
High-dimensional offline OD calibration for stochastic traffic

simulators of large-scale road networks

Paper accepted for publication in Transportation Research

Part B

Carolina Osorio∗

January 14, 2019

Abstract

This paper considers high-dimensional offline calibration problems for large-scale simulation-
based network models. We propose a metamodel simulation-based optimization (SO)
approach. The proposed method is formulated and validated on a simple synthetic toy
network. It is then applied to a high-dimensional case study of a large-scale Singapore
network. Compared to two benchmark methods (a derivative-free pattern search method
and the SPSA method), the proposed method improves the objective function estimates by
two orders of magnitude. Moreover, this improvement is achieved after only 2 simulation
runs. Hence, the proposed method is computationally efficient.

The main idea of the proposed approach is to embed, within the SO algorithm, infor-
mation from an analytical (i.e., lower-resolution) yet differentiable and tractable network
model. It is this analytical structural information that enables the SO algorithm to be-
come both suitable for high-dimensional problems and computationally efficient. For a
network with n links, the analytical network model is implemented as a system of n non-
linear equations. Hence, it scales linearly with the number of links in the network and
independently of link attributes (such as link length) and of the dimension of the route
choice set.

1 Introduction

High-resolution urban traffic and mobility data is becoming increasingly available world-
wide. This has sparked an increased interest in the development of traffic models to inform
the design and the operations of urban mobility networks. Additionally, both the supply
and the demand of our transportation systems are becoming more complex (e.g., with
vehicle-to-vehicle and vehicle-to-infrastructure communications). This is leading to more
sophisticated and more intricate traffic models. Nonetheless, in order to enable the use of
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this new generation of higher resolution traffic models to inform practice, there is a pressing
need to provide practitioners with systematic tools that enable the adequate calibration
and validation of these models. The problem of model calibration has been widely studied
in the literature. Nonetheless, there is a lack of algorithms that can efficiently address the
difficult (e.g., high-dimensional, simulation-based, non-convex) calibration problems faced
in practice.

This paper focuses on the offline calibration of demand, as defined by origin-destination
(OD) matrices, for simulation-based traffic models. In general, the problem of calibrating
demand for simulation-based models aims to identify demand inputs for the simulator that
minimize a distance function between network performance estimates (e.g., link flows,
link speeds, link travel times) obtained from field measurement and those obtained via
simulation.

We distinguish between the following two problems: (i) general OD estimation prob-
lems (also known as travel demand estimation problems), where the outputs are stand-
alone OD matrices that can be used for a variety of planning and operational network
analysis, and (ii) model calibration problems, where the goal is to calibrate (or estimate)
the inputs (such as the demand inputs specified as OD matrices) of a specific affic model
and the output is a calibrated traffic model that can itself be used for analysis. Traffic
models have a variety of demand and supply parameters that require calibration. Hence,
one implication of this distinction is that for the second class of problems (calibration
problems) the values of the calibrated input model parameters should not be interpreted
in isolation. In particular, the calibrated OD matrix should not be used as a stand-alone
OD matrix for planning purposes. This is because it is calibrated conditional on the values
of the other input model parameters (e.g., route choice model coefficients).

The two classes of problems often have common mathematical formulations. In par-
ticular, the first class can be formulated with the use of a traffic model. Since it is an
underdetermined problem (i.e., there is an observability issue), the use of a traffic model
serves to constrain the solution set in order to regularize the problem. In other words,
the use of a model further constrains the problem by adding behavioral assumptions (e.g.,
route choice) or network knowledge.

This paper focuses on the second class of problems. Our goal is to calibrate the OD
matrix input of a traffic simulator, which is then to be used to inform network planning
and operations decisions. A recent review of general OD estimation problems (i.e., not
limited to model calibration algorithms) is given in Cascetta et al. (2013).

A detailed problem formulation is given in Section 2.1. The goal of this paper is
to design an OD calibration algorithm suitable for high-dimensional problems and large-
scale networks. Moreover, the aim is to design a computationally efficient algorithm that
can identify good quality solutions within few simulation runs. In practice, calibration
algorithms are used within tight computational budgets (i.e., few simulation runs are
carried out). Hence, the design of efficient algorithms contributes to current, and pressing,
needs of practitioners.

A review of the recent OD calibration literature is provided in Zhang and Osorio
(2017). Table 1, adapted from Zhang and Osorio (2017), summarizes recent OD calibration
literature. It has been expanded to include this paper in the last row of the table. For each
paper (i.e., each row), the table indicates whether the work focuses on: (i) OD calibration
or on the joint calibration of OD’s along with other demand and supply parameters, (ii)
online or offline calibration, (iii) whether a time-dependent (i.e., dynamic) formulation is
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addressed. For the largest case study of each paper, the table indicates the number of
nodes, the number of links and the dimension of the decision vector. Table entries are left
empty when the corresponding dimensions are not directly reported in the papers. All
papers use counts as field data. The last column of the table indicates whether additional
types of field data are also used.

The most common approach to the calibration of OD matrices for simulation-based
traffic models has been the use of general-purpose optimization algorithms. The Stochas-
tic Perturbation Simultaneous Approximation (SPSA) algorithm of Spall (1992, 2003) has
been extensively used (Balakrishna et al. 2007, Vaze et al. 2009, Lee and Ozbay 2009,
Cipriani et al. 2011, Ben-Akiva et al. 2012) and more recently extended to improve its effi-
ciency (Cipriani et al. 2011, Cantelmo et al. 2014, Lu et al. 2015, Tympakianaki et al. 2015,
Antoniou et al. 2015). The genetic algorithm (GA) has also been commonly used (Kim
et al. 2001, Stathopoulos and Tsekeris 2004, Kattan and Abdulhai 2006, Vaze et al. 2009).
These commonly used general-purpose algorithms are guaranteed to achieve asymptotic
convergence properties for a broad class of problems (e.g., non-transportation problems).
Nonetheless, this generality comes with a lack of computational efficiency. In other words,
the algorithms are not designed to identify good quality solutions fast (i.e., within tight
computational budgets or few simulation runs). Nonetheless, when used to address OD
calibration problems, they are typically used within tight computational budgets. There
is a current need to design efficient calibration algorithms.

In the broader field of OD estimation (not limited to the calibration of traffic models),
there has been a long-standing and growing interest in the design of methods that are
both more efficient and also more scalable. This has been mostly driven by challenges in
the field of offline dynamic as well as real-time OD estimation (Bierlaire and Crittin 2004,
Djukic et al. 2012, Prakash et al. 2018).

This paper proposes to achieve computational efficiency by designing algorithms specif-
ically tailored for calibration problems. More specifically, we propose to embed within the
algorithm analytical and differentiable problem-specific structural information that enables
the algorithm to identify good quality solutions within few simulation runs. The main idea,
which we have successfully used for other continuous transportation problems (e.g., signal
control (Chong and Osorio 2018, Osorio and Nanduri 2015b), congestion pricing (Osorio
and Atastoy 2017)), is to formulate, and embed within the algorithm, an analytical net-
work model that provides an approximation of the (simulation-based) mapping between
the decision vector and the objective function. For a calibration problem, the mapping
approximates the relationship between the calibration vector (e.g., OD matrix) and the
simulation-based components of the objective function (expected link flows).

The general challenges of designing simulation-based optimization (SO) algorithms ap-
ply to the design of SO calibration algorithms. Namely, the simulator is computationally
costly to evaluate, the SO objective function is non-convex, and often non-differentiable,
with many local minima. The calibration problem brings two additional challenges. First,
the problem is high-dimensional. The dimension of the decision vector is often in the order
of several thousand. In continuous SO, problems with dimension 200 are considered large-
scale (Wang et al. 2016). Hence, there is a lack of, and a need for, algorithms that are
both efficient and suitable for high-dimensional problems. Second, the formulation of an
analytical mapping that approximates the OD matrix to the expected link flows is partic-
ularly challenging due to the need to provide an approximation of traffic assignment that
is both analytical, differentiable, scalable and tractable (i.e., can be evaluated efficiently
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Table 1: Recent demand calibration literature overview. Table adapted from Zhang and Osorio (2017)

OD Joint Online Offline Simulation-based Analytical Time-dependency Nodes Links Dimension Other field data

Kim et al. (2001) X X X 9 14 8

Tavana (2001) X X X X 178 441

Zhou et al. (2003) X X X X 31 80

Antoniou (2004) X X X X 15 on/off-ramps 80 Speed, density

Bierlaire and Crittin (2004) X X X X 296 618 627

Jha et al. (2004) X1 X X X 1,479 3,756 41,906

Kattan and Abdulhai (2006) X X X X 30 50 400

Nie (2006) X X X 17 23 4
Link-to-link counts,

path travel time

Zhou and Mahmassani (2006) X X X X 31 80 Link-to-link counts

Balakrishna et al. (2007) X X X X 243 606 4,629

Hazelton (2008) X X X X 21 50 1,190

Zhang et al. (2008) X X X X 29 on/off-ramps 928 Subpath travel time

Lee and Ozbay (2009) X X X X A one-way freeway Speed

Vaze et al. (2009) X X X X 825 1,767 6,470 Subpath travel time

Huang (2010) X X X X 56 85 638 Speed, density

Cipriani et al. (2011) X X X X 221 734 Speed

Flötteröd et al. (2011) X X X X 24,180 60,492 187,484

Frederix et al. (2011) X X X X 39 56

Verbas et al. (2011) X X X X 28,406 68,490 106-108

Ben-Akiva et al. (2012) X X X X 1,698 3,180 69,093 Link travel time

Lu et al. (2015) X X X X 831 1040 373,646

Tympakianaki et al. (2015) X X X X N.A. 1,101 1,848

Zhang and Osorio (2017) X X X 11,345 24,335 2,585

Osorio (this paper) X X X 924 1,150 4,050

1 Demand parameters of driver behavior and route choice models are also calibrated
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for large-scale networks). These challenges are described in more detail in Sections 2.1
and 2.2.

