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This work adds realistic dependency structure to a previously developed analytical stochastic network load-
ing model. The model is a stochastic formulation of the link-transmission model, which is an operational

instance of Newell’s simplified theory of kinematic waves. Stochasticity is captured in the source terms, the
flows, and, consequently, in the cumulative flows. The previous approach captured dependency between the
upstream and downstream boundary conditions within a link (i.e., the respective cumulative flows) only in
terms of time-dependent expectations without capturing higher-order dependency. The model proposed in this
paper adds an approximation of full distributional stochastic dependency to the link model. The model is
validated versus stochastic microsimulation in both stationary and transient regimes. The experiments reveal
that the proposed model provides a very accurate approximation of the stochastic dependency between the
link’s upstream and downstream boundary conditions. The model also yields detailed and accurate link state
probability distributions.
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1. Introduction
A network loading model describes how a time-
dependent travel demand advances through a net-
work. The demand is typically given in terms of
time-dependent origin/destination (OD) flows and a
route choice model. Given these inputs, the network
loading model then captures the progression of the
demand through the network, accounting for conges-
tion and the resulting delays.

A stochastic network loading model does essentially
the same, but it additionally accounts for uncertainty
in the modeling (e.g., of source terms, flows, network
parameters) and captures distributional information
of the network states. This paper focuses on analytical
stochastic (i.e., probabilistic) dynamic network load-
ing models. The main technical limitation in devel-
oping such models is the dimensionality of the joint
distribution, which is exponential in the number of
spatial discretization units. Thus, the challenge is to
approximate the dependency structure while deriving
a computationally efficient approach.

In the following, we focus on the widely accepted
kinematic wave model (KWM; see Lighthill and
Witham 1955; Richards 1956). Both the KWM’s origi-
nal link model and its more recently developed node

models (e.g., Daganzo 1995; Lebacque 1996; Lebacque
and Khoshyaran 2005; Tampere et al. 2011; Flötteröd
and Rohde 2011; Corthout et al. 2012) are determin-
istic. They describe space/time average conditions
but do not account for higher-order distributional
information.

There has been a recent interest in the development
of stochastic link models. Most studies have con-
sidered stochastic cell-transmission models (CTMs;
see Boel and Mihaylova 2006; Sumalee et al. 2011;
Jabari and Liu 2012). Boel and Mihaylova (2006) con-
sider the sending and receiving functions of the CTM
as random variables. The evaluation of the model
involves computationally intensive sampling to esti-
mate the main link performance measures. Jabari and
Liu (2012) consider headways to be random vari-
ables. The fluid limit of their stochastic model is
consistent with the CTM. This is also a simulation-
based approach, where performance measure esti-
mates are obtained via sampling. The stochastic CTM
of Sumalee et al. (2011) allows for stochasticity in the
sending and receiving functions and in the source
terms. This model is analytical (i.e., not simulation
based). The stochasticity results from adding noise in
the form of a second-order wide-sense stationary pro-
cess to otherwise deterministic model variables. Jabari
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and Liu (2012) detail the limitations of using such
types of noise terms.

Let us also briefly comment on the kinetic approach
to stochastic traffic flow modeling. Here, one starts out
from a probabilistic description of individual vehicle
interactions, which is typically solved by extracting
dynamic equations for the first moments (in particular,
mean values and variances) of aggregate traffic charac-
teristics (e.g., Tampere, van Arem, and Hoogendoorn
2003). To derive operational formulations, the assump-
tion of “vehicular chaos” is typically made, meaning
that the states of interacting vehicles are stochasti-
cally independent. Nelson and Kumar (2006) elaborate
on the implications of omitting such dependencies. It
appears that the complexity of kinetic models with
realistic stochastic dependency structures has so far
precluded their implementation in nontrivial network
contexts (Helbing 2001).

Osorio, Flötteröd, and Bierlaire (2011) recently pro-
posed a stochastic formulation of the link-transmission
model of Yperman, Tampere, and Immers (2007),
which is an operational instance of Newell’s (1993)
simplified theory of kinematic waves. Newell’s model
can, in turn, be derived from the variational theory
of Daganzo (2005). The queueing-theoretical model
of Osorio, Flötteröd, and Bierlaire accommodates
stochastic source terms and flows across nodes. It is a
(vehicle)-discretized, stochastic instance of the KWM,
whereas the aforementioned stochastic CTMs consti-
tute stochastic instances of (space)-discretized KWMs.
That is, only the model of Osorio, Flötteröd, and Bier-
laire is directly derived from the KWM.

The present paper adds important dependency
structure to this model, hereafter referred to as the
basic model. The basic model exhibits the following
additional features.

