

particular, values larger than one are allowed. This means that highly congested scenarios where the

expected demand exceeds the expected supply can be accounted for. This is particularly important

when considering peak-period scenarios, like the one of this paper.

Equation (4d) describes the effective service rate of queue i, denoted µ̂i, this notion is similar to

an effective flow capacity term. The term effective relates to the fact that the flow capacity of a link

can be affected by downstream traffic conditions (e.g., spillback of a downstream queue). The inverse

of the effective service rate (i.e., 1/µ̂i) is known as the expected effective service time. It is defined

as the sum of: (i) the expected service time (term 1/µi), where µi is an exogenous flow capacity

estimated based on attributes of the underlying lane (e.g., maximum speed), and of (ii) the expected

blocked time. The latter represents the expected additional time a vehicle spends in queue i while

waiting for a spillback to dissipate at a downstream queue. In queueing theory, spillbacks are refered

to as blocking, hence the term expected blocked time. The expected blocked time is approximated

by the product of: (i) the probability that a downstream link spills back (summation in the first

parenthesis), and of (ii) the expected unblocking time (summation of the second partenthesis). The

expected unblocking time represents the expected time it takes for a spillback at a downstream queue
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to dissipate.

The study of Equation (4d) is the main focus of this paper. This equation yields a differentiable

description of between-link interactions. In other words, Equation (4d) describes the impact on

queue i of spillbacks from its downstream queues. It is through this equation that the above model

provides a description of the spatial propagation of congestion.

2.3.2 Analytical model without between-link interactions

In order to investigate the need for using an analytical description of between-link interactions, we

formulate a second analytical model, which differs from that of Section 2.3.1 in that it does not

account for the between-link (i.e., between-queue) interactions. It is formulated as follows.



































λeff
i = γi(1− P (Ni = ℓi)) +

∑

j

pjiλ
eff
j (5a)

P (Ni = ℓi) =
1− ρi

1− ρℓi+1
i

ρℓii (5b)

ρi =
λeff
i

(1− P (Ni = ℓi))µi
. (5c)

Equations (5a) and (5b) are identical to Equations (4a) and (4b), respectively. Equation (5c)

differs from Equation (4c) in that the expected supply is represented by µ rather than by µ̂. Recall

that µ̂ is defined as the effective service rate. It differs from µ in that is accounts for the impact

of downstream spillbacks on the links flow capacity. If for a given queue, the spillback probability

of all of its downstream queues is zero, then µ̂ equals µ. Otherwise, µ̂ < µ. In other words, the

model described by the System of Equations (5) accounts for the within-link congestion propagation

(through Equation (5b)), yet does not account for the between-link propagation.

This paper compares the performance of two SO algorithms. Both consider a metamodel of the

form Equation (3). They differ in the choice of their analytical traffic model. The first uses an

analytical traffic model that accounts for the between-link interactions (the model is defined by (4)).

The second uses an analytical traffic model that does not account for the between-link interactions

(the model is defined by (5)). All other algorithmic details are identical for both algorithms.

3 Signal control problem

Reviews of traffic signal control terminology are given in Lin (2011); Osorio (2010, Appendix A);

Papageorgiou et al. (2003). The current approach to signal control in the QBB area for peak period
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traffic is the use of fixed-time signal plans. Fixed-time signal plans are also known as time-of-day or

pre-timed plans. They are designed offline for a given time period (e.g., morning peak period) based

on model forecasts and historical traffic patterns. Unlike adaptive or traffic-responsive signal plans,

they do not vary with real-time changes in demand. Fixed-time signal plans are periodic plans with

a period or cycle time of typically 90 seconds or 120 seconds for each intersection.

The decision variables of our problem are known as the green splits of the signal phases, i.e., the

ratio of green times to cycle times of the phases. All other traditional signal plan variables (e.g.,

cycle times, offsets, stage structure) are assumed fixed. We consider a problem where the signals of

all 26 intersections are determined jointly.

In order to formulate the signal control problem, we introduce the following notation:

ci cycle time of intersection i;

di fixed cycle time of intersection i;

x(j) green split of phase j;

xL vector of minimal green splits;

I set of intersection indices;

L set of link indices;

PI(i) set of phase indices of intersection i.

