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a b s t r a c t 

Road transportation simulators are increasingly used by transportation stakeholders 

around the world for the analysis of intricate transportation systems. Model calibration is 

a crucial prerequisite for transportation simulators to reliably reproduce and predict traffic 

conditions. This paper considers the calibration of transportation simulators. The method- 

ology is suitable for a broad family of simulators. Its use is illustrated with stochastic and 

computationally costly simulators. The calibration problem is formulated as a simulation- 

based optimization (SO) problem. We propose a metamodel approach. The analytical meta- 

model combines information from the simulator with information from an analytical dif- 

ferentiable and tractable network model that relates the calibration parameters to the 

simulation-based objective function. The proposed algorithm is validated by considering 

synthetic experiments on a toy network. It is then used to address a calibration prob- 

lem with real data for a large-scale network: the Berlin metropolitan network with over 

24300 links and 11300 nodes. The performance of the proposed approach is compared to 

a traditional benchmark method. The proposed approach significantly improves the com- 

putational efficiency of the calibration algorithm with an average reduction in simulation 

runtime until convergence of more than 80%. The results illustrate the scalability of the 

approach and its suitability for the calibration of large-scale computationally inefficient 

network simulators. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

This paper focuses on the calibration (i.e., the estimation of the input parameters) of simulation-based road transporta-

tion models. We use the term “traffic simulator” to denote any simulation-based transportation model, whether macroscopic,

mesoscopic or microscopic. The problem of model calibration has been extensively studied by the transportation commu-

nity. A survey of both analytical and simulation-based calibration problems and algorithms is given in Balakrishna (2006) .

The most extensively studied calibration problem is, arguably, that of the calibration of origin-destination (OD) matrices,

with seminal work such as Cascetta and Nguyen (1988) ; Cascetta et al. (1993) and more recent work such as Zhou and

Mahmassani (20 07; 20 06) ; Zhou (2004) ; Ashok and Ben-Akiva (2002) and Ashok (1996) , as well as the deployment of path

flow estimators (PFEs), with the seminal work of Bell et al. (1997) . Recent PFE reviews include Flötteröd (2008) and Buisson

et al. (2012) . 
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This paper focuses on the calibration of simulators that are computationally costly to evaluate. The high computational

cost can be due to: (i) the simulation of high levels of demand along with a high-resolution representation of demand

(e.g., disaggregate representation of travelers), (ii) the simulation of a large-scale network, (iii) the use of a stochastic sim-

ulator requiring the evaluation of numerous simulation replications, (iv) the desire to evaluate performance under equilib-

rium conditions, which requires running sequentially multiple simulation-based assignment iterations ( Nagel and Flötteröd,

2012 ). 

Given the high computational costs involved in evaluating the simulation models, there is a need for calibration algo-

rithms that can identify solutions with good performance at a low computational cost. That is, algorithms that can identify

good solutions within few algorithmic iterations, i.e., with few simulated (near-)equilibrium responses. 

We first discuss the main challenges of addressing calibration problems. We then state how the approach proposed in

this paper addresses these challenges. The traffic model is often stochastic. It can involve sampling for every traveler from

a variety of disaggregate behavioral models (e.g., choice models such as departure time, mode, route, lane-changing, etc.).

Thus, a single run of the simulator involves drawing, for each of the thousands or hundreds of thousands of travelers, from

a set of behavioral distributions. Given a sample of behavioral choices, a traffic flow model is used to propagate the travelers

throughout the network. A review of state-of-the-art simulation models is presented in Barceló (2010) . Thus, the mapping

between the calibration parameters and the probability distribution of a given performance metric (e.g., the objective func-

tion of a calibration problem) is an intricate function. 

This mapping is often non-convex and may contain multiple local minima. The stochasticity of the simulator requires

the use of optimization algorithms that account for the lack of both: (i) a closed-form expression of the objective function

and, (ii) exact function evaluations (since the functions can only be estimated via simulation). The traditional statistical and

numerical algorithms are of limited use for calibration problems, since the underlying simulators often lack the strong as-

sumptions required by these methods (e.g., normality, ergodicity) ( Buisson et al., 2012 ). Hence, the traditional approach to

calibration has been the use of simulation-based optimization (SO) algorithms. Most SO algorithms are general-purpose algo-

rithms, they are not tailored to the intricacies of transportation simulators. They have been used extensively for calibration,

several reviews include Ben-Akiva et al. (2012) ; Balakrishna (2006) and Antoniou (2004) . Algorithms frequently used for cal-

ibration include simultaneous perturbation stochastic approximation (SPSA) ( Spall, 1992 ), genetic algorithms (GA) ( Holland,

1975 ), particle filters and Kalman filters. 

The generality of these SO algorithms stems from the fact that they treat the simulator as a black-box. The main impli-

cation of this is that they are designed to achieve asymptotic (i.e., large-sample size) convergence properties. They are not

designed to identify good solutions within few algorithmic iterations, i.e., they are not computationally efficient. Yet they

are used by the transportation community under tight computational budgets, i.e., under small-sample size conditions. One

approach to derive computationally efficient algorithms, is to exploit the structure of the underlying calibration problem.

General-purpose SO algorithms exploit limited problem-structure (e.g., at most they are based on numerical linearizations).

One recent work that does exploit problem structure within the calibration algorithm is that of Flötteröd et al. (2011) . It

formulates and embeds within the algorithm an analytical approximation of the first-order derivative of the simulator’s

measurement equation. This leads to significant reductions in the computational requirements of the algorithm. 

Traditional SO algorithms, although designed to guarantee asymptotic properties, are typically used for calibration under

tight computational budgets. This makes them sensitive to the initial points. Given the difficulty of identifying good initial

points to the calibration problem, there is a need for algorithms that perform well under tight computational budgets while

being robust to the quality of the initial points. Additionally, the lack of computationally efficient calibration algorithms

has led recent calibration research to focus on the design of dimensionality reduction methods (e.g., sensitivity analysis

methods) ( Ge et al., 2014; Ge and Menendez, 2016; 2014; Ciuffo and Azevedo, 2014 ). 

This paper addresses the following challenges. 

Computational efficiency We propose an algorithm that can identify points with good performance within few algorith-

mic iterations. Therefore, it is a computationally efficient algorithm that reflects well the computational conditions

under which calibration problems are addressed by both the transportation research and practice communities. This

is achieved by designing an algorithm that exploits the transportation-specific structure of the calibration problem.

More specifically, the proposed approach solves at every iteration of the calibration algorithm, an analytical (i.e., not

simulation-based) approximate calibration problem. This analytical problem is solved by using information from an

analytical traffic model. The latter is highly efficient. It is formulated as a system of nonlinear equations. Hence, it can

be evaluated with a variety of efficient solvers. This is key for the efficiency of the calibration algorithm. 