Our recent work in this area (Zhang and Osorio 2017) has also followed these ideas, yet
it has proposed the use of an (approximate) analytical mapping with exogenous assign-
ment. It has shown, for a large-scale Berlin case study, that the analytical information from
the analytical network model provides structural information needed to yield an efficient
algorithm. Nonetheless, for general networks with elaborate traffic management strate-
gies (e.g., congestion pricing), the use of a mapping with endogenous assignment is more
suitable. For instance, the case study of this paper considers a Singapore network with
congestion pricing. Thus, the use of an analytical network model with endogenous assign-
ment is appropriate. The methodological differences between the methodology proposed
in this paper and that of our recent demand calibration work (Zhang and Osorio 2017,
Zhang et al. 2017) are detailed after the proposed methodology is presented in Section 2.2.

This paper uses the metamodel SO algorithm of Osorio and Bierlaire (2013), which
builds upon the derivative-free trust-region (TR) algorithm of Conn et al. (2009). Com-
putational efficiency is achieved through the formulation and use of an analytical and
differentiable metamodel that approximates the mapping between the OD matrix and
expected link flows, allowing for endogenous traffic assignment.

This paper proposes a methodology to calibrate the OD matrix input of a traffic sim-
ulator, which is then to be used to inform network planning and operations decisions.
The traffic simulator we use is a mesoscopic dynamic traffic model. The simulator defines
demand as a set of time-dependent OD matrices. This paper focuses on the estimation
of an OD matrix for a single time period. Its extension to simultaneously estimate mul-
tiple OD matrices is given in Osorio (2019). We propose a methodology that enables
high-dimensional offline OD matrix calibration problems for large-scale simulation-based
network models to be addressed in a computationally efficient way. The proposed method
is applied to a high-dimensional problem (4050 decision variables) for a congested large-
scale network of Singapore. More specifically, the main contributions of this paper are the
following.

• Computational efficiency. For all algorithmic runs of the Singapore case study,
the proposed method identifies points with objective function estimates that are reduced
(i.e., improved) by two orders of magnitude compared to those of the initial points. This
is achieved within 2 simulation runs (i.e., after 2 demand points are simulated). Hence,
the proposed method is computationally efficient. The method is compared to a general-
purpose derivative-free algorithm and to the (Simultaneous Perturbation Stochastic Ap-
proximation) algorithm, which upon depletion of the computational budget (i.e., after 20
points are simulated) yield average improvements of 4.4% and 1.4%, respectively. Exper-
iments with larger computational budgets are also carried out. They indicate that even
when allowing for more than double the computation time of the proposed method, the
benchmark methods are still outperformed by the proposed method by 2 orders of mag-
nitude. This remarkable computational efficiency establishes the proposed approach as a
potential building block for real-time (i.e., online) OD calibration.

• Scalability. The performance of the proposed method is evaluated on a high-
dimensional problem with 4050 decision variables. In the field of SO, problems with
dimension in the order of 200 are considered high-dimensional (Wang et al. 2016). Hence,
the proposed approach illustrates how the use of analytical structural information enables
high-dimensional SO problems to be addressed. Moreover, such problems can be addressed
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efficiently. The structural information is derived by an analytical network model which
was first formulated in Osorio and Atastoy (2017) for toll optimization. The model is
specified as a system of nonlinear equations. For a network with n links, the model is
implemented as a system of n nonlinear equations. This makes it a suitable model for
high-dimensional OD calibration problems.

• Metamodel SO. The proposed approach is a metamodel SO method. More
specifically, at every iteration of the SO algorithm an analytical approximate optimization
problem is solved. The latter problem is known as the metamodel optimization problem.
It replaces the simulation-based objective function with an analytical objective function,
known as the metamodel. The key component of the proposed metamodel approach is
the use of a metamodel that embeds a problem-specific, analytical and differentiable, ap-
proximation of the simulation-based objective function. The goal of the problem-specific
component is to provide the SO algorithm with structural information. It is this informa-
tion that enables the design of a computationally efficient algorithm. This general idea of
formulating a metamodel with a problem-specific component has been the key to design-
ing computationally efficient algorithms for various continuous transportation SO problems
(Chong and Osorio 2018, Osorio and Selvam 2017, Osorio and Chong 2015, Osorio and
Nanduri 2015a,b, Osorio et al. 2017). For a given problem, the main challenge is the for-
mulation of an analytical and differentiable network model that approximates well the SO
objective function while also being scalable (i.e., suitable for large-scale networks and for
high-dimensional problems), computationally tractable (because the metamodel optimiza-
tion problem is solved at every iteration of the SO algorithm), and differentiable (such
that efficient traditional gradient-based algorithms can be used to address the metamodel
optimization problem). The formulation of such a metamodel is particularly intricate for
calibration problems because it involves formulating an analytical approximate mapping
of the decision vector (e.g., OD matrix) to the simulation-based performance metrics (e.g.,
link flows). Given the elaborate traffic dynamics present in large-scale road networks,
the formulation of such an analytical network model is a challenge. Compared to our past
metamodel formulations for various demand calibration problems (Zhang and Osorio 2017,
Zhang et al. 2017), the proposed approach both allows for an analytical description of the
impacts on the network of endogenous traffic assignment (i.e., it describes how changes in
demand can impact route choice and, ultimately, also impact the spatial distribution of
congestion throughout the network) yet it still uses a tractable metamodel formulation.
For instance, compared to our past calibration work, a single metamodel is used, rather
than one metamodel for each link with a sensor. The proposed method is particularly
suitable for the calibration of large-scale networks with elaborate traffic dynamics (e.g.,
with traffic-responsive traffic management strategies).

• Robustness to the quality of initial points. The experiments indicate that the
structural information provided by the analytical network model enable the SO algorithm
to be robust the quality of the initial points. This is of particular interest for cases where
the prior OD matrix is not reliable (e.g., outdated).

• Transportation practice. Transportation practitioners address these calibration
problems under tight computational budgets. There is a lack of computationally efficient
calibration algorithms. The proposed approach contributes to fill this gap. Moreover,
given the growing interest, among both public and private transportation stakeholders, in
the use of traffic models to inform their decision making, the design of efficient calibration
algorithms is essential for transportation practice.
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This paper is structured as follows. Section 2 formulates the OD calibration problem
and the proposed methodology. The method is validated with experiments on a small toy
network (Section 3) and then applied and benchmarked on a high-dimensional problem
for a large-scale network of Singapore (Section 4). Conclusions are given in Section 5.

2 Methodology

This section presents the OD calibration problem of interest (Section 2.1) and formulates
the proposed methodology (Section 2.2).

2.1 Problem formulation

An urban area is spatially divided into traffic analysis zones, each of which can constitute
a potential origin or destination for trips. Travel demand, for a given time period, is
modeled by an origin-destination (OD) matrix, which defines the expected number of
trips from each origin to each destination. We focus on an offline calibration problem.
During the time interval of interest, we consider a single OD matrix. The OD calibration
problem consists of identifying an OD matrix that leads to simulated traffic metrics that
are reflective of traffic conditions observed from the field. For offline calibration, the OD
matrix is determined offline based on historical field measurements. This differs from
online (i.e., real-time) OD calibration, where the OD matrix is determined in real-time
based on real-time traffic measurements. To formulate the problem, we introduce the
following notation.

dz expected travel demand for OD pair z (scalar);
f simulation-based objective function;
Fi flow on link i as defined by the simulator;
yi average flow on link i estimated from field data (scalar);

d̃z prior value for the expected demand for OD pair z (scalar);
u1 vector of endogenous simulation variables;
u2 vector of exogenous simulation parameters;
δ scalar weight parameter for prior information;
dmax upper bound vector;
z0 number of OD pairs;
I set of indices of links with sensors;
Z set of indices of OD pairs Z = {1, 2, . . . , z0};

The problem is traditionally formulated as follows:

min
d

f(d) =
1

|I|

∑

i∈I

(yi − E[Fi(d, u1;u2)])
2 + δ

1

|Z|

∑

z∈Z

(

d̃z − dz

)2
(1)

0 ≤ d ≤ dmax. (2)