The optimization problem is formulated as follows.

min
x

f(x) =
∑

l∈L

E[Nl(x, z; p)] (6)

subject to

∑

j∈PI(i)

x(j) =
ci − di

ci
, ∀i ∈ I (7)

x ≥ xL, (8)

where x is the decision vector, f(x) represents the (unknown) simulation-based objective function, Nl

is the number of vehicles on link l, z represents the vector of endogenous variables of the simulation

model (e.g., link densities, link speeds), p represents the vector of exogenous parameters of the

simulation model (e.g., origin-destination demand matrix, network topology). The objective function

is the expected total number of vehicles in the network, i.e., it is the sum over all links of the expected

number of vehicles on each link.

The constraints of this problem are traditional signal control constraints. Intersection i has a

fixed (i.e., exogenous) cycle time, denoted ci. Certain signal phases within the cycle (e.g., all-red
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phases) are considered fixed. The sum of the durations of these fixed phases is refered to as the fixed

cycle time and is denoted di. Hence, the left-hand side of Constraint (7) denotes the proportion of

the cycle time that is endogenous (i.e., the proportion that can be allocated to the endogenous signal

phases). Constraint (7) ensures that for each intersection the green times sum to the total available

cycle time. Lower bounds are used to ensure a minimal duration for all green phases (Equation (8)).

These are set to 5 seconds.

Flow capacity of the signalized lanes. For the lanes that are signal controlled, their correspond-

ing flow capacity (denoted µ in the macroscopic model formulation) is endogenous. For all other

lanes, the flow capacity is considered exogenous and is estimated via the use of national trans-

portation standards (VSS; 1999). For a given signalized lane i, its flow capacity (i.e., its service

rate) is related to its green time by:

µi −
∑

j∈PL(i)

x(j)s = eis, (9)

where x(j) is the green split (i.e., ratio of green time to cycle time) of signal phase j, s denotes

the saturation flow, ei denotes the ratio of fixed green time to cycle time of signalized queue i

and PL(i) denotes the set of endogenous signal phase indices of queue i. In this paper s is set

to 1800 vehicles per hour.

Analytical approximation of the objective function. Recall from Equation (3) that the com-

ponent fA of the metamodel is an approximation of the simulation-based objective function

(f in Equation (1)) derived by the analytical macroscopic model. The objective function con-

sidered in this paper (Equation (6)) represents the sum across links of the expected number

of vehicles per link. Since the analytical traffic model represents each lane of a link as a set

of queues. Then, fA can be rewritten as the sum across queues of the expected number of

vehicles per queue:
∑

i∈Q
E[Ni], where Q represents the set of queues. A simple closed-form

expression for fA is given by:

∑

i∈Q

E[Ni] =
∑

i∈Q

ρi

(

1

1− ρi
− (ℓi + 1)ρℓii

1− ρℓi+1
i

)

. (10)

The derivation of the expected queue-length for a given queue, E[Ni], is presented in Osorio

and Chong (2015, Appendix A).
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Microscopic (simulation-based) Macroscopic (analytical)

System (4) System (5)

SO-Spill
√ √

SO-No-Spill
√ √

Table 1: Traffic models used by the compared methods.

4 Case study

In this section we consider the QBB area mapped in the left plot of Figure 2 and the corresponding

simulation model displayed in the right plot. We address the signal control problem (6)-(8). We

compare the performance of two SO approaches. Both consider the algorithm of Osorio and Bierlaire

(2013). They differ only in the choice of the macroscopic model used as part of the metamodel. The

first approach uses the model defined by the System of Equations (4). As described in Section 2.3.1

this model accounts for the impact of downstream spillbacks (or blockings) on a lane’s flow capacity.

We refer to this approach as the SO-Spill approach. The second approach uses the model defined by

the System (5), which differs from (4) only in that it does not account for the impact of downstream

spillbacks. We refer to this approach as the SO-No-Spill approach. Table 1 summarizes which traffic

models are used by each of the two compared approaches.

4.1 QBB network

The network model (right plot of Figure 2) consists of 134 roads, 313 lanes. 27 signalized intersections

and 5 non-signalized intersections. The signal control problem determines the signals of 26 of the

27 signalized intersections. We consider the 8am-9am morning peak period. The expected demand,

represented by a static origin-destination matrix, consists of over 11,500 car trips and over 750 truck

trips. The trips are distributed across a set of 55 origin-destination pairs. The calibrated micrscopic

simulation model is developed with the Aimsun microscopic simulation software (TSS; 2013).