The proposed approach resorts to the use of a derivative-free algorithm. In other words, it does not rely on esti-

mates of the derivatives of the simulation-based objective function. This further contributes to the efficiency of the

algorithm. 

Analytical structural information The algorithm embeds an analytical approximation of the simulator. This contributes

to a largely unresolved methodological challenge which is the formulation of tractable measurement equations that

link available surveillance field data to the simulator’s calibration parameters. 

Robustness to initial conditions The algorithm can identify good solutions within few iterations regardless of the initial

points. It is robust to the quality of the initial points. 

Stochasticity The algorithm is a simulation-based optimization algorithm that accounts for the simulator’s stochasticity. 
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Large-scale networks The algorithm is applied to a calibration problem for the Berlin metropolitan network (over 24300

links and 11300 nodes). Compared to a black-box algorithm, the proposed approach reduces simulation runtime un-

til convergence by more than 80%, on average. This illustrates the efficiency of the approach for the calibration of

large-scale networks. The design of a calibration algorithm suitable for large-scale networks is achieved with the for-

mulation of a scalable analytical model. In particular, the model is defined as a system of nonlinear equations with a

dimension that scales linearly with the number of links, and linearly with the number of OD pairs. 

This paper formulates the calibration problem as a simulation-based optimization problem and uses a metamodel SO

algorithm. The paper formulates a novel metamodel suitable for demand calibration problems. The algorithm is used to

address a calibration problem for a large-scale Berlin metropolitan network. Section 2 presents the proposed methodology,

followed by case studies on both a toy network and a Berlin metropolitan network ( Section 3 ). We conclude with a brief

discussion ( Section 4 ). Appendix A details the SO algorithm. Appendix B contains a list of the notation used throughout the

paper. Appendix C contains additional details of the numerical results of Section 3 . 

With the increase in the availability, diversity and quality of travel data, comes an increasing interest and relevance of

the joint calibration of demand and supply parameters (e.g., Balakrishna, 2006; Antoniou et al., 2007; Vaze et al., 2009 ). The

formulation of the proposed framework for the calibration of supply parameters has been recently derived ( Zhang et al.,

2016a ). Thus, we expect the general ideas presented in this paper to be suitable for the joint calibration of demand and

supply parameters. 

This paper illustrates the use of the proposed algorithm with the calibration of a single demand parameter. Hence, the

results do not indicate the suitability of the approach for high-dimensional problems. Nonetheless, the metamodel ideas

proposed in this paper have shown to be scalable for traffic management problems (e.g., Osorio and Chong, 2015; Chen

et al., 2012 ). We expect these ideas to also scale well for calibration problems. 

The case studies show that the proposed algorithm identifies good solutions within a couple of iterations. Hence, it can

also be used as a technique to identify good initial solutions to launch or initialize traditional general-purpose calibration

algorithms. This is particularly important when using the general-purpose algorithms under tight computational budgets, 

which are by design sensitive to the initial conditions. 

2. Methodology 

The general framework discussed in this paper is suitable to address a broad class of calibration problems (e.g., demand,

supply, time-independent, time-dependent, etc.). Section 2.1 formulates a general calibration problem. Section 2.2 presents

a framework suitable to address this general problem. More specifically, the framework is based on the use of a family of

optimization algorithms known as metamodel simulation-based optimization (SO) algorithms. In order to provide a more

detailed formulation of the proposed framework, Section 2.3 focuses on one specific calibration problem which is a time-

independent one-dimensional demand calibration problem. Section 2.3 formulates the calibration problem as a metamodel

SO problem. It then formulates a suitable metamodel. 

2.1. Formal problem statement 

We consider the calibration of travel demand parameters from link flows. Origin-destination (OD) pairs are trip produc-

tion and attraction points connected by a set of routes in an urban network. Let τ and i index the simulation time intervals

of duration T and the network links, respectively, and let n = 1 . . . N index the individual trip-makers (i.e., simulated travel-

ers or agents) in the system. Denoting by �ni τ ∈ {0, 1} the stochastic binary indicator of traveler n crossing link i in time

interval τ , the stochastic simulated link flow rate F i , τ on link i in time interval τ is 

F i,τ = 

1 

T 

N ∑ 

n =1 

�niτ (1) 

with the expectation 

E[ F i,τ ] = 

1 

T 

N ∑ 

n =1 

δniτ , (2) 

where δniτ = E[�niτ ] is the probability that traveler n crosses link i in time interval τ ( Flötteröd and Bierlaire, 2009 ). This

probability is in turn dependent on the network conditions x , in particular travel times of the various routes, which in

turn depend on the travel behavior (e.g., departure time, route choice), requiring typically to solve (2) iteratively. This is

subsequently expressed by writing δniτ = δniτ (θ ; x ) with θ a parameter vector of the underlying behavioral model. Here, θ
represents a general calibration parameter vector. It can include, for instance, coefficients of attributes of behavioral models,

such as the travel time coefficient of a route choice model or of a departure time choice model. In a transportation simulator

that simulates the movement of individual travelers (microscopic and often mesoscopic), these iterations can be interpreted

as a learning process over subsequent days, where in each day some travelers update their travel decisions (typically route
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choice, in some models also time and mode choice) based on the most recent network conditions x , followed by a simulation

of the corresponding vehicle flows through the network, which in turn yields updated network conditions. 

Let y i , τ be the number of vehicles counted in the field on link i in time interval τ . A traditional nonlinear least squares

formulation of the calibration problem is then to minimize the following objective function: 

f (θ ) = min 

θ∈ �

∑ 

i ∈I 

∑ 

τ

( y i,τ − E[ F i,τ (θ ; x )] ) 
2 
. (3)

The summation considers all time intervals τ and all links i that belong to the set of links with measurements available,

denoted I . The feasible region � is defined analytically, and often consists of simple bound constraints. 

Formulation (3) illustrates the main challenges of the calibration problem described in Section 1 . The function E [ F i , τ ( θ ;

x )] has no closed-form expression available, since x (e.g., the travel times) and E [ F i , τ ( θ ; x )] (i.e., the expected link flows)

can only be estimated by evaluating the stochastic simulation model. Thus, Problem (3) cannot be solved using traditional

analytical and deterministic optimization approaches. The function E [ F i , τ ( θ ; x )] is a nonlinear function that describes intri-

cate spatial-temporal traffic phenomena in the stochastic traffic simulator and lacks sound mathematical properties such as

convexity. 

The purpose of this paper is to propose an efficient calibration algorithm for such difficult problems. The main idea is

to embed within the algorithm analytical structural problem-specific information. In particular, we propose to formulate

and provide the algorithm with an analytical approximation of the relationship between θ and E [ F i , τ ( θ ; x )]. We expect this

analytical information to enable computational efficiency. 

Developing such an analytical approximation is a challenging problem because the approximated mapping involves the

highly nonlinear and stochastic network loading map of path flows on network conditions, comprising in the simulation

context all difficulties that come along with real traffic flow dynamics in urban networks (including, e.g., multi-lane flows,

spillbacks, flow interactions in intricate intersections). 