The decision vector d is the vector of expected demand for each OD pair. The notation
|I| (resp. |Z|) denotes the cardinality of the set I (resp. Z). The first summation term
of (1) represents the distance between traffic conditions described by field measurements
and traffic conditions estimated by the simulator. More specifically, a set I of links in the
network are deployed with sensors. This set is usually a low-dimensional set, i.e., there
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are few links with sensors. For a given traffic performance metric (e.g., link counts, link
speeds), the corresponding field measurement on link i is denoted yi, and the corresponding
simulation-based estimate on link i is denoted E[Fi(d, u1;u2)]. In this paper, we focus on
the measurements that are most commonly available worldwide: link counts. In other
words, yi represents an estimate, based on field measurements, of flow on link i, and
E[Fi(d, u1;u2)] represents the simulation-based expected flow on link i. The simulator has
a vector of endogenous variables, u1 (e.g., link queue-lengths, travel times) and a vector of
exogenous variables, u2 (e.g., specification of other demand models, such as route choice;
specification of supply models, such as traffic management strategies or link attributes).
The second term of the objective function (1) represents the distance between the decision
vector, d, and a prior OD matrix, d̃. This distance is normalized by the number of terms
in the summation |Z| and by a scalar weight factor δ. The OD calibration problem is,
for a realistic network, an underdetermined problem. In particular, the dimension of the
decision vector, d, is often orders of magnitude higher than the cardinality of the set of
links with measurements, I. The second summation of (1) is introduced such as to yield
solutions that are physically plausible (e.g., OD matrices that are consistent with land-
use patterns in the city). In the literature, the prior matrix is also referred to as the
seed matrix or the initial matrix. It is often a matrix obtained from past traffic studies,
such as studies with lower resolution traffic models (e.g., static assignment models). The
parameter δ reflects the level of reliability or importance of the prior OD matrix. The OD
calibration problem has upper and lower bound constraints (2).

Let us illustrate the intricacy of the function E[Fi(d, u1;u2)] (hereafter denoted E[Fi]).
It embeds a detailed description of elaborate spatial-temporal supply-demand interactions.
More specifically, it maps travel demand, as defined by the OD matrix, to link-level traffic
conditions. For a given realization of demand, the flows on a given link i are the outcomes
of the, pre-trip and en-route, travel decisions made by each of the simulated travelers
(e.g., route choice, lane-changing, car-following). These decisions are made based on past
and prevailing traffic conditions. In particular, they depend themselves on the spatial and
temporal distribution of link flows. Hence, an estimate of the expected link flow (E[Fi])
can be obtained by running sequential simulations, which can be interpreted as a learning
process over consecutive days. Every day the travelers make travel decisions based on
the most recent (current and previous days) traffic conditions, this leads to new traffic
conditions (i.e., new link flows).

Problem (1)-(2) consists of a continuous, most often non-convex and non-differentiable,
simulation-based objective function with analytical (i.e., non-simulation-based) bound con-
straints. The main challenges of this SO problem are the following. First, it is a high-
dimensional problem. The dimension of d is often in the thousands. Problems with a
dimension in the order of 200 are considered high-dimensional for SO algorithms (Wang
et al. 2016). The case study of Section 4 addresses a problem of dimension 4050. Sec-
ond, as discussed above, the problem is underdetermined with many local minima. The
simulation-based term E[Fi] is a nonlinear and non-convex function. It is computationally
costly to estimate. The goal of this work is to design an algorithm that tackles the above
challenges. Additionally, the goal is to design a computationally efficient algorithm. In
other words, the algorithm identifies solutions with good performance at a low computa-
tional cost (i.e., within few simulation runs).
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1. Fit metamodel mk

2a. Optimize mk 2b. Sampling strategy

3. Simulate

4. Determine current iterate

dk

β̂k

Trial point
Model improvement
point

Evaluate new point d

New performance estimate: f̂(d)

Figure 1: Metamodel simulation-based optimization framework

2.2 Metamodel formulation

We first summarize the main ideas of the SO framework used in this paper. We then
present the metamodel formulation. We use the general metamodel SO approach of Osorio
and Bierlaire (2013), which is based on the derivative-free trust-region (TR) algorithm of
Conn et al. (2009). The main steps of each iteration of the SO algorithm are displayed
in Figure 1. The main idea of a metamodel approach is to approximate the simulation-
based objective function with an analytical function, known as the metamodel, and to
use this metamodel to solve an analytical and differentiable optimization problem, known
as the metamodel optimization problem. The use of the metamodel allows to perform
optimization directly on an analytical and differentiable problem, for which a variety of
standard solvers are available.

Let mk denote the metamodel at iteration k of the algorithm. The metamodel is a
parametric function with parameter vector βk. The following steps are carried out at every
iteration of the metamodel SO algorithm. The set of simulation observations, collected so
far, are used to fit the parameters of the metamodel (see Step 1 of Figure 1). An estimate
of the metamodel parameter vector is denoted β̂k in Figure 1. This fitting or estimation
problem is defined as a least-squares problem that minimizes the distance between the
simulation-based objective function estimates and the metamodel approximations. Ap-
pendix A formulates the least squares problem. The metamodel is then used in Step 2a
to solve the metamodel optimization problem, the solution of which is known as the trial
point. The latter is simulated (Step 3), leading to new objective function estimates, f̂(d).
In Step 4, the point with best performance, known as the current iterate, is determined.
It is denoted dk in Figure 1. As the iterations advance, these steps are iterated, such
as to collect new simulation observations, update the metamodel and ultimately identify
points with improved (simulation-based) performance. Step 2b of Figure 1 indicates that
points other than those that are solutions to the metamodel optimization problem can
also be simulated. The sampling of such points can aim to improve the metamodel fit or
the geometric properties of the sampled space.

In the proposed framework, a metamodel is fitted and a metamodel optimization prob-
lem is solved, at every iteration of the SO algorithm. This differs from the pioneering
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metamodel literature which first collects an extensive number of simulation observations
through a design of experiments and then proceeds once (rather than iteratively) to fit
the metamodel and to solve an analytical metamodel optimization problem. In this case,
the metamodel replaces the simulator and the SO problem is replaced by a single ana-
lytical optimization problem. These traditional approaches lack computational efficiency
because they typically require a large number of simulation evaluations prior to performing
optimization.

Instead, in the iterative approach adopted here the role of the metamodel is not to
replace the simulator nor is it to be an accurate approximation of the simulator. Instead,
the role of the metamodel is to provide the SO algorithm with analytical (approximate)
problem-specific structural information. This allows the SO algorithm to no longer treat
the simulator as a black-box, which in turn enables it to efficiently search high-dimensional
feasible regions. In other words, it enables the SO algorithm to achieve both computational
efficiency and scalability.

Metamodels are classified as functional metamodels, which are general-purpose func-
tions chosen based on mathematical properties, and physical metamodels, which are
problem-specific functions (Søndergaard 2003, Chaper 2). The majority of the metamodel
literature has focused on the use of functional metamodels, the most common choices are
low-order polynomials, radial-basis functions, Kriging functions (Jones et al. 1998, Barton
and Meckesheimer 2006, Wild et al. 2008, Kleijnen et al. 2010, Ankenman et al. 2010). A
review of metamodel approaches appears in Osorio (Chap. 5, 2010).

To formulate the proposed metamodel, we introduce the following notation. The index
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k refers to a given SO algorithm iteration.

mk metamodel function;
βk parameter vector of metamodel mk;
βk,j scalar element j of the parameter vector βk;
fA(d) analytical approximation of the first summation of the SO objective

function provided by an analytical traffic model;
φ(d;βk) polynomial component of the metamodel mk;

Endogenous variables of the analytical traffic model:

λi expected hourly demand for link i (scalar);
ki expected density per lane of link i (scalar);
vi expected (space-mean) speed per lane of link i (scalar);
tr expected travel time for route r (scalar);
P (r) route choice probability for route r (scalar).

Exogenous parameters of the analytical traffic model:

kjami jam density per lane of link i (scalar);
vmax
i maximum speed of link i (scalar);
qcap lane flow capacity (scalar);
ni number of lanes of link i (scalar);
ℓi average lane length of link i (scalar);
zr toll cost for route r;
θ1, θ2 coefficients of the route choice model (scalars);
α1,i, α2,i parameters of the fundamental diagram of link i (scalars);
c scaling parameter common to all links (scalar);
O(r) OD pair of route r;
R1(i) set of routes that include link i;
R2(s) set of routes of OD pair s;
L(r) set of links of route r.

In this paper, the metamodel optimization problem, at iteration k of the SO algorithm,
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is formulated as follows.

min
d

mk(d;βk) = βk,0fA(d) + φ(d;βk) + δ
1

|Z|

∑

z∈Z

(

d̃z − dz

)2
(3)

φ(d;βk) = βk,1 +
∑

z∈Z

βk,z+1dz (4)

fA(d) =
1

|I|

∑

i∈I

(yi − λi)
2 (5)

λi =
∑

r∈R1(i)

P (r)dO(r) (6)

P (r) =
eθ1tr+θ2zr

∑

j∈R2(O(r)) e
θ1tj+θ2zj

(7)

tr =
∑

i∈L(r)

ti (8)

ti =
ℓi
vi

(9)

vi = vmax
i

(

1−

(

ki

kjami

)α1,i
)α2,i

(10)

ki = c
kjami

qcap
λi

ni
(11)

0 ≤ d ≤ dmax. (12)

There are two main differences between the SO Problem (1)-(2) and the metamodel
optimization Problem (3)-(12). First, the simulation-based objective function (f of (1))
is replaced by an analytical metamodel function (mk of (3)). The bound Constraint (2)
appears as Constraint (12), yet Problem (3)-(12) has an additional set of Constraints (4)-
(11) defined as a system of nonlinear equations. These serve to define the analytical
components of the metamodel. We now describe these in more detail.