Prior to running the SO algorithms, the exogenous parameters of the macroscopic models (Sec-

tion 2.3) are calibrated based on microscopic model outputs. Of the 313 lanes 29 did not have any

simulated flow along them across the simulation replications run for calibration. The remaining 284

lanes are modeled by one queue each. This leads to a qeueueing network model with a total of 284

queues.

Across the 26 intersections of interest, there are a total of 64 endogenous signal phases (i.e., the

decision vector is of dimension 64), which control the flow of a total of 120 queues. Each iteration
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of the SO-Spill algorithm solves a trust region (TR) subproblem with 1604 endogenous variables,

which consist of: 64 decision variables, 5 endogenous variables for each of the 284 queues and 120

endogenous service rate variables (µ) for each of the signalized queues. The TR subproblem is

constrained by: 1136 nonlinear equality constraints (i.e., Equations (4b)-(4d) are implemented as 4

nonlinear equations for each of the 284 queues), 468 linear equality constraints (i.e., Equation (4a)

for each of the 284 queues, Equation (9) for each of the 120 signalized queues, and Equation (7) for

each decision variable), 1484 lower bound constraints (i.e., positivity constraints for the 5 queueing

model endogenous variables for each of the 284 queues, and lower bounds for each of the 64 decision

variables (Equation (8))), and 1 trust region nonlinear inequality constraint.

4.2 Comparison of SO-Spill with SO-No-Spill

This section compares the performance of the two SO algorithms: SO-Spill and SO-No-Spill. One run

of a given SO algorithm involves calling the stochastic microscopic simulator, hence the outputs of an

SO run are stochastic. Thus, in order to evaluate the performance of a given algorithm we run it 10

times with identical initial conditions. We initialize each run with the existing NYCDOT signal plan

as the inital point. For a given algorithmic run, we allow for a total of 150 simulation calls, i.e., the

simulation budget is set to 150. Each SO run yields as output a proposed signal plan. In summary,

we run each SO algorithm 10 times to obtain 10 proposed signal plans. In order to evaluate the

performance of a proposed signal plan, we run 50 simulation replications. For a given performance

metric (e.g., average queue-length, throughput) we construct a cumulative distribution function (cdf)

based on these 50 simulation observations. We then compare the distributions obtained from the

different signal plans.

Figure 3(a) displays 11 curves. Each curve considers a given signal plan. Each curve displays the

empirical cdf of the average queue-length of a given signal plan. The 10 dashed cdf’s correspond to

signal plans proposed by SO-Spill. The solid blue cdf corresponds to the existing NYCDOT signal

plan. As described above, each curve is built based on 50 independent simulation observations. The

x-axis is the average queue-length. This average is obtained as an average across all links of the

average link queue-length. This average queue-length estimate is a scaled estimate of the objective

function (Equation (6)), i.e. if we multiply the average queue-length by the total number of links

in the network, then we obtain an estimate of the objective function. The y-axis is the cumulative

probability. For example, consider a curve that passes through a given point (x, y) = (3, 0.9). It can

be interpreted as: for that signal plan 90% (i.e., a fraction of 0.9) of the observations have values

smaller than 3. In other words, out of the 50 simulation observations of the average queue-lengths,

90% of them have values smaller than 3. Thus, for a given signal plan, the more its cdf is shifted to

17



1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: average queue−length [veh]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
SO−Spill

(a)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: average queue−length [veh]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
SO−No−Spill

(b)

Figure 3: Comparison of the average queue-lengths for the signal plans proposed by SO-Spill (left

plot) and by SO-No-Spill (right plot).

the left, the higher the proportion of observations with low average queue-length observations, i.e.,

the better its performance. In Figure 3(a), 9 out of the 10 signal plans proposed by SO-Spill lead to

smaller average queue-lengths than that of the existing signal plan. One plan performs worse than

the existing plan.

Figure 3(b) also displays 11 curves: the 10 black dashed cdf curves correspond to the signal

plans proposed by SO-No-Spill, the solid blue cdf corresponds to the existing NYCDOT signal plan.

Figure 3(b) indicates that 5 out of the 10 plans proposed by SO-No-Spill have better performance

than the existing plan, the remaining 5 plans have significantly worse performance than the existing

plan. Figures 3(a) and 3(b) have the same x-axis range, and can be directly compared.