2.2. Metamodel simulation-based optimization methods 

The following summary of ideas developed by Osorio and Bierlaire (2013) is needed to make the proposed calibration

approach concrete. The broad family of SO problems considered can be formulated as follows: 

min 

θ∈ �
f (θ, z; ˆ q ) . (4)

Problem (4) consists of two components: a simulation-based objective function f , and a feasible region �. The objective

function f is not available in closed-form, it can only be estimated via simulation. It depends on: the calibration parameters

θ , endogenous simulation variables z (e.g., link flows, travel times) and exogenous simulation parameters ˆ q (e.g., network

topology). The feasible region � is defined by a set of constraints assumed analytical (rather than simulation-based), differ-

entiable and of general-form (e.g., non-convex). 

For a review of metamodel SO methods, we refer the reader to Osorio (Chap. 5, 2010 ). The main idea underlying meta-

model SO algorithms is to address the simulation-based Problem (4) by iteratively solving a set of analytical problems. At

iteration k the SO algorithm solves an analytical problem with the following form: 

min 

θ∈ �
m k (θ ;βk ) . (5)

The main idea is to replace the simulation-based objective function ( f in (4) ) with an analytical approximation of it ( m k

in (5) ). The function m k is known as the metamodel. It is often a parametric function, with the iteration-specific parameter

vector, βk , often being fitted based on simulated observations. Metamodel SO techniques iterate over two main steps. First,

the metamodel is constructed based on the sample of simulated observations. Second, it is used to perform optimization and

derive a trial point (e.g., a calibration parameter value). The performance of the trial point can be evaluated by the simulator,

which leads to new simulation observations. As new observations become available the accuracy of the metamodel can be

improved (Step 1), leading ultimately to better trial points (Step 2). In this paper, we use the derivative-free trust region

algorithm of Conn et al. (2009) . A full description of the algorithm is provided in Section 4.2 of Osorio and Bierlaire (2013) .

In order to use this framework for calibration, the main challenge is to formulate a metamodel that: (i) provides a good

approximation of the mapping of the decision vector to the objective function, and (ii) is also computationally efficient

such that Problem (5) , which needs to be solved at every iteration of the algorithm, can be solved efficiently. This paper

contributes by formulating a metamodel that achieves these two goals. 

Metamodels can be classified as either: (i) functional models, these are general-purpose functions suitable to approximate

an arbitrary function f (e.g., polynomials); (ii) physical models, these are problem-specific functions. In other words, their

functional form depends on the specific problem. 

We use a metamodel that combines ideas from functional models and physical models. At iteration k it is defined by: 

m k (θ ;βk ) = βk, 0 f A (θ ) + φ(θ ;βk ) . (6)

Eq. (6) defines m k as a linear combination of a general-purpose parametric function (e.g., a polynomial) denoted φ and a

problem-specific approximation of f (defined in (4) ) denoted f A . The first element of the vector βk is denoted βk ,0 . Based
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on (6) , the metamodel can be interpreted as a problem-specific approximation ( f A ) which is corrected by a scaling factor

( βk ,0 ) and an additive general-purpose correction term ( φ). 

The problem-specific approximation ( f A ) is derived from an analytical macroscopic traffic model. Hence, the analytical

problem solved at every iteration is defined by: 

min 

θ∈ �
m k (θ ;βk ) (7) 

h (θ, ̃  v ; ˜ q ) = 0 , (8) 

where h denotes the analytical macroscopic traffic model, with endogenous variables θ and 

˜ v (e.g., expected link queue-

lengths) and exogenous parameters ˜ q (e.g., network topology). This problem differs from Problem (5) in the presence of an

additional set of constraints (8) . This set of constraints represents the analytical macroscopic traffic model used. 

The key to achieving computational efficiency is in formulating a problem-specific approximation f A that is a good ap-

proximation of the true, unknown, simulation-based objective function f . Hence, for a given transportation problem the main

challenge is in the formulation of a suitable traffic model (function h of (8) ) that satisfies the following requirements. 

(i) It leads to a good analytical approximation ( f A ) of the simulation-based objective function ( f ). 

(ii) It is a scalable traffic model, such that large-scale networks can be addressed. 

(iii) It is computationally efficient to solve. Every iteration of the SO algorithm requires solving Problem (7) –(8) , which

contains the analytical traffic model as a set of constraints. Hence, the traffic model needs to be computationally

inexpensive to evaluate. 

The broad family of metamodels defined by (6) have been used to efficiently address large-scale urban traffic manage-

ment problems while using inefficient yet detailed stochastic microscopic simulators ( Osorio and Selvam, 2016; Osorio and

Chong, 2015; Osorio and Nanduri, 2015a; 2015b; Chen et al., 2012; Chong and Osorio, 2016 ). Metamodel approaches have

also been used recently for addressing various transportation problems, such as in Chen et al. (2016) , where a pricing opti-

mization problem is addressed based on a large-scale mesoscopic network model. As in traditional simulation literature, the

metamodel of Chen et al. (2016) is a general-purpose (also known as a functional) metamodel. This comes with the advan-

tage of being a general-purpose methodology, which can be directly applied to a problem regardless of its formulation (e.g.,

the choice of the objective function, the decision variables, the underlying network structure). Nonetheless, general-purpose

metamodels lack problem-specific structural information, and hence are not designed to be computationally efficient. 

2.3. Metamodel formulation 

The novel methodology proposed in this paper is valid for a general class of calibration problems. In order to illustrate

and implement a specific instance of it, we focus, hereafter, on: (i) a time-independent calibration problem (i.e., we consider

a single time interval), (ii) the calibration of a single behavioral parameter, a scalar θ , which governs route choice. Recall,

that Section 2.2 presented a general calibration problem with a general calibration vector denoted θ . This section considers

a specific calibration problem. Hence, θ now represents a scalar that denotes the travel time coefficient of a route choice

model. 

The specific SO problem is then formulated as: 

f (θ ) = min 

θ

∑ 

i ∈I 
( y i − E[ F i (θ ; x )] ) 

2 
(9) 

θL ≤ θ ≤ θU , (10) 

where θ L (resp. θU ) denotes a lower (resp. upper) bound. The purpose of the metamodel is to approximate the simulation-

based performance metric E [ F i ( θ ; x )], which denotes the expected flow of link i . Let m i , k denote the analytical approximation

of E [ F i ( θ ; x )] at iteration k of the SO algorithm. Given an expression for m i , k , the SO algorithm would then solve a series of

problems of the form: 

min 

θ

∑ 

i ∈I 

(
y i − m i,k (θ ;βi,k ) 

)2 
(11) 

θL ≤ θ ≤ θU (12) 

h (θ, ̃  v ; ˜ q ) = 0 , (13) 

where h denotes the analytical traffic model used to analytically approximate the expected link demands. 