1. It is analytical. It captures the evolution of link
state distributions through differentiable equations.
Thus, the approach does not require computation-
ally costly sampling to obtain distributional estimates.
This approach allows for obtaining valuable insights
into stochastic network dynamics. It also provides a
differentiable description of these dynamics, which
can be exploited when applying efficient optimization
or calibration routines, e.g., for the design of signal
control strategies (Osorio and Bierlaire 2013) or the
estimation of OD matrices (Flötteröd, Bierlaire, and
Nagel 2011).

2. The basic model represents the flow transmis-
sions across a network node (connection of upstream
and downstream links) in terms of a multivariate
Poisson process. The node model yields a joint dis-
tribution of the downstream boundary conditions of
the node’s upstream link and the upstream boundary
conditions of the node’s downstream link.

3. The basic model represents a homogeneous link
segment by two finite-capacity queues that constitute
stochastic counterparts of the cumulative curves used
in Newell’s (1993) simplified KWM, and it coincides
with a discretized version of Newell’s model when
the randomness in all involved processes vanishes.
That is, the basic link model is derived from the KWM
(Newell 1993; Yperman, Tampere, and Immers 2007).

4. The basic model captures the dependency be-
tween a single link’s upstream boundary conditions
and the same link’s downstream boundary condi-
tions merely in terms of time-dependent expectations,
but it ignores higher-order dependencies. This implies
that dependency between upstream and downstream
boundary conditions in a single link is not captured
beyond what a deterministic model could describe.

Item 4 constitutes the main simplification in the
basic model, which this paper overcomes. The pre-
sentation therefore focuses on the joint modeling of
boundary conditions within a link. Details on how
across-node correlations (i.e., correlations with links
further up- or downstream) are captured appear in
Osorio, Flötteröd, and Bierlaire (2011). It should be
noted that none of the aforementioned stochastic
CTMs provides analytical expressions for the joint
distribution of multiple cells: Boel and Mihaylova
(2006) and Jabari and Liu (2012) resort to simulation;
Sumalee et al. (2011) model the states of adjacent cell
pairs as independent random variables.

The remainder of this paper is organized as follows:
§2 recalls the basic link model. Section 3 describes
how realistic dependency structure is added, leading
to the proposed new model. Comprehensive exper-
iments are described in §4, where the distributional
information extracted from the analytical model is
compared with distributional estimates obtained via
simulation. Finally, §5 concludes and gives an outlook
on further research questions.

2. Basic Link Model
We briefly recall the original link model of Osorio,
Flötteröd, and Bierlaire (2011). The presentation given
here follows a different path than the original work
in that it first recalls an operational formulation
(Yperman, Tampere, and Immers 2007) of Newell’s
(1993) simplified KWM and then formulates the
stochastic model as a distributed version of Newell’s
model.

Yperman, Tampere, and Immers (2007) phrase this
model within the sending/receiving function frame-
work of Daganzo (1994) and Lebacque (1996). This
framework postulates that, at any interface within
the network, the instantaneously transmitted flow
is the minimum of an upstream sending function
and a downstream receiving function, reflecting the
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Figure 1 Deterministic Fundamental Diagram Resulting from
Original Two-Queue System

KWM’s principle of local flow maximization (Ansorge
1990). The embedding of a link in a network model
hence requires a link model that defines, at every
time instant t, a receiving function R4t5 (respectively,
a sending function S4t5) that reflects the boundary
conditions the link provides to its upstream node
(respectively, downstream node).

Assuming a triangular fundamental diagram as
shown in Figure 1, having free flow velocity v, back-
ward wave speed w (negative), flow capacity q̂, and
jam density �̂, Yperman, Tampere, and Immers (2007)
present the following equations for a discrete-time
simulation of the KWM (detailed derivations can be
found in Yperman 2007):

R4t5 = min
{

N

(

L1t+�−
L

�w�

)

+�̂L−N401t51q̂�
}

(1)

S4t5 = min
{

N

(

01t+�−
L

v

)

−N4L1t51q̂�

}

1 (2)

where R4t5 is the amount of flow the link can receive
at time instant t during the next time interval of
length �, S4t5 is the respective sending flow, and
N4x1 t5 is the cumulative flow having passed loca-
tion x at time t, with x ∈ 601L7 in the link of length L.
The Courant-Friedrichs-Lewy condition requires � ≤

L/v to hold. See, for instance, Yperman (2007) for
a detailed discussion of the possible wave configu-
rations given a triangular fundamental diagram and
Nagel and Nelson (2005) for a discussion of its empir-
ical validity.

Defining the two quantities

UQ4t5=N401 t5−N4L1 t + �−L/�w�5 (3)

and

DQ4t5=N401 t + �−L/v5−N4L1 t5 (4)

allows us to rewrite (1) and (2) as follows:

R4t5 = min8�̂L− UQ4t51 q̂�9 (5)

S4t5 = min8DQ4t51 q̂�90 (6)

Formally, UQ4t5 and DQ4t5 are just summary rep-
resentations of differences in cumulative flows. How-
ever, they also allow for a tangible interpretation of

these otherwise rather abstract cumulative flow dif-
ferences. For this, UQ4t5 is interpreted as the number
of vehicles in a finite-capacity upstream queue (UQ)
that keeps track of the upstream boundary conditions
within the link, and DQ4t5 is interpreted as the num-
ber of vehicles in a finite-capacity downstream queue
(DQ) that keeps track of the downstream boundary
conditions within the link.