Note that the second summation of the SO objective function (Eq. (1)) is an analyt-
ical function (i.e., we do not need to evaluate it via simulation). Hence, there is no need
to propose an analytical approximation for this summation term, it appears as is in the
metamodel function (Eq. (3)). On the other hand, the first summation of the SO objective
function (Eq. (1)) does contain simulation-based terms. Hence, the metamodel proposes
an analytical approximation of this summation term. This approximation is defined as
the sum of a functional (i.e., general-purpose) metamodel component, denoted φ, and of
a physical metamodel component, denoted fA. The functional component is defined as a
linear (polynomial) function (Eq. (4)). The physical component is defined in Eq. (5). The
role of this physical component is to provide a problem-specific, analytical and differen-
tiable, approximation of the first summation of Eq. (1). This approximation considers the
first summation and replaces the simulation-based term (E[Fi]) by the expected hourly
demand on link i, denoted λi. The latter is derived from an analytical traffic model which
is defined by the system of nonlinear Equations (6)-(11). This analytical traffic model was
first formulated in Osorio and Atastoy (2017) to address a toll optimization problem.

Let us now describe the analytical traffic model. The expected hourly demand on link
i, λi, is defined in Eq. (6) as the sum of the expected route demand, for all the routes
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that include link i. The expected route demand for route r is defined as the product
of the expected (hourly) demand for the OD of that route, dO(r), times the route choice
probability, P (r). The latter probability is defined in Eq. (7) as a multinomial logit model
with a utility function that depends on the route’s travel time, tr, and travel toll cost, zr.
Since the case study of Section 4 considers a Singapore network with tolled links, the toll
cost is accounted for in this formulation. For networks without tolling, the tolling cost
terms in the route choice model can be neglected. The (expected) travel time for route r is
defined as the sum of the (expected) link travel times for each link of route r (Eq. (8)). The
(expected) travel time of link i is approximated in Eq. (9) as the ratio of the average link
length (averaged over the various lanes of the link) and the expected (space-mean) speed
of the link. The latter is defined in Eq. (10) and consists of a differentiable approximation
of the non-differentiable fundamental diagram used by the mesoscopic simulator used in
the case studies of this paper (DynaMIT, Ben-Akiva et al. (2010)). Finally, the link’s
(expected) density (Eq. (12)) is approximated by assuming a linear relationship between
expected link demand, λi, and expected link density, ki. The coefficients of this linear
relationship are the link’s jam density, kjami , a lane flow capacity term, qcap, which is
assumed the same for all lanes of the network, and a constant, c, that is fitted based on
insights from toy network experiments. For the experiments of this paper, it is set to 1/6.

To summarize, the first summation of the SO objective function is replaced by an an-
alytical function, which is defined as a problem-specific analytical approximation derived
by an analytical traffic model (term fA) that is corrected parametrically by both a scal-
ing term (term βk,0) and an additive linear error term (term φ). The proposed approach
addresses the non-differentiable simulation-based optimization Problem (1)-(2) by itera-
tively solving a set of analytical and differentiable (metamodel) optimization problems of
the form (3)-(12).

As the case studies of this paper indicate, the use of an analytical traffic model yields
a good global approximation (i.e., a good approximation in the entire feasible region) of
the SO objective function, while metamodels that are limited to functional components
are formulated to provide a good local approximation (e.g., a good approximation near
the current iterate). The use of a global approximation enables the algorithm to become
robust to the quality of the initial point. In other words, the proposed SO algorithm has
similar performance regardless of the quality of the initial points. This is in contrast to
general-purpose SO algorithms that, when used with tight computational budgets as in
this paper, are sensitive to the quality of the initial point. The metamodel parameters are
fitted by solving a weighted least squares problem, which is described in Appendix A.

Of particular importance is that, for a network with n links, the analytical traffic model
(Eq. (6)-(11)) is implemented as a system of n nonlinear equations. This makes it scalable.
In other words, the complexity of the model (i.e., the dimension of the corresponding
system of equations) scales linearly with the network size. Its complexity does not depend
on link attributes (e.g., link lengths). Most importantly, the model has endogenous traffic
assignment, yet its complexity is independent of the dimension of the route choice set.
For instance, for the Singapore case study of this paper, the analytical model considers a
network with 860 links, 4050 OD pairs and over 18200 routes; and is implemented as a
system of 860 nonlinear equations. Additionally, the analytical derivatives of this system
of equations have been derived. This enables us to address the metamodel optimization
problem by efficiently using a variety of traditional gradient-based optimization algorithms.

The analytical traffic model (Eq. (6)-(11)) embeds a variety of simplifications com-
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pared to the simulation-based traffic model used for the case studies of this paper. It does
not capture traffic dynamics, rather it is a stationary formulation. This is discussed in
more detail in the next paragraph. Unlike the simulator, the analytical model assumes
all lanes of a link are homogenous (i.e., they have both common supply parameters and
they exhibit common traffic conditions). The simulator describes between-link interactions
(e.g., vehicular spillbacks) in detail, while the analytical model has decoupled link models.
More specifically, for a given link i, its traffic conditions are fully defined based on the
links expected demand, λi, and the links supply configuration (e.g., its supply parameters
kjami , vmax

i , qcap, ni, ℓi, α1,i and α2,i). Metamodels that analytically capture vehicular spill-
back have been used for signal control studies (Osorio et al. 2017, Osorio and Chong 2015).
Their use for calibration has yet to be explored. As mentioned above, the fundamental
diagram is a differentiable approximation of the simulators (non-differentiable) fundamen-
tal diagram. The route choice model is also simplified. For example, in DynaMIT, the
route choice process is described in detail through a set of three types of models: habitual
route choice, pre-trip route choice and en-route choice. Also, the simulator accounts for
the populations heterogeneity in value of time (VOT) by assuming a random VOT that is
lognormal distributed. In contrast, the analytical model considers a unique value of time
for the entire population. The simulator takes as input a pre-defined route choice set. This
route choice set is the same as that used by the analytical traffic model. In our past OD
calibration work with a Berlin metropolitan region case study, we showed that the use of
an analytical traffic model with a fixed exogenous route choice can be suitable even when
the simulator has an endogenous route choice set (Zhang and Osorio 2017).

The OD calibration Problem (1)-(2) assumes a dynamic simulation-based traffic model
is used (i.e., the expectation E[Fi] in (1) is an expectation from a dynamic traffic model).
On the other hand, the analytical network model used to formulate the metamodel, which
is defined by Equations (6)-(11), considers a stationary regime. The fact that a stationary
network model, defined as a simple system of nonlinear equations, can capture sufficient
problem structure of an underlying dynamic network model is remarkable. In the major-
ity of our past work, stationary formulations have been sufficient to approximate various
network performance metrics of dynamic simulators. This has held across simulation soft-
wares (e.g., Aimsun, MATSim, DynaMIT) and across optimization problems (e.g., signal
control, congestion pricing, calibration). Metamodel formulations based on analytical dy-
namic network models have been proposed, yet they are less tractable than their stationary
counterparts (Chong and Osorio 2018). Their use for high-dimensional SO problems, like
OD estimation problems, has yet to be explored. Moreover recent work has showed that
stationary models, like the one proposed in this paper, can be suitable to address dynamic
OD estimation problems (i.e., problems where a set of time periods are considered and
one OD matrix is estimated for each time period) (Osorio 2019).

There are three main differences between the proposed approach and that of Zhang and
Osorio (2017). First, the calibration Problem (1)-(2) is formulated, in Zhang and Osorio
(2017), without the use of the normalization terms 1/|I| and 1/|Z|. Second, the method
of Zhang and Osorio (2017) formulates one metamodel for each of the links with sensors
(i.e., ∀i ∈ I). In other words, there is one metamodel for each simulation-based term,
E[Fi], in the SO objective function (Eq. (1)). The proposed approach formulates a single
metamodel for the entire SO objective function. This leads to a lower dimensional set of
metamodel parameters. The third, and most important, difference is that the proposed
metamodel uses an analytical traffic model with endogenous traffic assignment. In other
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words, the route choice probabilities are defined as a function of the OD matrix. In Zhang
and Osorio (2017), the traffic assignment is exogenous. The use of endogenous assignment
allows for a more realistic analytical traffic model. Nonetheless, this comes at the cost of
decreased tractability in the analytical network model. More specifically, for a network
with n links, the analytical model of Zhang and Osorio (2017) is implemented as a linear
system of n equations, while the proposed model is implemented a nonlinear system of n
equations.