The metamodel is formulated for link i and iteration k as: 

m i,k (θ ;βi,k ) = βi,k, 0 λi (θ ) + βi,k, 1 + βi,k, 2 θ, (14) 
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where θ is the (scalar) behavioral parameter, λi ( θ ) is the expected demand for link i approximated by the analytical traffic

model, and β i , k is a three-dimensional vector of metamodel parameters: βi,k = [ βi,k, 0 , βi,k, 1 , βi,k, 2 ] . The metamodel can be

interpreted as the analytical approximation ( λi ( θ )) corrected by a scaling factor ( β i , k ,0 ) and an additive linear in θ error term

(represented by βi,k, 1 + βi,k, 2 θ ). Flötteröd et al. (2011) formulate a related calibration problem using a metamodel of the form

(14) with β i , k ,0 set to zero. In other words, it is a general-purpose (i.e., purely functional) metamodel that is also scalable

and tractable, yet it does not embed an analytical problem-specific network model that provides structural information to

the algorithm. 

We now present the analytical traffic model that will yield the analytical approximation of expected link demands ( λi ( θ )).

The model is a probabilistic and differentiable network model. We map the road network as a probabilistic queueing net-

work. Each link is modeled as a single queue. Hereafter, the terms “link” and “queue” are used interchangeably. We first

introduce notation, we then present the model formulation and comment on its derivation. 

d s expected travel demand for OD pair s ; 


 i space capacity of queue i ; 

l i length of link i (road length); 

v i maximum speed of link i ; 

μi service rate of queue i ; 

γ i expected external demand of queue i ; 

λi expected demand of queue i ; 
˜ t i expected travel time of queue i ; 

˜ n i expected number of vehicles in queue i ; 

p ij turning probability from queue i to queue j ; 

t r expected travel time of route r ; 

f r expected demand on route r ; 

˜ p sr probability that a traveler of OD pair s takes route r ; 

θ travel time coefficient of the route choice model; 

S set of OD pairs; 

Q set of queues; 

R set of routes; 

R s set of routes of OD pair s ; 

G i j set of routes that consecutively go through queues i and j ; 

H i set of routes that go through queue i ; 

T i set of routes that start with queue i ; 

�r set of links of route r . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f r = 

∑ 

s ∈S 
d s ̃  p sr ∀ r ∈ R (a ) 

˜ p sr = 

e θt r ∑ 

j∈R s 
e 
θt j 

∀ s ∈ S, ∀ r ∈ R s (b) 

t r = 

∑ 

i ∈ �r 

˜ t i ∀ r ∈ R (c) 

˜ t i = 

l i 
v i 

+ 

˜ n i 
λi 

∀ i ∈ Q (d) 

˜ n i = 

˜ ρi 

1 − ˜ ρi 
− (
 i +1) ̃ ρ


 i +1 

i 

1 − ˜ ρ

 i +1 

i 

∀ i ∈ Q (e ) 

˜ ρi = 

λi 

μi 
∀ i ∈ Q ( f ) 

λi = γi + 

∑ 

j∈Q 
p ji λ j ∀ i ∈ Q (g) 

p i j = 

∑ 

r∈G i j 
f r ∑ 

w ∈H i f w 
∀ i ∈ Q , ∀ j ∈ Q (h ) 

γi = 

∑ 

r∈T i 
f r ∀ i ∈ Q (i ) 

(15)

Eq. (15) a describes how expected OD demand is mapped to expected route demand through the route choice model. In

other words, it defines the expected route demand as a weighted sum of expected OD demands. Eq. (15) b is the route choice

model. It is a multinomial logit (MNL) model with a single attribute: expected route travel time. This is a simplification of

the route choice model used in the simulation models of the case studies of Section 3 . For a detailed description of the

route choice models of the simulator, see Zhang et al. (2016b ). Eq. (15) c defines the expected route travel time as the sum

of expected link travel times. 

Eq. (15) d approximates the expected link travel time as the sum of expected free-flow travel time and expected delay.

The analytical approximation model used here is based on stochastic point queues, meaning that it does not capture spill-

backs and that all link outflow constraints result from the link’s downstream bottleneck capacity. Recall that the structural
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metamodel is, by design, a simplified approximation of the simulator, which may itself use space queues and capture spill-

backs. The expected time it takes a vehicle to traverse a spatial link with a point queue downstream bottleneck is the sum

of: (i) the time to join the point queue, which corresponds to term 

l i 
v i 

and represents a constant free-flow travel time, and

(ii) the expected delay or time needed to pass the bottleneck, which corresponds to term 

˜ n i 
λi 

and is obtained by modeling

the downstream bottleneck capacity as a distributed quantity in order to capture variability in link discharge flows. 

The expected delay is based on the use of Little’s law ( Little, 2011; 1961 ), assuming an infinite space capacity queue.

The expected free-flow travel time is defined as the travel time to travel the link at maximum speed. Eq. (15) e approxi-

mates the expected queue-length of a given queue. It is obtained by considering the queue as an isolated M/M/1/ 
 queue,

with finite space capacity 
 . A derivation of this expression can be found in Appendix A of Osorio and Chong (2015) . Eq.

(15) f defines ˜ ρi , which is known as the traffic intensity of the queue, as the ratio of expected demand to expected supply.

Eq. (15) g is a flow conservation equation that relates the expected demand on queue i (denoted λi ) to the sum of expected

external demand to queue i (denoted γ i ) and expected demand arising from upstream queues. The expected demand, λi ,

is also referred to as the arrival rate of the queue. The expected external demand, γ i , represents demand that arises from

outside the network, i.e., trips that start at queue i . The turning probability form queue i to queue j (denoted p ij ) is defined

by Eq. (15) h as the ratio of the expected demand from i to j and the expected demand of queue i . The expected external

demand for queue i is defined in Eq. (15) i as the sum of the expected demand over all routes that start at queue i . 

For the simulation model of the case studies, the set of route alternatives for a given OD pair is endogenous (i.e., it varies

with θ and across assignment iterations). Nonetheless, for the purpose of tractability a fixed (i.e., exogenous) route choice

is considered for the analytical model. For every OD pair, a set of 10 routes is constructed. Details on the derivation of this

choice set are given in Zhang et al. (2016b ). Since the analytical model does not capture congestion-dependent route choice

changes, these are captured by the polynomial component ( φ of Eq. (6) ) of the metamodel. The use of an endogenous,

iteration-dependent, route choice set could yield more accurate analytical results, yet at the cost of a higher computational

burden. 

In summary, the analytical approximation of λi ( θ ) of Eq. (14) is obtained by evaluating the analytical network model

defined by the system of nonlinear differentiable Eqs. (15) . The exogenous parameters of this system of equations are:

θ, d s , μi , γi , 
 i , l i , v i , S, Q , R , R s , G i j , H i , T i , �r . All other variables are endogenous variables that are obtained when solving

the above system of equations. 