Based on NYCDOT guidance, the throughput of a given signal is also an important performance

metric. Figure 4 analyses the performance of the proposed signal plans in terms of the network

throughput. The latter is calculated as the number of finished trips by the end of the simulation pe-

riod. For each plot of Figure 4, the x-axis is the network throughput, the y-axis is the cdf. Figure 4(a)

(resp. Figure 4(b)) displays the throughput performance of the SO-Spill (resp. SO-No-Spill) signal

plans. Since a higher throughput is indicative of better performance, the more these cdf curves are

shifted to the right, the better the performance of the underlying signal plan. Figure 4(a) indicates

that 2 out of the 10 signal plans proposed by SO-Spill lead to improved throughput compared to the

existing signal plan, while the remaining 8 lead to lower throughput values. Figure 4(b) indicates

that all 10 signal plans proposed by SO-No-Spill lead to lower throughput values when compared
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Figure 4: Comparison of the network throughput for the signal plans proposed by SO-Spill (left plot)

and by SO-No-Spill (right plot).

to the existing signal plan. Figures 4(a) and 4(b) have the same x-axis range and can be directly

compared.

The results of Figures 3(a) and 3(b) are aggregated in Figure 5(a). This figure displays the cdf

of the existing NYCDOT plan (dotted blue curve). The results of all 10 signal plans proposed by

SO-Spill are aggregated into a single cdf curve (dashed black curve). Those of SO-No-Spill are also

aggregated into a single cdf curve (solid back curve). This figure illustrates that there is significant

variability in the performance of the plans proposed by the SO-No-Spill algorithm. The signal plans

proposed by SO-Spill lead to improved performance compared to the existing plan. Additionally,

compared to the plans of SO-No-Spill, the SO-Spill plans have lower variability in performance.

We perform the same aggregate analysis for the network throughput. The results of Figures 4(a)

and Figure 4(b) are aggregated in Figure 5(b). The variability of performance across signal plans is

higher for the SO-No-Spill approach than for the SO-Spill approach. Nonetheless, for the throughput

both approaches overall lead to signal plans with lower throughput values than the existing signal

plan.

Based on criteria provided by NYCDOT, a proposed signal plan should improve the spatial

propagation of congestion, yet should not deteriorate the network throughput. Hence, for a given

SO algorithm, the “best” signal plan is selected by considering the plan with the lowest average

queue-length that does not have worse network throughput than the existing NYCDOT plan. Based

on this criteria none of the signal plans proposed by SO-No-Spill are suitable, since they all lead
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Figure 5: Aggregate comparison of the performance of the plans proposed by SO-Spill and SO-No-

Spill: average queue-length (left plot) and network throughput (right plot).

to a deterioration of the network throughput. For the SO-No-Spill algorithm, we choose as “best”

plan that with the lowest average queue-length, which happens to also be that with the highest

average network throughput. For the selection of the “best” SO-Spill plan, we statistically test for

throughput deterioration via paired t-tests. The tests assume a null hypothesis that states that the

expected network throughput of the proposed signal plan equals that of the existing signal plan,

and an alternative hypothesis that states that expected network throughput of the proposed plan is

greater than that of the existing plan. Their significance level is set to 0.025.

A comparison of the performance of the “best” plans is displayed in Figure 6. Each plot of Figure 6

considers a specific performance measure. Figures 6(a)-6(d) consider, respectively, average link

queue-length, network throughput, average trip travel time, and average lane spillback probability.

The latter is calculated as the average across all lanes of the estimated lane spillback probability.

For a given lane, its spillback probability is estimated as the proportion of time the lane is full. This

proportion is derived from queue-length measurements obtained every 3 seconds. As discussed in

Section 1, the spillback probability is an important performance metric for the QBB network. More

generally, it is a suitable metric to quantify the spatial propagation of congestion.

Figure 6(a) indicates that the plans derived by both SO-Spill and SO-No-Spill lead to improved

performance in terms of average queue-length compared to the existing plan. The SO-No-Spill plan

outperforms the SO-Spill plan. In terms of network throughput, Figure 6(b) indicates that the SO-

Spill plan outperforms the existing plan and the SO-No-Spill plan. The latter has worse performance
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Figure 6: Comparison of the performance of the “best” plan proposed by SO-Spill and by SO-No-

Spill.
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than the existing plan. Figure 6(c) compares the performance in terms of average trip travel time. It

indicates that the SO-Spill plan outperforms the existing and the SO-No-Spill plans. The latter has

similar performance than the existing plan. In terms of average (across queues or lanes) spillback

probabilities both SO plans have similar performance and outperform the existing plan. The SO-Spill

plan has less variability than the SO-No-Spill plan.