The work of Zhang et al. (2017) proposes a metamodel approach to the calibration of
parameters of disaggregate behavioral models. It considers the calibration of the travel
time parameter of the route choice model. Unlike the present paper, which addresses a
demand calibration problem of dimension 4050, the work of Zhang et al. (2017) considers
a one-dimensional problem. From a methodological perspective the main differences are
as follows. First, Zhang et al. (2017) formulate one metamodel for each of the links with
sensors, while the proposed approach considers a single metamodel for the entire network.
As mentioned above, this reduces the number of metamodel parameters. Second, the
analytical network model of Zhang et al. (2017) is based on a link model derived from
probabilistic finite capacity queueing theory, while the proposed approach uses a differ-
entiable approximation of the simulator’s deterministic link fundamental diagram. Both
Zhang et al. (2017) and the proposed approach consider an analytical network model
with endogenous assignment. Both models are formulated as a system of nonlinear equa-
tions. Nonetheless, the implementation of Zhang et al. (2017) explicitly implements the
link-to-link turning probabilities. Hence, the full network model is less scalable and less
computationally efficient than the proposed approach.

As mentioned previously, we consider computationally efficient offline calibration al-
gorithms to be essential components for the design of real-time calibration algorithms.
For online calibration, we view the method of Zhang and Osorio (2017) and the proposed
method as suitable building blocks for real-time algorithms. For networks with elaborate
traffic dynamics, where assignment varies significantly within short time intervals (e.g.,
networks with dynamic congestion pricing or with real-time traffic management strate-
gies), we expect the proposed method to be suitable (since it has endogenous assignment).
For networks with simpler traffic dynamics, we expect the method of Zhang and Osorio
(2017) to be a suitable choice.

3 Validation

We now validate the proposed method with a simple synthetic toy network. We use the
network topology of Astarita et al. (2001) displayed in Figure 2. It consists of 3 ori-
gin nodes (labeled o1, o2, o3), 3 destination nodes (labeled d1, d2, d3) and 9 OD’s (i.e., all
origin-destination combinations are feasible). Hence, the OD calibration problem is a
nine-dimensional problem. All links are one-way. The network mimics a multi-lane high-
way (top links) with on-ramps and off-ramps and a single-lane arterial (below horizontal
links). The network is modeled as a set of 28 links and 43 lanes. We assume that all links
have sensors. Note that even when all sensors have links, there are multiple OD matrices
that can lead to the same link counts. In this section and in Section 4, we use the meso-
scopic dynamic simulator DynaMIT (DYnamic Network Assignment for the Management
of Information to Travelers) (Ben-Akiva et al. 2010). We first validate the analytical traf-
fic model (Section 3.1). We then benchmark the performance of the proposed approach
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Figure 2: Synthetic simple network topology proposed by Astarita et al. (2001)

versus other optimization algorithms (Section 3.2).

3.1 Validation of the analytical traffic model

We consider three scenarios with increasing levels of demand. For a given demand level,
we compute synthetic link counts via simulation, and assume these to be the “true” field
counts (i.e., term yi of Eq. (1)). Each element of the prior OD matrix (term d̃ of Eq. (1))
is obtained as the sum of the corresponding true OD value and a randomly drawn normal
distributed error term with an expectation of zero and a standard deviation of 20% of
the true OD value. Hereafter, when performing optimization, estimates of the simulation-
based functions are obtained from a single simulation replication. Experiments based on
multiple simulation replications were carried out on a subset of experiments, and led, for
all methods, to the same trends than those presented hereafter. Nonetheless, the use of
multiple replications may be warranted for other case studies.

Each plot of Figure 3 considers a given demand level. Each plot displays a one-
dimensional cut of the simulation-based summation term of the objective function (i.e.,
first summation of Eq. (1)). The cut is obtained by assuming that all OD’s have common
value (i.e., all elements of the decision vector d have the same value). The x-axis displays
the common OD value, and the y-axis displays the first summation term of the objective
function. The blue circles represent the simulation-based estimates of objective function
term. The red crosses represent the analytical approximations derived by the analytical
traffic model, fA of Eq. (5). For all three demand levels, the analytical model yields an
accurate approximation of the simulation-based summation term of objective function.

Figure 4 compares in a single plot all points of the 3 plots of Figure 3. Each point is
represented by a black circle. For each point, it considers the simulation-based term of the
objective function (i.e., the first summation of Eq. (1)) and displays the analytical traffic
model approximation along the x-axis (i.e., term fA of Eq. (5)) and the corresponding
simulation-based estimate along the y-axis. It also displays the diagonal line (y = x)
in red. All points are along the diagonal. This indicates an accurate approximation of
the simulation-based objective function provided by the analytical network model. Recall
from Section 2.2 that the goal of the analytical traffic model (and of the metamodel) is
to enable the SO algorithm to efficiently search in high-dimensional feasible regions. In
other words, the role of the analytical traffic model is to identify subregions of the feasible
region that have points with good simulation-based performance. Note that this can be
achieved without the analytical traffic model providing an accurate (or even a positively
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Figure 3: Comparison of the simulation-based estimates of a one-dimensional cut of the
simulation-based term of the objective function and of the corresponding analytical ap-
proximations, considering three levels of demand

correlated) approximation of the simulation-based objective function.
We now evaluate the performance of the proposed algorithm for this simple synthetic

network. We apply the SO algorithm for each of the three levels of demand mentioned
above. For each demand, we consider 10 random initial points, which are uniformly drawn
from the feasible region (Constraint (2)). For each initial point, we run the algorithm and
terminate it once a total of 20 points have been simulated (i.e., the computational budget
is 20).

Each plot of Figure 5 considers a demand level. Each plot displays 10 curves that
correspond to the 10 algorithmic runs (i.e., based on 10 different initial points). The x-
axis displays the number of simulated points, and the y-axis displays the simulation-based
objective function estimate of the current iterate (i.e., the point considered to have best
performance so far). The plots indicate that regardless of the initial point and of the
level of demand, the proposed approach identifies points with good performance as of the
second simulated point (x = 2). For all runs, the initial points have bad performance (i.e.,
high objective function estimates). There is also high variability across the performance
of the initial points. Nonetheless, for all initial points the proposed approach identifies a
point with good performance as of the second simulation. This shows the robustness of
the proposed approach to the quality of the initial points.

Recall that at every iteration of the SO algorithm, the metamodel optimization problem
is solved (Problem (3)-(12)). A solution to that problem is known as a trial point. Figure 6
considers the trial points of all the 30 SO runs (10 runs for each of the 3 demand levels).
The figure compares, for each trial point, the objective function approximation provided
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Figure 5: Performance of the SO algorithm as a function of the number of simulated points
(i.e., the computational budget), for three demand levels
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Figure 6: Comparison, for all the trial points of all the SO runs, of the simulation-based es-
timates of the objective function to the analytical approximations of the objective function
derived by the analytical traffic model

by the analytical traffic model (fA of Eq. (5)) along the x-axis to the simulation-based
objective function along the y-axis. The trial points are represented as black circles.
The diagonal line (y = x) is displayed in red. This figure illustrates the accuracy of the
approximations derived by the analytical traffic model.

Each plot of Figure 7 considers the 10 solutions of a given demand level. Each blue
cross represents the counts for a given solution and a given link with a sensor. The x-axis
displays the “true” (synthetic) counts (term yi of Eq. (1)) and the y-axis displays the
simulated estimate for the corresponding OD solution (i.e., this is an estimate of the term
E[Fi(d, u1;u2)] of Eq. (1)). The diagonal line is displayed as a dashed red line. Note that
each plot contains a total of 28*10 points (for each of the 10 solutions there are 28 links
with sensors), yet there are typically 4 points visible in the plots. This is because many
links have common counts. Hence, their corresponding points overlap in the plots. This
figure indicates that for all 10 runs of all 3 demand levels, the solutions proposed by the
algorithm accurately replicate the true counts for all links with sensors.

3.2 Validation versus benchmark methods

We now benchmark the performance of the proposed approach to that of two other meth-
ods: a derivative-free generalized pattern search algorithm (GPS) (Mathworks, Inc. 2016),
and the Stochastic Perturbation Simultaneous Approximation (SPSA) algorithm (Spall
1992, 2003). The algorithmic parameters of the GPS are set based on standard guidelines
as well as on its performance on toy network experiments. The SPSA parameters are set
based on standard guidelines Spall (2003, Chap. 7) and based on insights from its past
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Figure 7: Comparison of the “true” link counts to the simulation-based count estimates obtained from the proposed OD solutions, for
each of the 10 SO runs and 3 demand levels
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use for calibration by MIT’s ITS (Intelligent Transportation Systems) Lab members.
We consider here a broader set of demand scenarios in order to account for both time-

varying demand conditions (e.g., transitions from uncongested to congested conditions and
vice versa), as well transient traffic conditions. We consider three demand levels with low
(denoted L), medium (denoted M) and high (denoted H) congestion levels, respectively.
For each experiment, we define one demand level (denoted D1) for 7-8am and a second
demand level (denoted D2) for 8-9am. This leads to a total of 9 demand scenarios, defined
as (D1, D2) ∈ {L,M,H}2. In other words, the demand scenario s result from all pairwise
combinations of demands {L,M,H}. The simulated counts are estimated based on traffic
conditions observed from 8:30-9am. When performing optimization, we assume D1 is
known and fixed, while D2 is assumed unknown (it defines the decision vector).