As is illustrated with the case studies of Section 3 , the proposed model (system of Eqs. (15) ) works well for scenarios

with various levels of congestion, including congested scenarios. This is remarkable given that the model does not account

for the occurrence of spillbacks and their impact on the performance of upstream links. Nonetheless, the model accounts

for the impact of the link’s finite space capacity on the expected link delay. More specifically, the expected link travel time

equation ( Eq. (15) d) consists of the summation of expected link free-flow travel time and expected link delay. The delay

term is based on the approximation of the expected number of vehicles on the link ( Eq. (15) e) which assumes that each

link has a finite space capacity (denoted 
 i ). Hence, the impact of finite space capacity on the expected delay is accounted

for. 

Eq. (13) represents the system of Eqs. (15) . The function h is of class C ∞ . There exists a variety of algorithms to efficiently

solve this differentiable system of nonlinear equations. The dimension of the system of equations scales linearly with the

number of links in the network and linearly with the number of OD pairs. This makes it a scalable model suitable for the

calibration of large-scale networks. 

This metamodel framework is not constrained to the use of the concrete analytical queueing-theoretic network model

(15) but is compatible with a variety of other analytical network models. We consider this flexibility a strength of the 

proposed framework. The proposed analytical model is particularly efficient, since its evaluation consists of solving a system

of nonlinear equations, the dimensionality of which scales linearly with the number of links in the network and linearly with

the number of OD pairs. This makes it a scalable model suitable for the calibration of large-scale networks. The proposed

framework can be used with other analytical network models. Ongoing work studies the use of traffic-theoretic network

loading models for simulation-based optimization, such as the model of Osorio and Flötteröd (2014) , which is a stochastic

model consistent with Newell’s deterministic simplified theory of kinematic waves ( Newell, 1993 ). The use of approximate

expressions of local, and path marginal cost functions (e.g., Ghali and Smith, 1995; Shen et al., 2007; Qian and Zhang, 2011;

Lu et al., 2013 ) could be of interest. The main challenge in using more traditional traffic-theoretic models is to develop

formulations that both: (i) have endogenous user-equilibrium assignment, and (ii) are computationally efficient for large-

scale networks. 

The modeling of route choice sets is an in general unresolved problem; this is so because route choice sets are not

directly observable (e.g., Frejinger et al., 2009; Flötteröd and Bierlaire, 2013 ). We hence consider it adequate to deploy the

simplest possible approach to route choice set generation (where the choice set is exogenously given) and to rely on the

general-purpose polynomial term in the metamodel to absorb the resulting modeling error. 

We briefly describe how the exogenous route choice set is derived. A more detailed description is provided in Zhang et al.

(2016b ). The exogenous set consists of 10 route alternatives per OD pair. We consider different behavioral parameter values.

For a given value, we run a set of sequential assignment iterations, and extract the set of routes used by the simulator in

the last assignment iteration. We group the set of routes extracted from the various behavioral parameter values. Then for

a given OD pair, the final set of 10 routes is determined by selecting the set (of 10 routes) with maximal distance-based
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Table 1 

Network attributes. 

Toy network Berlin network 

Number of links 6 24335 

Number of nodes 6 11345 

Number of OD pairs 1 3635 

Expected demand (veh/h) 1400 172900 

Table 2 

Experimental design. 

Toy network Berlin network 

Bounds for θ values (1/h), [ θ L , θU ] [ −60 , 0] [ −60 , 0] 

True θ values (1/h), θ ∗ {−5 , −20 , −55 } N.A. 

Initial θ values (1/h), θ0 { 0 , −40 , −60 } { 0 , −40 , −60 } 
Computational budget 30 20 

Simulation replications 5 10 

Simulation assignment iterations 50 100 

Total simulation assignment iterations per algorithmic run 7500 20 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

overlap with the entire set of extracted routes. For a given network, this process is carried out once, prior to calibration.

The route choice set is then kept fixed throughout the entire calibration process. 

The use of an exogenous choice set contributes to the computational efficiency of the proposed approach. As will be dis-

cussed in Section 3.3.2 , for the Berlin metropolitan network, the analytical model with exogenous route choice set yields an

accurate approximation of the form of the simulation-based objective function. This highlights the negligible effect that the

exogenous route choice set has on the analytical model’s accuracy. Nonetheless, this observation is network- and problem-

specific. A discussion on extensions of this framework to allow for the use of endogenous route choice sets is given in

Section 4 . 

3. Case studies 

3.1. Experimental design 

We apply the proposed approach to two case studies: a hypothetical toy network and a Berlin metropolitan network.

The simulator used is MATSim ( Horni et al., 2016 ). The main purpose of both case studies is to evaluate the added value of

embedding within the calibration algorithm the problem-specific analytical structural information, which is provided by the

analytical traffic model. For each case study, we compare the performance of two calibration approaches that only differ in

the use or not of the analytical traffic model. All other algorithmic details are identical. The first approach is the proposed

approach (denoted algorithm Am ). It uses the metamodel defined by (14) . The second approach (denoted algorithm A φ)

considers a metamodel defined for iteration k and link i as: 

φi,k (θ ;βi,k ) = βi,k, 1 + βi,k, 2 θ . (16)

This metamodel differs from that of (14) in the absence of the macroscopic traffic model. In other words, compared to Am ,

A φ uses the same general-purpose metamodel component but has no problem-specific metamodel component. 

The network topology characteristics of both networks are summarized in Table 1 . The main details of the experimental

design for each network are displayed in Table 2 . The first row of Table 2 considers the lower and upper bounds for θ , this

defines the feasible region, �. For the toy network, we consider a set of hypothetical θ values, based on which we simulate

synthetic traffic counts. The second row of the table displays these hypothetical values, which we refer to as the true values

and denote θ ∗. For the Berlin network, θ ∗ is unknown. Recall that θ is the travel time coefficient of the route choice model.

Hence its unit is the inverse of that of the travel time. In other words, the concrete value of θ depends on the time unit

used for travel time. For both networks, the travel times are computed in hours, hence the unit of θ is h 

−1 . 

For a given θ ∗, we initialize the SO algorithms with three different initial points, denoted θ0 . The initial values used are

displayed in row 3. Therefore, in total there are 9 different experiments for the toy network and 3 different experiments

for the Berlin network. For each experiment, we run each SO algorithm ( Am or A φ) 3 times. The need to run an algorithm

multiple times for a given experiment is due to the stochasticity of the traffic simulator. Each algorithmic run consists of a

maximum number of points ( θ values) to be evaluated. This is known as the computational budget or the sampling budget

(displayed in row 4). Once this computational budget is reached, the algorithm is terminated. 