The results of this section show that the SO-Spill algorithm outperforms the SO-

No-Spill algorithm. This indicates that there is a significant added value in providing

the SO algorithm with an analytical description of the between-link interactions.

4.3 Spatial propagation of congestion

In this section, we analyse the impact of the SO-Spill plan on the spatial propagation of congestion.

We carry out a more detailed comparison of the performance of the “best” SO-Spill plan and the

existing plan. Figure 7(a) compares their performance across links. For a given signal plan (existing

or SO-Spill), we estimate the average link travel time. This average is estimated as an average over

both the entire simulation period (8am-9am) and over the 50 simulation replications. The links of

Figure 7(a) are colored according to the ratio of average link travel time of the SO-Spill plan and

the existing plan. Links are colored as followed: a decrease of average travel time (of the SO-Spill

plan compared to the existing plan) of more than 20% corresponds to light green, a decrease within

0 and 20% corresponds to dark green, an increase between 0 and 20% corresponds to orange and

an increase of more than 20% corresponds to red. Figure 7(a) shows that under the SO-Spill plan

almost all links have an improvement in average link travel time of more than 20% compared to the

existing signal plan.

Figure 7(b) is constructed just as Figure 7(a) but considers the average link queue-length. The

majority of the links, and in particular almost all cross-streets, have significantly reduced queue-

lengths. The SO-Spill plan leads to an improvement in average queue-lengths at the network level

(the objective function) (as shown in Figure 6(a)) as well as an improvement at the link-level (as

shown in Figure 7(b)). Hence, the SO-Spill plan achieves the initial goal of mitigating the spatial

propoagation of congestion.

Let us now compare the signal plans in terms of the occurence of lane spillbacks. Both plots of

Figure 8 compare for each lane the estimate of the spillback probability obtained under the existing

signal plan (x-axis) and that obtained under the SO-Spill plan (y-axis). Figure 8(a) displays the

estimates for all lanes of the network. The points that are under the diagonal (bottom right part of

the plot), represent lanes with a reduced spillback probability under the SO-Spill plan. The spillback

probability is reduced for 102 out of 284 lanes, it is increased for 30 lanes and remains equal for 152
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(a) Ratio of average link travel time

(b) Ratio of average link queue-length

Figure 7: Comparison of the spatial performance of the SO-Spill plan and the existing plan: ratio of

average link travel times (left) and ratio of average link queue-lengths (right).
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Figure 8: Comparison of the lane spillback probabilities of the SO-Spill plan and of the existing plan.

lanes. The average difference of the spillback probability between the existing plan and the SO-Spill

plan is 0.029, i.e., on average the SO-Spill plan leads to a 2.9% reduction in spillback occurence.

Notice also that there are many lanes where the occurence of spillbacks is strictly positive under the

existing plan yet is zero under the SO-Spill plan. This is the case for 10% of the lanes (29 out of the

284). This illustrates, once again, that the spatial propagation of congestion is mitigated under the

SO-Spill plan. The design of such plans capable of mitigating the occurence of spillbacks is of great

value for highly congested networks. Many points of Figure 8(a) are in the region [0, 0.05]× [0, 0.05].

This region is displayed in more detail in Figure 8(b). The latter figure again indicates that for many

lanes the spillback probability is set to zero under the SO-Spill plan.

Figure 9(a) compares for each lane the average queue-length under the existing plan (x-axis)

and the SO-Spill plan (y-axis). Each point represents a lane. A more detailed plot of the range

[0, 5] × [0, 5] is displayed in Figure 9(b). These figures indicate that overall the SO-Spill plan leads

to a reduction at the lane-level of average queue-lengths. There is a reduction in 189 out of the 284

lanes. There is an increase for 88 lanes and no difference for 7 lanes. Figure 9(c) presents the cdf

of the difference in average queue-lengths between the existing plan and the SO-Spill plan. For 24

of the 284 lanes, the difference is greater than 3 vehicles. For 9 it is greater than 5 vehicles. The

largest difference is of the order of 12 vehicles, and is observed for 2 lanes.

At the network level, the SO-Spill plan leads to improvements of 26.8% in the average queue-

length (2.69 versus 3.67 vehicles per link), 1.5% in the average network throughput (11576 versus

11405 vehicles), 24.2% in the average spillback probability (0.085 versus 0.112) and 13.3% in the
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Figure 9: Comparison of the lane average queue-lengths of the SO-Spill plan and of the existing plan.
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average trip travel time (4.1 versus 4.73 minutes).