Allow both queues to hold at most �̂L vehicles.
The receiving function in (5) is hence limited by the
available space in UQ, which is �̂L − UQ4t5. This
means that the link behaves as if UQ was embed-
ded within its upstream end and as if vehicles trying
to enter the link actually tried to enter UQ. Further,
the sending function in (6) is limited by the number
of vehicles in DQ, which is DQ4t5. This means that
the link behaves as if DQ was embedded within its
downstream end and as if vehicles leaving the link
actually left DQ. (Charypar (2008) describes essen-
tially the same approach in a microsimulation frame-
work but without any analytical considerations.)

This interpretation carries further. Equations (3)
and (4) can be recursively written as

UQ4t5 = UQ4t−�5+�6qin4t−�5−qout4t−L/�w�57 (7)

DQ4t5 = DQ4t−�5+�6qin4t−L/v5−qout4t−�571 (8)

where qin4t5 is the link’s instantaneous inflow rate at
time t, qout4t5 is the instantaneous outflow rate, and
both quantities are held constant throughout a time
step of duration �, consistent with the underlying
framework of Yperman, Tampere, and Immers (2007).
Equation (7) indicates that the change in UQ during
6t − �1 t7 is given by the difference between

(i) the flow that entered the link during that time,
and

(ii) the flow that left the link during 6t − L/�w�1
t −L/�w� + �7.

Similarly, Equation (8) indicates that the change
in DQ during 6t − �1 t7 is given by the difference
between

(i) the flow that entered the link during 6t − L/v1
t −L/v+ �7, and

(ii) the flow that left the link during that time.
That is, UQ and DQ evolve through time as if the

link in- and outflows actually entered the respective
queues. It needs to be reiterated, though, that UQ and
DQ are merely intuitive representations of the bound-
ary conditions provided by the link to its up- and
downstream nodes.

Figure 2 shows the fictitious embedding of UQ and
DQ within the link. The lower path (solid arrows)
represents the actual mass transfer: flow enters the
link, is delayed by L/v time units (corresponding to
the free-flow travel time), and then becomes avail-
able for departure in DQ. The upper path (dashed
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qin(t) qout(t)

Downstream queue (DQ)

Upstream queue (UQ)

← Tail of link

Head of link →

Lag of L /v time units

Lag of L / | w | time units

Figure 2 Original Two-Queue System

arrows) captures how vehicle departures eventually
enable new vehicle entries, in that flows that have
departed from DQ are delayed by L/�w� time units
(corresponding to the time it takes a kinematic back-
ward wave to traverse the link) before they are
removed from UQ.

The stochastic link model results from a stochastic
modeling of UQ and DQ, relying on finite-capacity
queueing theory, where the evolution of the distri-
bution of the number of vehicles in either queue is
tracked through time. The dynamics of these queues
are guided by time-dependent arrival and service rates
as well as the probabilities of the queues being per-
fectly empty (i.e., being unable to send more flow) or
perfectly full (i.e., being unable to receive more flow).
Since UQ and DQ represent differences in cumulative
flows, this approach corresponds to Newell’s (1993)
model with stochastic cumulative curves.

Assume a time-dependent Poisson arrival process
with intensity �4t5 (i.e., a nonhomogeneous Poisson
process) at the upstream end of the considered link,
where �4t5 ≤ q̂ to capture the second constraint in
Equation (1). That is, interarrival times of vehicles to
the link are exponentially distributed. This captures
uncertainty in the source term (or, in a network con-
text, in the demand from upstream). The probability
that an arrival at time t encounters an available space
in UQ is P4UQ4t5 < `5, where ` is the link’s space
capacity (corresponding to a rounded version of �̂L).
Allowing for losses (which would translate into spill-
back in the full-node model not considered here), the
effective inflow becomes qin4t5= �4t5P4UQ4t5 < `5.

Furthermore, assume exponentially distributed ser-
vice times at the downstream end of the link with
rate �4t5 ≤ q̂ to capture the second constraint in
Equation (2), where �4t5 can be interpreted as a
downstream capacity constraint (which in a network
embedding would capture, among other things, spill-
back from downstream). Distributed service times
may capture a distribution of headways across vehi-
cles or stochastic flow interactions in the downstream
node, the latter being possibly due to a gap accep-
tance distribution. The probability that there are vehi-
cles ready to leave the link is given by the probability

that there are vehicles in DQ. Thus, the outflow of the
link is given by qout4t5=�4t5P4DQ4t5 > 05.