For a given θ value, an estimate of the simulation-based objective function ( Eq. (9) ) is obtained by averaging over a set of

independent simulation replications. The number of independent simulation replications is displayed in row 5. Each simula-

tion replication consists of a sequential set of simulation assignment iterations (displayed in row 6). For a given simulation

replication, the estimate of E [ F ( θ ; x )] is obtained by averaging the observations from the last 5 assignment iterations. Details
i 
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Table 3 

Simulation runtime statistics in minutes. 

Toy network Berlin network 

Average runtime per assignment iteration 0 .06 1 .2 

Average runtime per SO iteration 3 120 

Average runtime per experiment 90 2400 

Fig. 1. Toy network topology. 

Table 4 

Toy network link properties. 

Link index Nodes connected Length (km) Maximum speed (km/h) Signalized 

1 1 → 2 2 .5 72 un-signalized 

2 2 → 3 7 .5 54 signalized 

3 3 → 5 2 .5 54 un-signalized 

4 2 → 4 7 .1 72 un-signalized 

5 4 → 5 7 .1 72 un-signalized 

6 5 → 6 2 72 un-signalized 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on how the assignment iterations are initialized are given in Zhang et al. (2016b ). The last row of the table indicates the

total number of simulation assignment iterations per SO algorithmic run. For example, for the toy network, the computation

of a single experiment (i.e., one run of the algorithm) requires a total of 7500 simulation assignment iterations: the perfor-

mance of a total of 30 θ values are estimated, each estimation involves 5 independent replications, each of which requires

50 sequential assignment iterations. This leads to a total of 30 × 5 × 50 = 7500 simulation assignment iterations. Similarly,

for the Berlin network each SO run involves 20 × 10 × 100 = 20000 simulation assignment iterations. In other words, we

allow for a tight computational budget, which is defined as a small number of iterations of the calibration algorithm. This

number is 30 (resp. 20) for the toy (resp. Berlin) network. Each iteration of the calibration algorithm, involves an estimation

of the simulation-based optimization objective function ( f of Eq. (9) ). For each estimation, we carry out a set of sequential

assignment iterations. Hence, each estimation involves calling the simulator 5 × 50 = 250 (resp. 10 × 100 = 10 0 0 ) times. 

Table 3 displays the runtime statistics considering the 9 (resp. 3) experiments for the toy (resp. Berlin) network. For the

toy network, a single assignment iteration takes an average of 0.06 min, leading to an average of 3 min per SO iteration

and 90 min per SO algorithmic run (i.e., one experiment). For the Berlin network an assignment iteration averages 1.2 min,

an SO iteration 120 min, and an algorithmic run 2400 min (i.e., 40 h). The toy network experiments are carried out on a

standard laptop with a 4-core Intel i7-3740QM processor and 8GB RAM. The Berlin network experiments are carried out on

a server with a 40-core Intel Xeon E5-2660 processor and 64GB RAM. 

3.2. Toy network 

3.2.1. Network attributes 

For the hypothetical toy network, we pick a set of true θ values, θ ∗ (row 2 of Table 2 ). We use these values to generate

the “real” traffic counts via simulation. The topology of the network is displayed in Fig. 1 . Each link consists of a single lane

road. Table 4 details the link properties. 

The network has one OD pair (node 1 to node 6) and an expected demand of 1400 vehicles per hour. There are two

alternative routes connecting the OD pair, a route to the north which goes through node 3 and a route to the south which

goes through node 4. The northern route has a signal controlled intersection at node 3, whereas the southern route is un-

signalized. The traffic signal control at node 3 is green for 75 seconds out of the 100 seconds cycle time. The free-flow travel

time on the route to the north (resp. south) is approximately 14.9 (resp. 15.5) min. The free-flow travel time on the route to

the north is shorter and hence it is preferred when there is no congestion. As congestion increases, the route to the south

becomes increasingly attractive. 



C. Zhang et al. / Transportation Research Part B 97 (2017) 214–239 223 

×104

7

6

5

4

3

2

1

0

-60 -50 -40 -30 -20 -10 0

O
bj

ec
tiv

e 
fu

nc
tio

n

Simulation-based
Analytical

Fig. 2. Simulation-based and analytical objective functions for θ ∗ = −5 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 3. Algorithmic solutions versus iterations, for θ ∗ = −5 h 
−1 

and θ0 = 0 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Results 

We first consider the experiment with θ ∗ = −5 h 

−1 
. Fig. 2 displays the simulation-based objective function and the ob-

jective function approximation provided by the analytical traffic model ( Eqs. (15) ). The simulation-based objective function

is defined by Eq. (9) . The simulation-based estimates are displayed as blue circles. For a given point, the estimate is based

on 5 simulation replications. The red error bars displayed are 95% confidence intervals. The black curve is the analytically

approximated objective function, which is defined as: 
∑ 

i ∈I 
( y i − λi (θ ) ) 

2 
. (17)

In other words, the analytical approximation is obtained by replacing the simulation-based metric (expected link flow) with

the analytical metric. The black curve appears as an excellent approximation of the simulation-based objective function. 

Fig. 2 also displays a green range for θ . This range is a set of θ values that have statistically equivalent objective function

values to that of θ ∗. If an SO method yields θ values within this range, we consider it to have converged. Statistical equiva-

lence is tested with a paired t -test where the null hypothesis assumes equal expectations, while the alternative hypothesis

assumes unequal expectations. For this experiment, the equivalent region is [ −6 , −4] (in units h 

−1 ). 

Figs. 3–5 each considers a given initial point, θ0 . The x -axis displays the iteration of the SO algorithm, the y -axis displays

the current iterate (i.e., the best θ value found so far by the algorithm). The solid black lines correspond to the proposed

method, Am , while the dashed red lines correspond to the benchmark method, A φ. Recall that the only difference in the
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Fig. 4. Algorithmic solutions versus iterations, for θ ∗ = −5 h 
−1 

and θ0 = −40 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 5. Algorithmic solutions versus iterations, for θ ∗ = −5 h 
−1 

and θ0 = −60 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

methods is their metamodel formulation, all other algorithmic details are identical for both methods. These figures also

display the aforementioned equivalent region (in green). 

Note that in Fig. 5 , 2 of the red curves overlap from iteration 1 until iteration 14, this occurs for the right-most red curve.

For all 3 figures ( Figs. 3–5 ), the following observations hold. 

• All Am and all A φ runs converge. 
• All Am runs converge faster than the A φ runs. 

We now consider a true value of θ ∗ = −20 h 

−1 . The different objective functions are displayed in Fig. 6 . Again, the an-

alytical approximation of the objective function provided by the analytical network model ( Eqs. (15) ) is an excellent ap-

proximation of its simulation-based counterpart. The statistically equivalent region for θ is [ −21 , −18] (in units h 

−1 
). The

corresponding experimental results are shown in Figs. 7 , 8 and 9 . Note that in Fig. 9 , all 3 red curves overlap from iteration 1

until iteration 8. For Figs. 7, 8 and 9 , all Am runs converge, while 7 out of 9 A φ runs converge. Of the 2 A φ runs that do not

converge, they both had current iterates within the green region, yet exited the region. For the converged runs, convergence

tends to be faster for Am than for A φ. 