For a given demand scenario (D1, D2), we proceed as in Section 3.1, we compute
synthetic link counts via simulation, and assume these to be the “true” field counts (i.e.,
term yi of Eq. (1)). We compute the prior OD matrix following the same procedure as in
Section 3.1. We proceed as in Section 3.1 and consider a set of 10 different initial points,
uniformly randomly drawn from the feasible region. For each of the 9 demand scenarios
and each of the 3 methods (proposed, GPS and SPSA), we run it 10 times, once for each
initial point. We terminate the method once a total of 20 points (i.e., 20 OD matrices)
have been simulated. In other words, the computational budget is set to 20.

Figures 8, 9 and 10, consider the performance of the proposed, GPS and SPSAmethods,
respectively. Each figure contains 9 plots, one for each demand scenario. The top (resp.
middle and bottom) row plots consider scenarios where the first demand D1 is set to L
(resp. M and H). The left-most (resp. middle and right-most) column plots consider
scenarios where the second demand D2 is set to L (resp. M and H). Each plot displays,
for all links with sensors, the “true” synthetic counts along the x-axis and the counts of the
OD matrix derived by the corresponding algorithm along the y-axis. Each plot displays
the performance of 10 OD solutions, one for each initial point.

Figure 8 considers the proposed method. It shows that for all initial points and all 9
demand scenarios (i.e., all plots), the derived OD’s yield an accurate fit to the true counts.
Figure 9 considers the GPS method. It shows that for a given demand scenario (i.e., a
given plot) the performance of the method varies across initial points. This holds for all 9
demand scenarios. The GPS solutions do not accurately fit the counts. Figure 9 considers
the SPSA method. The same conclusions as for GPS hold.

Figure 11 evaluates the performance of the methods as a function of the computational
budget. Just as for the previous figures, each plot considers one of the 9 demand scenarios.
Each plot displays the performance of the proposed method (red solid lines with crosses),
GPS (black dash-dotted lines with crosses) and SPSA (blue dashed lines with circles).
For each method there are 10 lines, one for each initial point. Each line displays the
estimate of the objective function of the current iterate as a function of the total number
of simulated points. Each plot has a logarithmic scale. All plots have the following similar
trends. GPS and SPSA have similar performance for all demand scenarios. The proposed
method outperforms GPS and SPSA by 1 to 3 orders of magnitude. For a given demand
scenario (i.e., a given plot) the performance of GPS and of SPSA varies by up to 1 order
of magnitude, this shows their sensitivity to the performance of the initial point. The
proposed method has a performance that is mostly insensitive to that of the initial points.
The highest sensitivity is observed in the plot of the top row and middle column. For
all other plots, the performance of the proposed method has similar performance across
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Figure 8: Fit to counts of the solutions derived by the proposed method, for all 9 demand scenarios (one for each plot) and all 10 initial
points
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Figure 9: Fit to counts of the solutions derived by the GPS method, for all 9 demand scenarios (one for each plot) and all 10 initial
points
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Figure 10: Fit to counts of the solutions derived by the SPSA method, for all 9 demand scenarios (one for each plot) and all 10 initial
points
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initial points. This illustrates its robustness to the quality of the initial points.
We now evaluate the performance of the methods as a function of the weight given to

the prior OD information. We consider six different values of the weight parameter δ of
Eq. (2), δ ∈ {10, 1, 0.1, 0.01, 0.001, 0.0001}. Note that the above experiments were carried
out with δ set to 0.01. For each value of δ, we run each method for a single (and common)
initial point and for all 9 demand scenarios. As before, we terminate each method once
the computational budget of 20 simulation evaluations is depleted The left (resp. middle
and right) plot of Figure 12 consider the performance of the proposed (resp. GPS and
SPSA) method. Each plot considers the performance of 54 solutions (i.e., each combination
of 6 δ values and 9 demand scenarios). For each solution, the counts over all links are
displayed. As before, the x-axis displays the true (synthetic) counts and the y-axis displays
the simulated counts derived through optimization. Note that when disaggregating these
results to create one plot for each method and for each of the 6 δ values, the fit to counts
presents very similar trends. In other words, the performance of a method did not vary for
different δ values. This holds for all methods. This is why we have grouped all 6 solutions
in a single plot. The figure indicates that the proposed method slightly outperforms GPS
and SPSA. This is systematically the case across δ values.

Figures 13 evaluates the performance of the methods as a function of the computational
budget. Just as for the previous figures, each plot considers one of the 6 δ values. The
highest δ value is that of the top-left plot, values decrease across columns for the first row
of plots, followed by smaller values that decrease across columns for the second row of
plots. Each plot displays the performance of the proposed method (red solid lines with
crosses), GPS (black dash-dotted lines with crosses) and SPSA (blue dashed lines with
circles). For each method there are 9 lines, one for each demand scenario. Note that each
combination of demand scenario and δ value defines a different OD calibration problem.
Thus, for a given method, the different runs need not have similar performance. As before,
each line displays the estimate of the objective function of the current iterate as a function
of the total number of simulated points. Each plot has a logarithmic scale along the y-axis.
All plots have the following similar trends. GPS and SPSA have similar performance for
most δ values, with SPSA slightly outperforming GPS for 3 of the 6 δ values (plots in
the top-right, top-left and bottom-middle). The proposed method outperforms GPS and
SPSA by 1 to 4 orders of magnitude.

We now evaluate the performance of the methods as a function of the bias in the
prior OD. For a given true OD value, denoted d∗z, the corresponding prior OD value is
sampled from a normal distribution with expectation sd∗z and with standard deviation
0.2sd∗z. The scalar s denotes the scaling factor of the prior OD matrix. We consider
three types of experiments with s ∈ {1, 0.7, 1.3}. Note that all past experiments in this
section have considered an unbiased prior (i.e., s = 1). For each scaling factor value, we
run each method 10 times with 10 different initial points and terminate the run once the
computational budget of 20 simulation evaluations is depleted. All experiments consider
the same demand scenario, which was defined previously as having initially medium levels
of congestion followed by high levels of congestion (i.e., (D1, D2) = (M,H)).

The left (resp. middle and right) plot of Figure 14 consider the performance of the
proposed (resp. GPS and SPSA) method. Each plot considers the performance of 30
solutions (i.e., for each of the 3 s values we perform 10 SO runs). Each plot has the same
layout as those of Figure 12. Note that when disaggregating these results to create one
plot for each method and for each of the 3 s values, the fit to counts presents very similar
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Figure 11: Performance of each method as a function of the number of simulated points, for all 9 demand scenarios (one for each plot)
and all 10 initial points
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Figure 12: Fit to counts of the solutions derived by the proposed method, GPS and SPSA, considering all combinations of the 6 δ values
and the 9 demand scenarios.
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Figure 13: Performance of each method as a function of the number of simulated points, for all 6 δ values (one for each plot) and all 9
demand scenarios
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trends. In other words, the performance of a method did not vary for different s values.
This holds for all methods. This is why we have grouped the results of the 3 experiments
in a single plot. The figure indicates that GPS and SPSA have similar performance, and
are outperformed by the proposed method. Again, these observations across all s values.

Figure 15 evaluates the performance of the methods as a function of the computational
budget. The top (resp. middle and bottom) plot considers s set to 1 (resp. 0.7 and 1.3).
Each plot displays the performance of the proposed method (red solid lines with crosses),
GPS (black dash-dotted lines with crosses) and SPSA (blue dashed lines with circles). For
each method there are 10 lines, one for each initial point. As before, each line displays the
estimate of the objective function of the current iterate as a function of the total number
of simulated points. Each plot has a logarithmic scale along the y-axis. All plots have the
following similar trends: (i) GPS and SPSA have similar performance, (ii) the proposed
method outperforms GPS and SPSA by 2 orders of magnitude.

4 Singapore case study

We now evaluate the performance of the proposed approach with a large-scale network
model. We consider the network of major arterials and expressways of Singapore. Fig-
ure 16a displays a map of the network, with the location of the tolls indicated in red, the
expressway links represented in orange and the major arterials represented in yellow. The
corresponding network model is displayed below the map. The network model is defined
by 1150 links, over 2300 lanes, 4050 OD pairs with over 18000 routes. Of the 1150 links of
the simulator, only 860 are modeled by the analytical network model. These are the links
that are defined in the pre-determined route choice set.

We calibrate demand for all 4050 OD pairs (i.e., the dimension of the decision vector
is 4050). We consider a single fixed OD matrix for a weekday 7:00-7:30am. We use 6-7am
as the warm-up period. More specifically, when simulating the performance of a given
OD matrix, we use it to define the demand for 6:00-7:30am, yet only extract simulation
statistics for the 7:00-7:30am period. For this Singapore network, we do not have access
to field measurements (terms yi of Eq. (1)). Hence, we use synthetic simulated data to
estimate the field measurements. More specifically, we use a pre-calibrated OD matrix
as the “true” OD matrix. We embed it within the simulator and extract link counts
on a set of 172 links (i.e., 15% of the links have measurements). These synthetic link
counts are assumed to be field counts. In other words, they are used to estimate the
terms yi of Eq. (1). A given element of the prior OD matrix (d̃z of Eq. (1)) is defined as
the corresponding “true” OD value plus a random normally distributed error term with
expectation 0 and standard deviation 20% of its value. We set the upper bound (dmax of
Eq. (2)) to 2000 vehicles per hour.