The basic model captures uncertainties in upstream
demand patterns and downstream supply conditions.
Specifically, this model assumes arrivals to arise from
a Poisson process. Two common criticisms of this
assumption are mitigated by features of the present
model, which are absent in other Markovian-type
road traffic models. As discussed in Osorio, Flötteröd,
and Bierlaire (2011), the dynamics allow the capture of
temporal dependency effects (e.g., platooning) deter-
ministically through the joint dynamics of the time-
dependent rates of all involved Poisson processes.
The finite-capacity assumption of this model ensures
that unrealistically high flows do not arise. Such
flows could arise in an infinite-capacity queue set-
ting because of the Poisson distribution’s fat right tail.
Ultimately, these assumptions will require empirical
justification.

This link model is a simplification in the sense that
UQ and DQ are modeled independently. To clarify
this, let the lagged inflow LI4t5 at time t be the stochas-
tic amount of flow that has entered the link between
t−L/v and t. In Figure 2, this corresponds to the flow
on the lower left path, which has already entered the
link but has not yet entered DQ. Further, let the lagged
outflow LO4t5 at time t be the stochastic amount of
flow that has left the link between t −L/�w� and t. In
Figure 2, this corresponds to the flow on the top right
path, which has already left the link but has not yet
left UQ. Mass conservation then requires

LI4t5+ DQ4t5= UQ4t5− LO4t5 (9)

to hold. Both sides denote the number of vehicles
on the link at time t, such that a substantial depen-
dency between the distribution of UQ and DQ can be
expected.

The remainder of this paper develops and ana-
lyzes an improved link model formulation that almost
perfectly captures this dependency while maintaining
consistency with the network modeling framework of
Osorio, Flötteröd, and Bierlaire (2011).
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3. New Link Model
The main difficulty when trying to capture a joint dis-
tribution of UQ and DQ is the fact that these evolve in
reaction to the same inflows and outflows, but evalu-
ate these flows with different time lags.

We assume a discrete model where k is the time
index, kfwd is a rounded version of L/v, kbwd is a
rounded version of L/�w�, and ` is a rounded version
of �̂L. A joint distribution of all time-lagged model
variables would result in an exponential state space
increase as the involved time lags get larger.

The proposed solution to this problem is to add
only two additional dimensions to the (UQ, DQ) state
space, which are called the lagged inflow queue (LI)
and the lagged outflow queue (LO). The LI queue cap-
tures, at an aggregate level, the distribution of all
link entries that have not yet reached DQ; cf. Equa-
tion (8). Symmetrically, the LO queue captures, at an
aggregate level, the distribution of all link exits that
have not yet been removed from UQ; cf. Equation (7).
Modeling a joint evolution of a four-dimensional state
space (UQ, LI, DQ, LO) is expected to capture rele-
vant aspects of the dependency between UQ and DQ.

Figure 3 gives an overview. In discrete time, the lags
of inflows and outflows correspond to moving them
through a sequence of kfwd (respectively, kbwd) buffers.
LI (respectively, LO) contains the sum of the lagged

Downstream queue (DQ)

qout(k)qin(k)

Upstream queue (UQ)

Lag of L /v time units

Lag of L / | w | time units

Lagged inflows

1 2 kfwd

ı

Lagged outflows

kbwd … …

… …

2 1

Lagged inflow queue (LI)

Lagged outflow queue (LO)

Figure 3 Lagged Inflow/Outflow Buffers, Aggregated into a Four-Queue System

inflows (respectively, outflows) in the corresponding
buffers. That is, each dotted box contains three alter-
native ways of representing a lag: the original lag in
continuous time, the discrete-time representation as a
series of buffers, and the aggregation into one single
queue.

Let UQ4t3 k5 denote the number of vehicles in UQ at
continuous time t within time interval k of duration �.
Similarly, we define LI4t3 k5, DQ4t3 k5, and LO4t3 k5.
At a given point in time, we have

UQ4t3 k5= DQ4t3 k5+ LI4t3 k5+ LO4t3 k50 (10)

Let us emphasize the purpose of each of these
queues. DQ represents the number of vehicles that
could possibly leave the link. LI represents the num-
ber of vehicles that have entered the link but are not
yet available for departure because of the finite link
traversal time. LO represents the number of “spaces”
that correspond to departures from the link that,
because of the finite backward wave speed, have not
yet propagated to the link’s upstream end. Thus, UQ
in (10) represents all vehicles on the link plus those
vehicles that have recently left the link but whose
available space has yet to become available for use
upstream.