The different objective functions for the experiments with θ ∗ = −55 h 

−1 are displayed in Fig. 10 . As before, the analytical

objective function approximation is almost identical to the simulation-based objective function. The statistically equivalent

region for θ is [ −57 , −54] (in units h 

−1 
). The results for these experiments are displayed in Figs. 11–13 . 

Note that in Fig. 11 , 2 of the red curves that overlap from iteration 1 until iteration 11, this occurs for the left-most red

curve. As for the previous experiments, all Am runs converge. Eight out of the nine A φ runs converge. 
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Fig. 6. Simulation-based and analytical objective functions for θ ∗ = −20 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 7. Algorithmic solutions versus iterations, for θ ∗ = −20 h 
−1 

and θ0 = 0 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 8. Algorithmic solutions versus iterations, for θ ∗ = −20 h 
−1 

and θ0 = −40 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 9. Algorithmic solutions versus iterations, for θ ∗ = −20 h 
−1 

and θ0 = −60 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 10. Simulation-based and analytical objective functions for θ ∗ = −55 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 11. Algorithmic solutions versus iterations, for θ ∗ = −55 h 
−1 

and θ0 = 0 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 12. Algorithmic solutions versus iterations, for θ ∗ = −55 h 
−1 

and θ0 = −40 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 13. Algorithmic solutions versus iterations, for θ ∗ = −55 h 
−1 

and θ0 = −60 h 
−1 

. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 5 

Number of algorithmic iterations until convergence for the toy 

network. 

Am A φ

θ ∗ = −5 θ0 = 0 1 1 1 10 6 14 

θ0 = −40 1 13 1 13 22 11 

θ0 = −60 1 1 1 11 27 15 

θ ∗ = −20 θ0 = 0 1 1 1 22 8 10 

θ0 = −40 8 6 1 7 30 10 

θ0 = −60 1 18 1 17 11 30 

θ ∗ = −55 θ0 = 0 1 1 5 30 12 14 

θ0 = −40 1 1 1 11 9 8 

θ0 = −60 1 1 1 9 13 8 

 

 

 

 

 

From the perspective of the values proposed by the algorithms for the calibration parameter, θ , both SO methods yield

values with good performance and can do so within few algorithmic iterations. Overall the performance of both methods is

similar and good. Overall, Am identifies good solutions faster than A φ, and systematically converges. 

Let us compare the performance of both methods in terms of their computational efficiency. Table 5 considers all ex-

periments mentioned above. It displays for each experiment and each method, the number of algorithmic iterations until

convergence (i.e., the first time the equivalent region is entered and not exited thereafter). If a method upon termination
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Table 6 

Simulation runtimes until convergence for the toy network (min- 

utes). 

Am A φ

θ ∗ = −5 θ0 = 0 3 3 3 30 18 42 

θ0 = −40 3 39 3 39 66 33 

θ0 = −60 3 3 3 33 81 45 

θ ∗ = −20 θ0 = 0 3 3 3 66 24 30 

θ0 = −40 24 18 3 21 90 30 

θ0 = −60 3 54 3 51 33 90 

θ ∗ = −55 θ0 = 0 3 3 15 90 36 42 

θ0 = −40 3 3 3 33 27 24 

θ0 = −60 3 3 3 27 39 24 

Fig. 14. Metropolitan Berlin simulation network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the algorithm (i.e., iteration 30) has not converged, then we indicate a value equal to the computational budget (i.e., the

maximum number of iterations) of 30. This underestimates the convergence statistics for the non-converged experiments. 

This table indicates that for Am and for θ ∗ = −5 h 

−1 
, 8 out of the 9 experiments converge after 1 iteration. For θ ∗ =

−20 h 

−1 
, this happens 6 out of 9 times, and for θ ∗ = −55 h 

−1 
, this happens 8 out of 9 times. At the first algorithmic iteration, 

only a single objective function estimate is available (the estimate obtained at the initial value θ0 ). Hence, this instantaneous

convergence is due to the information provided by the analytical traffic model. When considering all true values (i.e., all 27

experiments), Am converges on average at iteration 2.7, and in the worst case at iteration 18. The method A φ converges on

average at iteration 14.4 (this average includes the non-converged cases, where we input an iteration value of 30), at best at

iteration 6, and does not converge for 3 experiments. The corresponding numerical values of the solutions derived by each

method for each experiment are presented in Table 11 of the Appendix C . 

Table 6 analyzes the convergence of the methods in terms of their simulation runtimes until convergence. The runtime

is in minutes. As in the above analysis, if a method has not converged, we indicate the total simulation runtime used

until the algorithm was terminated. This underestimates the runtime needed until convergence. The method Am converges

on average within 8 min of simulation, while A φ converges on average in 43.1 min. By providing the algorithm with the

analytical information, we can converge with an average 81.4% reduction in simulation runtime. This table highlights the

computational efficiencies that are achieved when using Am . 

3.3. Berlin metropolitan network 

3.3.1. Network attributes 

Fig. 14 displays the metropolitan Berlin network topology, as modeled in the simulator. As a reference, we also display

here the road map of the corresponding network ( Fig. 15 ). This network represents the metropolitan area of Berlin, Germany.
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Fig. 15. Metropolitan Berlin road network. Map source: http://www.mapsofworld.com/germany/states/brandenburg , downloaded on 10/30/2014. 

Fig. 16. Simulation-based objective function for the Berlin network. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

The area includes the city of Berlin and the broader federal state of Brandenburg. It consists of 24335 links, 11345 nodes

and 3635 OD pairs. Real traffic counts from sensors on 346 links are available per hour for 24 h. We focus on the morning

peak hour: 8-9am, during which expected demand is 172900 vehicles. For more data and model details, see Ziemke et al.

(page 120, Section “Counts”, 2015 ) and Ziemke (pages 57-59, 2013 ). 

3.3.2. Results 

Fig. 16 displays the simulation-based objective function estimates with corresponding 95% confidence intervals obtained

from 20 simulation replications. As for the toy network, the green region represents the range of statistically equivalent θ
values, which is [ −6 , −1] (in units h 

−1 ). Based on the finite and small set of simulated points, the θ value at which the

minimum objective function is obtained is near −2 h 

−1 . The analytical approximation of the objective function derived from

the analytical network model ( Eqs. (15) ) is displayed in Fig. 17 . Both functions have similar form and seem to be non-

convex. Note that both figures differ in the y -axis limits. Hence, the analytical function approximates well the form of the

simulation-based function, yet is not scaled properly. The scaling is corrected by the metamodel (term β i , k ,0 of Eq. (14) ). The

minimum of the analytical objective function is obtained at −5 h 

−1 
, which is in the green statistically equivalent region. 

http://www.mapsofworld.com/germany/states/brandenburg
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Fig. 17. Analytical objective function for the Berlin network. 