As before, we compare our proposed approach with GPS and SPSA. Their algorithmic
parameters are fine-tuned as described in the previous Section. Recall that unlike the
proposed method, these benchmark methods are not designed to be used under tight
computational budgets. Instead, they are designed based on asymptotic performance
properties. As mentioned in Section 1, there are no SO methods that are designed to
address high-dimensional problems under tight computational budgets. This is precisely
the literature gap that this paper contributes to.

We consider 10 different initial points. The initial points are uniformly drawn from the
feasible region (Eq. (2)) and such that the total OD demand is equal to that of the prior
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Figure 14: Fit to counts of the solutions derived by the proposed method, GPS and SPSA, for all 3 scaling factors of the expectation
of the prior OD and 10 initial points

30



0 2 4 6 8 10 12 14 16 18 20
number of simulated points

102

103

104

105

ob
j. 

fu
nc

tio
n

Prior scaling factor 1

Metamodel
GPS
SPSA

0 2 4 6 8 10 12 14 16 18 20
number of simulated points

102

103

104

105

ob
j. 

fu
nc

tio
n

Prior scaling factor 0.7

0 2 4 6 8 10 12 14 16 18 20
number of simulated points

102

103

104

105

ob
j. 

fu
nc

tio
n

Prior scaling factor 1.3

Figure 15: Performance of each method as a function of the number of simulated points, for all 3 values of the scaling factor of the prior
OD expectation (one for each plot) and all 10 initial points
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(a) Singapore expressway network (map data: Google Maps (2017))

(b) Simulation network model

Figure 16: Singapore network
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Figure 17: Objective function estimate of the current iterate as a function of the number
of simulated points

OD. For each initial point, we run each method and terminate it once 20 simulations have
been evaluated. In other words, the computational budget is 20.

Figure 17 displays for each algorithmic run, the objective function of the current iterate
as a function of the number of simulation points. There are 10 solid red (resp. solid black
and dashed blue) lines that correspond to the 10 runs of the proposed (resp. GPS and
SPSA) approach. Recall that all methods share the same set of 10 initial points. Almost
all lines of the metamodel approach overlap. Once the second point is simulated, they all
have a significant improvement in the objective function estimate. More specifically, the
improvement is of 2 orders of magnitude (the average initial point performance is 1.18e6
and the average performance of the second simulated point is 2.8e4). This indicates the
added value of the analytical structural information provided by the analytical model. In
particular, for all initial points the proposed method yields a current iterate at sample
size 2 with similar performance. This shows how the analytical structural information of
the analytical network model enables the method to become robust to the quality of the
initial points.

On the other hand, both benchmark methods (GPS and SPSA) gradually identify
points with improved performance. Nonetheless, none of the runs yield a significant im-
provement compared to the proposed approach. Upon depletion of the simulation budget
(i.e., x = 20), the solutions of the GPS method yield an average improvement of 4.4%
compared to the initial solutions (the average initial point performance is 1.18e6 and the
average performance of the final GPS solutions is 1.13e6). For SPSA, the average improve-
ment is 1.4% compared to the initial solutions (1.18e6 versus 1.17e6).

Figure 18 presents, in more detail, the performance of the proposed method. It displays
the same 10 red lines of Figure 17 yet omits the initial point estimates (i.e., it starts at
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Figure 18: Objective function estimate of the current iterate as a function of the number
of simulated points excluding the initial point simulations (i.e., x-axis starts at 2)

x = 2). This figure illustrates that, after the second simulation, the proposed method con-
tinues to yield points with improved performance. The average performance improvement
between x = 2 and x = 20 is 35% (i.e., 2.77e4 versus 1.80e4). While Figure 17 indicated
that, for all initial points, the metamodel proposed solutions with performance estimates
that have the same order of magnitude, this figure shows that there is variability in the
performance. This variability can be can be due to the initial points. It can also be due
to the stochasticity of the simulator or to the stochasticity of the sampling strategy of the
algorithm (i.e., Step 2b of Figure 1 involves random sampling).

We now compare the performance of the methods in terms of computation time. The
computation times include all computations, not just simulation times. In particular, for
the proposed method the computation times account for the time needed to solve the
metamodel optimization problem. Note that the various computations are carried out on
several servers. For a given server, the allocation of CPU resources for a job can vary
over time because it depends on what other jobs are running simultaneously. Hence, these
computation statistics can give a general idea of runtimes, yet their differences cannot be
solely attributed to algorithmic performance. Figure 19 displays for each algorithmic run,
the objective function of the current iterate as a function of the computation time. As
before, the 10 solid red (resp. solid black and dashed blue) lines correspond to the 10 runs
of the proposed (resp. GPS and SPSA) approach.

To put these computation times into context, note that one simulation run (i.e., the
evaluation of the simulator) takes approximately 2.5 hours, hence the computation of 20
sequential simulations is in the order of 2.1 days. This high computation time of a single
simulation illustrates the need for computationally efficient algorithms, i.e., algorithms
that can identify points with good performance within few simulation runs. This figure
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Figure 19: Objective function estimate of the current iterate as a function of the compu-
tation time

indicates that when comparing the performance as a function of computation time, the
proposed method also outperforms the benchmark methods. The average computation
time needed to deplete the computational budget (20 points) is 2.8 days for the proposed
method versus 2.0 days for GPS and 2.2 days for SPSA. The longest computation time
needed to deplete the computational budget is 4.3 days for the proposed method, 2.2 days
for GPS and 2.7 days for SPSA.

Figure 20 is similar to Figure 19, yet it zooms into the performance of the proposed
method. It displays the performance of the proposed method excluding the initial points
(i.e., these are accounted for in the total computation time, but the corresponding initial
objective function is not displayed). This figure illustrates that even after the initial
significant improvement in the objective function (which is displayed in Figure 19), the
proposed method gradually identifies points with further improved performance.

Figure 21 compares the performance of the methods in terms of their ability to replicate
the link counts. Each plot of Figure 21 compares the “true” counts (these are the yi values
of Eq. (1)) to the estimated simulation-based link counts of a given solution (these are
estimates of the terms E[Fi] of Eq. (1)). The 10 plots in the top (resp. middle and
bottom) row correspond to the 10 solutions obtained by the proposed (resp. GPS and
SPSA) method for each of the 10 initial points and allowing for a computational budget
of 20 simulations. Each column of plots corresponds to the solutions obtained for a given
initial point. Each plot also displays the diagonal axis (function y = x) as a red dashed line.
For a given solution, the closer the distance between the “true” counts and the simulated
counts (i.e., the closer the points are to the diagonal axis), the better the performance
of the solution in terms of fit to the counts. For a given row, all plots have the same
y-axis limits, yet those across rows differ. For a given row, only the y-axis limits of the
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Figure 20: Objective function estimate of the current iterate as a function of the compu-
tation time excluding the initial point simulations

left-most plot is displayed, this improves the legibility of the plot. These figures show that
all 10 solutions derived by the proposed method have good performance. The similarity
in performance of the solutions derived by the proposed method illustrates the robustness
of the method to the quality of the initial point. Both benchmark methods fail to identify
solutions with good performance within the tight computational budget.

Figure 22 evaluates the ability of each method to recover the “true” OD. From left to
right, the four plots of Figure 22 consider the performance of the metamodel approach,
GPS, SPSA and the initial ODs. For each plot, the x-axis displays the true OD value, and
the y-axis displays the proposed OD value. Each plot displays the 10 OD values proposed
by each method (there is one for each of the 10 initial points). For the right-most plot,
the y-axis displays the 10 initial points used to initialize the algorithms. The plots also
display a red diagonal line with equation y = x. The closer the points are to the diagonal
line, the better the solution. The main insights from these plots are as follows. None of
the methods yield accurate ODs. Given the tight computational budget (20 simulation
observations for a problem of dimension 4050) this is not surprising. The conclusions from
Figure 21 were that the proposed approach was capable of identifying solutions with good
fit to counts, while the left-most plot of Figure 22 indicates that it does not accurately
identify the true OD. As discussed before, the OD calibration problem is underdetermined,
hence the ability of an OD to replicate traffic counts does not indicate that the proposed
OD is similar to the true OD. The second (from left to right), third and fourth plots of
Figure 22 are similar. This highlights how the algorithms that treat the simulator as a
black-box (GPS and SPSA) are not designed to perform well under tight computational
budgets and remain close to the initial ODs. As part of ongoing work, we are studying
how the use of higher-resolution mobility data can mitigate this underdetermination issue,
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Figure 21: Comparison of the simulated counts of the proposed solutions to the “true” counts, for each method (i.e., each row) and each
initial point (i.e., each column)

37



Figure 22: Comparison of the OD values of the proposed solutions to the “true” values.
From left to right, the plots consider the proposed method, GPS, SPSA and the initial
ODs

while preserving the computational efficiency of the proposed calibration algorithm.
Given that the computational budget is depleted faster for the benchmark methods

than for the proposed method, Figure 23 allows the benchmark methods to compute
a larger set of simulation points, such that the total computation time exceeds that of
the proposed method. The red lines are the same as those of Figure 19. In other words,
additional computational resources are not given to the proposed method. The benchmark
methods are allowed to compute for an average of 7 days (compared to the average 2.8
days of the proposed method). This figure indicates that even when allowing for more
than double the computation time of the proposed method, the benchmark methods are
outperformed by the proposed method by almost 2 orders of magnitude.