We only model the joint evolution of the three inde-
pendent queues (LI, DQ, LO), noting that the state of
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the fourth queue can be deduced from (10). The state
space of a link consists of all feasible values of this
triplet of random variables. It is defined as

84li1 dq1 lo5 ∈�31 li+ dq + lo ≤ `90 (11)

Let p4t3 k5 denote the joint transient probability dis-
tribution of (LI, DQ, LO) at continuous time t within
time interval k of duration �. The evolution of this
distribution is given in continuous time t from 0 to
� by the following linear system of differential equa-
tions (see, for instance, Reibman 1991):

dp4t3 k5

dt
= p4t3 k5Q4k5 ∀ t ∈ 601�71 (12)

where p4t3 k5 is a probability vector and Q4k5 is a
square matrix, known as the transition rate matrix,
which is described below. Initial conditions ensure
continuity at the beginning of the time interval:

p403k5= p4�3k− 150 (13)

The general solution to Equations (12) and (13) is
given by

p4t3 k5= p403k5eQ4k5t
∀ t ∈ 601�70 (14)

Equation (14) is a discrete-time differentiable expres-
sion, which guides the transition of the queue distri-
butions from one time step to the next. It holds under
the assumption of constant link boundary conditions
during a time step; i.e., Q4k5 is constant during time
interval k. This assumption was already introduced in
the framework of §2.

For a given system of queues, Q4k5 is a func-
tion of the arrival rates and service rates of each of
the queues. This matrix contains the transition rates
between all pairs of states. The nondiagonal elements,
Q4k5sj for s 6= j , represent the rate at which the transi-
tion from state s to state j takes place. The diagonal
elements are defined as Q4k5ss = −

∑

j 6=s Q4k5sj . Thus,
−Q4k5ss represents the rate of departure from state s.

The nondiagonal and nonnull elements of the tran-
sition rate matrix are given in Table 1. Assume an
initial state of 4LI1DQ1LO5 equal to 4li1 dq1 lo5. The
first row of the table describes arrivals to the link.
They occur with rate �4k5 and may enter the link as
long as li + dq + lo < `; i.e., they may enter as long
as UQ is less than the space capacity `. Flow from

Table 1 Transition Rates Between Queues LI, DQ, and LO

Initial state s New state j Rate Q4s1 j3 k5 Condition

4li1dq1 lo5 4li + 11dq1 lo5 �4k5 li + dq + lo < `

4li1dq1 lo5 4li − 11dq + 11 lo5 �LI4li3 k5 li > 0
4li1dq1 lo5 4li1dq − 11 lo + 15 �DQ4k5 dq > 0
4li1dq1 lo5 4li1dq1 lo − 15 �LO4lo3 k5 lo > 0

LI to DQ (second row of the table) is transmitted
with rate �LI4li3 k5, and this can occur as long as LI is
nonempty (li > 0). The third row describes departures
from the link. They occur at rate �DQ4k5 as long as DQ
is nonempty. The last row describes departures from
LO, which occur at rate �LO4lo3 k5.

The link dynamics are described via the queueing
parameters �4k5,

8�LI4li3 k59li=110001`1 �DQ4k51 and 8�LO4lo3 k59lo=110001`1

which are derived in the following:
• �4k5 is exogenous to the single-link model con-

sidered here.
• �DQ4k5 defines the rate at which flow may leave

the link. It also is considered exogenous in this paper.
• �LI4li3 k5 is the rate at which the LI queue dis-

charges into DQ, given that LI contains li vehicles.
At the beginning of time interval k, queue LI con-

tains all arrivals to the link at time intervals k− kfwd1
k− kfwd + 11 0 0 0 1 k− 1. It represents a sequence of kfwd

buffer cells, where cell j contains the entries to the
link during time interval k − j . The number of vehi-
cles in LI is the sum of the vehicles in these kfwd cells.
The vehicles that can leave LI during time interval k
are those that are in LI’s last (i.e., most downstream)
cell, which is denoted by LLI. That is, LLI represents
the kfwdth buffer cell of LI. Hereafter, we use LI4k5 to
denote LI403k5, i.e., the number of vehicles in LI at the
beginning of time interval k; an according notation is
used for all other time-dependent quantities as well.

The flow from LI to DQ during time interval k is
given by the number of vehicles in LLI at the begin-
ning of time interval k, i.e., LLI4k5. We proceed by
deriving E8LLI4k5 � LI4k5 = li9, which is the expected
flow transferred from LLI into DQ during time inter-
val k, given that LI contains li vehicles.