The results of this section show that the plan proposed by the SO-Spill algorithm

lead to significant improvements in performance compared to the existing plan, both at

the network level and at the link level. The SO-Spill plan achieves the goal of limiting

the spatial propagation of congestion within the complex QBB network.

5 Conclusions

This paper considers two SO algorithms that differ in the analytical information they provide to the

algorithm. One provides analytical between-queue information, the other does not. The paper studies

a signal control problem for a Manhattan network. The results show that for highly congested urban

networks with intricate traffic patterns there is a significant added value in providing the algorithms

with analytical between-queue information.

The development of analytical and differentiable traffic models that describe between-queue inter-

actions is of interest to address a variety of network design and operations problems. Such informa-

tion can be used at various steps of traditional SO algorithms (e.g., to define sampling distributions).

Traditional analytical network models have focused on a detailed description of within-link vehicular

interactions, there is limited analytical differentiable work that accounts for between-link interactions.

Recent analytical work that addresses this challenge uses between-queue interaction information to

approximate full path or full network distributions of the main performance measures (Osorio and

Yamani; 2015; Flötteröd and Osorio; 2014; Osorio and Wang; 2012). In particular, to develop mod-

els that are suitable for large-scale network optimization, the work of Osorio and Yamani (2015);

Osorio and Wang (2012) illustrate how link boundary conditions can be described aggregately, i.e.,

without the need of a detailed description of the within-link state. The complexity of such models

is linear, rather than exponential, in the number of links in the network and is independent of the

space capacity of the links. This makes them suitable for large-scale network optimization. The

use of such detailed models to perform large-scale SO is a topic of ongoing research. The results

of this fixed-time QBB analysis have also led to the extension of the SO-Spill algorithm to address

traffic-responsive signal control problems (Chen et al.; 2015).
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A SO algorithm

This SO algorithm is formulated in detail in Osorio and Bierlaire (2013) is based on the derivative-

free trust region algorithm of Conn et al. (2009). The notation used is that of Osorio and Bierlaire

(2013). The parameters of the algorithm are set according to the values in Osorio and Bierlaire

(2013).

0. Initialization.

Define for a given iteration k: mk(x, y;αk, βk, q) as the metamodel (denoted hereafter asmk(x)),

xk as the iterate, ∆k as the trust region radius, νk = (αk, βk) as the vector of parameters of

mk, nk as the total number of simulation runs carried out up until and including iteration k,

uk as the number of successive trial points rejected, εk as the measure of stationarity (norm of

the derivative of the Lagrangian function of the trust region (TR) subproblem with regards to

the endogenous variables) evaluated at xk.

The constants η1, γ, γinc, εc, τ̄ , d̄, ū,∆max are given such that: 0 < η1 < 1, 0 < γ < 1 <

γinc, εc > 0, 0 < τ̄ < 1, 0 < d̄ < ∆max, ū ∈ N
∗. Set the total number of simulation runs

permitted (across all points) nmax, this determines the computational budget. Set the number

of simulation replications per point r̃ (here we use r̃ = 1).

Set k = 0, n0 = 1, u0 = 0. Determine x0 and ∆0 (∆0 ∈ (0,∆max]).

Given the initial point x0, compute fA(x0) (analytical approximation of Equation (6)) and

f̂(x0) (simulated estimate of Equation (6)), fit an initial model m0 (i.e., compute ν0).

1. Criticality step. If εk ≤ εc, then switch to conservative mode.

2. Step calculation. Compute a step sk that reduces the model mk and such that xk + sk (the

trial point) is in the trust region (i.e. approximately solve the TR subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.
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- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.

Include the new observation in the set of sampled points (nk = nk + r̃), and fit the new model

mk+1.

4. Model improvement. Compute τk+1 =
‖νk+1−νk‖

‖νk‖
. If τk+1 < τ̄ , then improve the model

by simulating the performance of a new point x, which is uniformly drawn from the feasible

space. Evaluate fA and f̂ at x. Include this new observation in the set of sampled points

(nk = nk + r̃). Update mk+1.

5. Trust region radius update.

∆k+1 =















min{γinc∆k,∆max} if ρk > η1

max{γ∆k, d̄} if ρk ≤ η1 and uk ≥ ū

∆k otherwise.

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.

If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, k = k + 1.

If nk < nmax, then go to Step 1. Otherwise, stop.
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