The congestion levels in this Singapore case study vary depending on the OD value
considered. The main trends that hold over all points (i.e., all simulated ODs) is that av-
erage congestion levels (computed as averages across links) gradually increase throughout
the 7:00-7:30am time period. During this period, transient traffic conditions are observed
and congestion is not uniformly distributed across space: typically a small set of links
are highly congested. To give an order of magnitude, considering an SPSA solution, the
average (across links) density increases from 48 veh/mile at 7am to 64 veh/mile at 7:30am.
The percentage of links that have unstable traffic conditions (defined as densities above 30
veh/mile) varies from 20% to 23% and the percentage of links with high levels of density
(defined as above 67 veh/mile) increases from 13% at 7am to 18% at 7:30pm.

5 Conclusions

This paper proposes a metamodel simulation-based optimization (SO) approach for offline
calibration problems that are high-dimensional and consider large-scale simulation-based
network models. The main component of the metamodel is an analytical network model.
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Figure 23: Objective function estimate of the current iterate as a function of the compu-
tation time

The latter is specified as a nonlinear system of equations, the dimension of which scales
linearly with the number of links in the network. It is tractable: it can be efficiently
evaluated with standard solvers for systems of equations. It is also scalable: for a network
with n links, it is implemented as a system of n nonlinear equations. This makes it suitable
for large-scale network analysis. The proposed method is validated with a simple synthetic
toy network. It is then applied to a high-dimensional problem for a large-scale network
of Singapore. It is benchmarked versus a general-purpose derivative-free pattern search
algorithm and versus the SPSA (Simultaneous Perturbation Stochastic Approximation)
algorithm. Experiments with a computational budget of 20 simulation runs are carried out.
The proposed method yields an average improvement of the objective function of 2 orders
of magnitude, while the benchmark methods, GPS and SPSA, yield average improvements
of between 4.4% and 1.4%, respectively. Experiments with larger computational budgets
are also carried out. They indicate that even when allowing for more than double the
computation time of the proposed method, the benchmark methods are still outperformed
by the proposed method by 2 orders of magnitude.

This remarkable computational efficiency is achieved thanks to the structural infor-
mation provided by the analytical network model. The latter is differentiable, tractable
and scalable. Hence, it enables high-dimensional calibration problems to be addressed
efficiently. Moreover, the structural information it provides the SO algorithm enables it
to become robust to the quality of the initial points.

For general OD estimation problems, the travel behavior that underlies the traffic
measurements (e.g., route choice, mode choice) is unknown. This contributes to the ob-
servability issue. Nonetheless for OD calibration problems of traffic models, where the
goal is to estimate the parameter inputs of the traffic simulator, the behavioral models
of the traffic simulators are specified. This specification information can be directly used
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in the calibration algorithm to design efficient algorithms. For example, in this paper,
Equations (7) and (10), respectively, are approximations of the route choice model and of
the fundamental diagram of the specific simulator used. Since the simulator specifications
tend to be intricate (e.g., rely on dynamic and traveler-specific information), the challenge
lies in the formulation of approximate expressions that are also analytical, differentiable
and computationally tractable to evaluate.

The general OD estimation problem is underdetermined. This makes the problem par-
ticularly difficult. A recent review and discussion on this is included in Yang et al. (2018),
Yang and Fan (2015). The use of, more recently available, disaggregate travel data (e.g.,
trajectory, license plate, cell phone) has great potential to address this issue (Castillo et al.
2008). As part of ongoing work, we are extending the proposed methodology to account
for turning proportions. The metamodel approach then relates these field measurements
to route choice probabilities, which significantly improves the underdetermination prob-
lem. In the study of data traffic across computer networks, this issue has been extensively
studied under the name of passive network tomography or inferential network monitoring
(reviews include Xi et al. (2015), Lawrence et al. (2006), Castro et al. (2004)). Similar to
the transportation literature, the underdetermination issue has been addressed through
the use of parametric statistical models. Most OD estimation problems for data networks
are formulated as stochastic OD estimation problems, with similar ideas than those re-
cently proposed by Yang et al. (2018). In both fields a major challenge is the design of
scalable and computationally efficient techniques. Just like the transportation literature
has inspired the computer science literature (Xi et al. 2015), our transportation meta-
model ideas could be used to enhance the scalability and efficiency of network tomography
methods. Moreover, the various analytical queueing models formulated for data traffic
could be readily used to formulate similar metamodels.

Recent ideas proposed by Yang and Fan (2015), indicate that the use of only partial
information from the prior OD matrix, rather than using the full matrix, can contribute to
improve the quality of the OD estimation and the uniqueness of the underlying solution.
A natural extension to this research is the design of efficient online calibration algorithms
for both high-dimensional problems and large-scale networks. One approach is to combine
an efficient offline sampling strategy with an efficient online optimization strategy. The
proposed approach can be used both as the basis of the offline sampling strategy and
to identify a small set of points to simulate in real-time. The use of a time-dependent
analytical network model may be of interest, a time-dependent metamodel formulation
was proposed for signal control in Chong and Osorio (2018). The use of metamodels to
perform joint calibration of demand and supply parameters is also of interest. The an-
alytical structural information provided by these metamodels can also enable the use of
higher-resolution mobility data for calibration. For instance, analytical approximations
of, link or path, travel time distributions can be used in combination with trajectory data
for enhanced calibration. The extension of this framework for efficient online calibration
could also by achieved by embedding structural assumptions on the traffic dynamics. For
instance, quasi-dynamic assumptions (Cascetta et al. 2013, Marzano et al. 2015) could
contribute to account for dynamics in a tractable way. The computational budgets con-
sidered in this manuscript are considered tight even for the recent extensions of SPSA,
such as c-SPSA (Tympakianaki et al. 2015) and and W-SPSA (Lu et al. 2015). Of ongoing
interest is the combination of these metamodel ideas with these recent SPSA formulations,
such as to further enhance their computational efficiency.

40



Acknowledgments

The work of C. Osorio is partially supported by the U.S. National Science Foundation
under Grant No. 1351512. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We acknowledge the support of the Intelligent
Transportation Systems (ITS) Lab both at MIT and SMART (Singapore-MIT Alliance
for Research and Technology). Special thanks to Dr. Bilge Atasoy and Ravi Seshadri for
their help in using the Singapore network model, which was developed and calibrated by
the DynaMIT team at SMART.

Appendices

A Metamodel fitting process

This appendix details how the metamodel parameters are fitted. This corresponds to
Step 1 of Figure 1. This occurs at every iteration of the algorithm. At iteration k, the
metamodel parameters βk are fitted by solving the following least squares problem.

min
βk

∑

d∈Sk

{

wk(d)(Ê[Fi(d, u1;u2)]− (βk,0fA(d) + φ(d;βk))
}2

+ w2
0



(βk,0 − 1)2 + β2
k,1 +

card(Z)
∑

z=1

β2
k,z+1



 ,

(13)

where Ê[Fi(d, u1;u2)] denotes the simulation-based estimate of the expected flow on link i
for point d (i.e., OD matrix d), Sk represents the set of points simulated up until iteration
k, φ(d;βk) is defined by Eq. (4), w0 is an exogenous (fixed) scalar weight coefficient (which
is set to 0.001) and wk(d) is a scalar weight for point d defined, as in Osorio and Bierlaire
(2013), by the following equation:

wk(d) =
1

1 + ‖d− dk‖2
, (14)

where dk denotes the current iterate.
Problem (13) fits the metamodel parameters by solving a weighted least squares prob-

lem. The first term of Problem (13) represents the weighted distance between the link
flows predicted by the metamodel and those estimated by the simulator. For a given point
d, its weight is proportional to its distance from the current iterate, dk. This aims to
improve the local (in the vicinity of the current iterate) fit of the metamodel. The second
term of Problem (13) accounts for the distance between the parameter, βk, and initial (or
prior) values. This second term ensures that the least square matrix is of full rank. The
initial values used correspond to an initial metamodel that is solely based on the analytical
network model (i.e., βk,0 = 1 and for j ≥ 1 βk,j = 0).

If the analytical network model does not provide a good approximation of the simulation-
based function (i.e., if fA does not approximate well the first summation term of Equa-
tion (1)), then the scalar βk,0 will asymptotically tend to zero, and the metamodel predic-
tions will be governed by the functional term of the metamodel (i.e., the function φ). The
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functional term also serves to asymptotically guarantee that the metamodel can provide a
good local approximation to an arbitrary simulation-based function. This paper focuses on
the non-asymptotic (e.g., small-sample, tight computational budget) performance of the
SO algorithm, which reflects the way transportation researchers and practitioners alike
use these algorithms. A discussion of the asymptotic properties and performance of the
underlying SO algorithm can be found in Osorio and Bierlaire (2013).
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