The arrival process to the link during time inter-
val k is a Poisson process with rate �4k5. Arrivals may
enter the link as long as it has not spilled back. This
occurs with probability P4UQ4k5 < `5. Thus, the vehi-
cles enter the link according to a Poisson process with
a rate

qin4k5= �4k5P4UQ4k5 < `51 (15)

where qin4k5 represents the expected inflow to the
link during time interval k. Updating the arrival rates
across time intervals allows the model to account for
temporal dependency between arrivals. This occurs,
for instance, in a network context without losses,
where vehicles that were blocked (i.e., could not
enter) in previous time steps enter in later time
steps. Additionally, temporal dependence is intro-
duced through UQ, which modulates the inflow
through its probability of not being full in Equa-
tion (15) and evolves relatively slowly along the time
axis.
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The only simplifying assumption made here and
in the following is to neglect the stochastic tempo-
ral dependence between inflows (and, as explained
later, outflows) at different time steps. The experi-
ments of §4 demonstrate the very minor effect of this
approximation. Given this, the arrivals to each inflow
buffer cell constitute independent Poisson processes
with corresponding rates qin4k − 151 0 0 0 1 qin4k − kfwd5,
and LI4k5 is the sum of these independent processes.
Thus, the conditional distribution of LLI4k5 given that
LI4k5= li is binomial B4li1 r4k55, with

r4k5=
qin4k− kfwd5
∑kfwd

j=1 qin4k− j5
(16)

being the probability of encountering a randomly
selected vehicle from LI4k5 in LLI4k5. For a derivation
of this result (i.e., the binomial distribution and its
corresponding parameters), see §2.12.4 of Larson and
Odoni (1981).

In consequence,

E8LLI4k5 � LI4k5= li9= li · r4k50 (17)

The service rate �LI4li3 k5 can now be derived.
By definition, the service rate is the inverse of the
expected time between successive departures from LI.
To derive this expectation, we observe that departures
from LI form a Poisson process, and the expected
number of departures given that LI has li vehicles is
given by E8LLI4k5 � LI4k5= li9.

Given that m events of a Poisson process have
occurred during a fixed time interval �, then
interevent times are independently, uniformly dis-
tributed over the fixed time interval of interest with
expected interarrival time �/m (see, for instance, Lar-
son and Odoni 1981, §2.12.3). In our case, m =

E8LLI4k5 � LI4k5 = li9, such that the service rate
becomes

�LI4li3 k5=
li

�
·

qin4k− kfwd5
∑kfwd

j=1 qin4k− j5
0 (18)

• �LO4lo3 k5 is the rate at which “spaces” resulting
from downstream vehicle departures become avail-
able upstream. Queue LO contains all departures
from DQ at time intervals k − kbwd, k − kbwd + 11 0 0 0 1
k − 1. Symmetrically to the derivation that led to
Equation (18), the departure rate from LO given that
LO contains lo vehicles is

�LO4lo3 k5=
lo

�
·

qout4k− kbwd5
∑kbwd

j=1 qout4k− j5
0 (19)

In summary, the overall link model is solved
by repeated evaluations of Equation (14), using
the exogenous parameters �4k5 and �DQ4k5 and
the endogenous transmission rates defined in Equa-
tions (18) and (19). The linkage between Equation (14)
and these rates is given in Table 1.

4. Experiments
A single-lane link with parameters shown in Table 2 is
considered. Nine experiments are conducted, combin-
ing three different arrival rate profiles and three dif-
ferent link lengths (and, hence, different space capac-
ities and forward/backward lags).

Each experiment starts with an initially empty link
at time zero and runs for 3,000 one-second time steps.
The arrival profiles are displayed in Table 3. Profile 131
(respectively, 151) corresponds to a step change from
undercritical to marginally critical (respectively, over-
critical) conditions and back. Profile 353 corresponds
to a step change from marginally critical to overcritical
conditions and back.

The considered space capacities are ` = 10120130,
resulting in link lengths L = 5011001150 m, forward
time lags kfwd = 5110115, and backward time lags
kbwd = 10120130. Table 4 labels the experiments for
the resulting nine parameter combinations as con-
catenations of the respective arrival profile and space
capacity.

Particular attention is paid in the following to the
stochastic dependency between up- and downstream
conditions within the link, corresponding to depen-
dency between UQ and DQ. For this, the results of the
proposed analytical model are compared to empiri-
cal distributions obtained from 106 replications of an
event-based microsimulation.

Table 2 Link Parameters

Parameter Value

v 36 km/h
w −18 km/h
�̂ 200 veh/km
q̂ 2,400 veh/h = 0067 veh/s
�4k5 1,080 veh/h = 003 veh/s
�4k5 Varies by experiment
`1 L1 k fwd1 kbwd Varies by experiment

Table 3 Arrival Rate Profiles �4k5 (in Vehicles per Second)

Time interval k

Profile [0, 999] [1,000, 1,999] [2,000, 2,999]

Profile 131 0.1 0.3 0.1
Profile 151 0.1 0.5 0.1
Profile 353 0.3 0.5 0.3

Table 4 Experiments

�-profile

` 131 151 353

10 “Exp131 Cap10” “Exp151 Cap10” “Exp353 Cap10”
20 “Exp131 Cap20” “Exp151 Cap20” “Exp353 Cap20”
30 “Exp131 Cap30” “Exp151 Cap30” “Exp353 Cap30”
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This microsimulation implements only a UQ and a
DQ. It does not resort to the LI and LO approximation
but instead explicitly implements the time lags expe-
rienced by vehicles entering the link until they reach
DQ and by spaces becoming available as a result of
exiting vehicles until they reach UQ. The stochas-
ticity of the arrival and service process is explicitly
simulated by drawing corresponding random num-
bers. That is, the microsimulation implements an
instance of the proposed model that comes with no
approximations of the time lags—at the cost of being
able to only draw from the underlying distributions
(as opposed to an analytical approach). Because the
microsimulation perfectly captures all dependencies,
it serves as a benchmark for the analytical model.

Figure 4 shows for all nine experiments the evo-
lution of the correlation between UQ and DQ over
time. The crosses represent results from the analyti-
cal model, and the circles represent results from the
event-based simulation. Figure 5 shows in greater
detail the transient dynamics of the correlation
around second 1,000; Figure 6 shows this around
second 2,000. As a first impression, the deviations
between the simulation and the analytical model are
visually negligible, indicating an excellent overall fit.

U
Q

D
Q

Figure 4 Correlation Between UQ and DQ Over Time

Table 5 contains the stationary correlations between
UQ and DQ for the three space capacities ` = 101201
30 and the three stationary arrival rates � = 00110031
005 veh/s. Figure 7, panels (a), (g), and (d) show
the corresponding (UQ, DQ) distributions for ` = 30,
obtained with the analytical model. The correlation
values can be interpreted based on the joint distribu-
tions in the following way:

• All correlations are positive and quite large. This
is plausible given that both UQ and DQ represent
aspects of the link’s occupancy and have substantial
overlap; cf. also Equation (10).

• For each given space capacity `, the correlation
is in marginally critical conditions higher than in
under- or overcritical conditions. Under- and overcrit-
ical conditions differ from marginally critical condi-
tions in this regard because Equation (10) implies that
UQ is always fuller than DQ. In undercritical con-
ditions, this limits joint downwards fluctuations of
UQ and DQ because DQ is already close to zero; the
(UQ, DQ) distribution is truncated at DQ = 0 in Fig-
ure 7, panel (a). In overcritical conditions, this limits
joint upwards fluctuations because UQ is already
close to `; the (UQ, DQ) distribution is truncated at
UQ = ` in Figure 7, panel (d). In marginally critical
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Figure 5 Correlation Between UQ and DQ During the Transition Around Second 1,000

conditions, the probability of these bounds taking
effect is relatively low, allowing joint fluctuations of
UQ and DQ to occur most freely in Figure 7, panel (g).

• For � = 001 and 0.5 veh/s, the correlation de-
creases with increasing `. This is so because in
undercritical (respectively, overcritical) conditions,
DQ (respectively, UQ) dictates the link dynamics, and
the respective other queue follows. The longer the
link is, the more room exists for independent fluc-
tuations of the queues, resulting in reduced correla-
tion. In terms of Equation (10), the LI+LO addend of
UQ = DQ + 4LI + LO5 increases relative to and some-
what independently of DQ, moving away from what
would be a perfect UQ = DQ dependency.

• For � = 003 veh/s, the correlation increases with
increasing `. As explained before, the distributions of
UQ and DQ evolve most freely in marginally critical
conditions. Indeed, Figure 7, panel (g) reveals that the
(UQ, DQ) distribution stretches in marginally critical
conditions all the way from undercritical to overcrit-
ical conditions. As the link gets longer, this distribu-
tion stretches even further, resulting in the observed
increase in correlation.

Figure 5 (respectively, Figure 6) provides a more
detailed evaluation of the correlation dynamics dur-
ing the transient periods around second 1,000 (respec-
tively, 2,000). These transitions are captured very

accurately by the analytical model. Figure 7 shows
snapshots of the (UQ, DQ) distribution for `= 30
during stationarity and the times of largest correla-
tion under- and overshoot. Here, one observes the
following.

• For second 1,000 and arrival profile 131 (first col-
umn in Figure 5), the correlation undershoots before
attaining its new stationary value. These dynamics are
reflected by the sequence of (UQ, DQ) distributions
shown in Figure 7, panels (a), (f), and (g). The under-
shoot can be explained by UQ starting to increase
kfwd time steps before DQ, such that UQ initially
changes independently of DQ. The (UQ, DQ) distri-
bution first stretches out only horizontally before also
expanding vertically. Eventually, this effect ceases as
the two queues synchronize again. Consistent with
this, the time of maximum undershoot coincides with
the respective forward time lag kfwd.

• For second 1,000 and arrival profile 151 (second
column in Figure 5), the correlation first undershoots
and then overshoots before attaining its new sta-
tionary value. These dynamics are reflected by the
sequence of (UQ, DQ) distributions shown in Figure 7,
panels (a)–(d). The undershoot is explained in the pre-
vious item (initial horizontal expansion of (UQ, DQ)
distribution from Figure 7, panels (a) and (b)). The
overshoot results because, whatever the initial (most
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Figure 6 Correlation Between UQ and DQ During the Transition Around Second 2,000

likely, upwards) fluctuation of UQ is, the same fluctu-
ation reaches DQ after kfwd time steps. The relatively
empty DQ is able to follow quite freely UQ’s earlier
fluctuation. This is reflected by the diagonal stretch
of the (UQ, DQ) distribution in Figure 7, panel (c).
Eventually, the upper bound on UQ then takes effect,
reducing the probability of joint fluctuations, which
results in Figure 7, panel (d).

• For second 2,000 and arrival profiles 131 and 151
(first and second columns in Figure 6), the correlation
overshoots before attaining its new stationary value.
These dynamics are reflected by the sequence of (UQ,
DQ) distributions shown in Figure 7, panels (g), (h),
and (a) and (d), (e), and (a). The overshoot in arrival
profile 151 can be explained by the link going all
the way from over- to undercritical conditions, pass-
ing through a transient state of marginal criticality
shown in Figure 7, panel (e). The transient overshoot

Table 5 Stationary Correlations Between UQ and DQ

� 0.1 veh/s 0.3 veh/s 0.5 veh/s
`

10 0.57 0.68 0.52
20 0.45 0.76 0.50
30 0.38 0.81 0.46

in arrival profile 131; cf. Figure 7, panel (h), exceeds
the already extreme correlation in marginally critical
stationary conditions, cf. Figure 7, panel (g). A care-
ful comparison of these two figures reveals that the
transient distribution is slightly narrower than the sta-
tionary distribution.

• For arrival profile 353 (last column in Fig-
ures 5 and 6), there are no over- or undershoots.
In marginally critical and overcritical conditions, UQ
takes at least partial effect on the link dynamics.
Because the change in boundary conditions also
occurs upstream, the immediate reaction of UQ
absorbs the link dynamics that in the previous cases
resulted from the time-lagged interactions of UQ and
DQ. This leads to a smooth transition between the
bandlike (UQ, DQ) distribution in marginally critical
conditions (Figure 7, panel (g)) and the more con-
strained overcritical distribution (Figure 7, panel (d)).

So far, only correlation as a measure of linear
dependency was considered. Figure 8 shows the joint
distribution of LI, DQ, and LO for different arrival
profiles and at particularly interesting points in time
(shortly after the jump changes in the arrival pro-
file). Only results for `= 10 are shown; the figures for
` = 20130 do not reveal additional information. The
horizontal axis represents the indices of the different
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Figure 7 (UQ, DQ) Joint Distributions
Notes. Panels (a), (g), and (d) show stationary distributions for � = 001, 003, and 0.5 veh/s, respectively. Arranged between these panels in circles along the
indicated directions are (UQ, DQ) distributions at the moments of largest under- and overshoot during the respective transients; cf. Figures 4–6. All results are
obtained with the analytical model and `= 30.
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Figure 8 Joint Distribution of LI, DQ, and LO
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states, and the vertical axis represents their probabili-
ties. All feasible states of (LI, DQ, LO) are represented.
One observes an almost perfect match between simu-
lated and analytical results across all experiments.

These experiments demonstrate an extremely high
precision of the analytical model when approximating
an event-based microsimulation of the exact stochas-
tic KWM model for a homogeneous link. It hence is
possible to analytically capture full-link state distri-
butions in consistency with a stochastic Newell (1993)
model.

5. Summary and Outlook
This paper presents a new model for traffic flow
along a linear link, which analytically captures queue
length distributions. When compared with a previous
approach, the new model adds a realistic dependency
structure between the link’s upstream and down-
stream boundary conditions. To maintain tractability
of the new model, some simplifications are adopted,
which result in a negligible loss of precision when
compared with a stochastic microsimulator.

The relationship of the proposed model to the
kinetic theory of traffic flow may be worth investigat-
ing further. In kinetic models, stochasticity enters at
the level of individual vehicle interactions, rendering
the stochastic performance of a whole link an accu-
mulation of such interactions. The present work limits
itself to (demand) stochasticity at a link’s upstream
end and (supply) stochasticity at its downstream end.
This, in combination with the Poissonian assumption,
leads to an operational but arguably simplified repre-
sentation of real traffic. An effort to derive the present
model from (or to link it to) kinetic theory may enable
richer distributional assumptions and may also facili-
tate the derivation of more operational kinetic models.

Further efforts will focus on network modeling.
This paper describes how dependency across a homo-
geneous link can be captured; previous work demon-
strated how dependency across a node can be cap-
tured (Osorio, Flötteröd, and Bierlaire 2011). A logical
next step is to combine these two models into an
approximation of the joint queue length distributions
in a complete network.
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