Fig. 18. Algorithmic solutions versus iterations, for θ0 = 0 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

We proceed as for the toy network: we run experiments for 3 different initial values θ0 . For each initial value, we plot

the current iterate (i.e., best θ value identified so far by the algorithm) versus algorithmic iteration. We do this for both SO

methods: Am and A φ. The results are presented in Figs. 18 , 19 and 20 . 

In these figures, some curves overlap: in Fig. 18 , two dashed red lines overlap at θ = 0 h 

−1 for all iterations; in Fig. 19 ,

two solid black lines overlap at θ = −4 . 7 h 

−1 . 

In Fig. 18 , all Am runs converge, 1 out of 3 A φ runs converges, the remaining 2 stay at the initial θ value of 0 h 

−1 . In

Fig. 19 , all Am runs converge, 1 out of the 3 A φ runs converges, the remaining 2 reach and stay at the lower bound value

for θ equal to 0 h 

−1 . In Fig. 20 , all Am runs converge, none of the A φ runs converges, 2 reach the lower bound and the third

stays at the value of −0 . 4 h 

−1 . 

For all 3 figures, the following observations hold. 

• All runs of Am converge. Seven out of the nine runs converge at the first iteration. This is thanks to the analytical network

model approximating well the simulation-based objective function. 
• Only 2 out of the 9 runs of A φ converge. Of the non-converged runs, two stay at the initial value of θ = 0 h 

−1 ( Fig. 18 ),

4 leave the initial value, reach and stay at the lower bound value of θ = 0 h 

−1 ( Figs. 19 and 20 ). 
• When comparing the converged runs: all Am runs converge faster than the A φ runs. 

We analyze the convergence statistics of the two methods. We proceed as for the toy network. Table 7 considers all Berlin

experiments mentioned above. It displays for each experiment and each method, the number of algorithmic iterations until

convergence (i.e., the first time the equivalent region is entered and not exited thereafter). If a method upon termination of

the algorithm (i.e., iteration 20) has not converged, then we indicate a value equal to the computational budget, which is
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Fig. 19. Algorithmic solutions versus iterations, for θ0 = −40 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 20. Algorithmic solutions versus iterations, for θ0 = −60 h 
−1 

. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Table 7 

Number of algorithmic iterations until conver- 

gence for the Berlin network. 

Am A φ

θ0 = 0 1 7 1 20 20 8 

θ0 = −40 1 1 8 20 20 11 

θ0 = −60 1 1 1 20 20 20 

 

 

 

 

 

 

 

 

 

20. This underestimates the convergence statistics for the non-converged experiments. This table indicates that method Am

converges at iteration 1 for 7 out of the 9 experiments. On average it converges at iteration 2.4 and at worst at iteration 8.

Method A φ only converges 2 out of the 9 runs. For those two converged experiments, convergence is achieved at iterations

8 and 11, respectively. The corresponding numerical values of the solutions derived by each method for each experiment are

presented in Table 12 of the Appendix C . 

The corresponding statistics in terms of simulation runtimes are displayed in Table 8 . If a given method has not con-

verged upon termination of the algorithm, then we indicate the total simulation runtime upon termination (2400 min). As

before, this underestimates convergence runtime for method A φ which often does not converge. On average method Am

converges within 293.3 min (i.e., 4.9 h), while A φ does so within 2120 min (i.e., 35.3 h). Method Am achieves on aver-

age a 86.2% reduction in runtime until convergence, which corresponds in this case study to average savings of 30.4 h of

simulation per experiment. 
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Table 8 

Simulation runtimes until convergence for the Berlin network 

(minutes). 

Am A φ

θ0 = 0 120 840 120 2400 2400 960 

θ0 = −40 120 120 960 2400 2400 1320 

θ0 = −60 120 120 120 2400 2400 2400 

Fig. 21. Objective function distributions for each solution of each method, when initialized with θ0 = 0 h 
−1 

. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now compare the performance of the best solutions proposed by each method with the performance of the value

currently used as part of the Berlin model, the latter was obtained from prior calibration efforts ( Ziemke et al., 2015 ). Let ˜ θ
denote this pre-calibrated value. It has a value of −6 h 

−1 
. 

Recall, that for a given initial value, θ0 , we ran each method 3 times, this leads to 3 solutions. We now compare the

performance of these solutions with that of ˜ θ . In order to evaluate the performance of a given θ value, we run 50 simu-

lation replications and obtain 50 observations of the objective function. More specifically, for a given θ value, we run 100

assignment iterations to obtain 1 objective function estimate. We repeat this process 50 times to obtain 50 independent

simulation observations (or estimates). 

Fig. 21 displays the cumulative distribution function (cdf) of these 50 observations. Each curve corresponds to a given

θ value. The solid black (resp. dashed red) curves correspond to values derived by Am (resp. A φ). The dotted black curve

corresponds to the pre-calibrated value ˜ θ . The more a curve is shifted to the left, the lower the objective function estimates,

i.e., the better its performance. More specifically, for a given x -value, the corresponding y -value on the cdf curve gives the

proportion of observations (out of the 50) that have objective function values smaller than x . Fig. 21 considers the solutions

obtained with an initial value of θ0 = 0 h 

−1 . 2 out of the 3 runs of A φ yield the same solution (i.e., the algorithm considers

for all iterations the initial value, θ0 = 0 h 

−1 
, as the best value). Thus, only 2 dashed red curves are visible. The right-most

dashed red curve represents the 2 identical solutions (i.e., θ = 0 h 

−1 
). All 3 values derived by Am outperform the 3 values

obtained by A φ. They also outperform the pre-calibrated value. 

Fig. 22 displays the cdf of each solution obtained when initializing the algorithms with θ0 = −40 h 

−1 . Here as well, 2 out

of the 3 runs of A φ yield the same solution of 0 h 

−1 
. Hence, only 2 dashed red curves are visible, one of which represents 2

identical solutions. The proposed method Am also yields 2 solutions that are similar (both are approximately −4 . 7 h 

−1 ). The

same conclusions as above hold: all solutions derived by Am outperform all solutions derived by A φ and outperform the

pre-calibrated value. Fig. 23 displays the cdf of each solution obtained when initializing the algorithms with θ0 = −60 h 

−1 
.

The method A φ yields a solution of 0 h 

−1 for 2 out of the 3 runs. Hence, only 2 distinct dashed red curves are visible. For

this figure, the same conclusions as above hold. 

For each initial value θ0 and each method, we choose only one proposed solution which is defined as that with the

smallest objective function average (the average is over the 50 simulation replications). In Table 9 , we give the numerical

values of the best proposed solutions for the three sets of experiments. Fig. 24 presents the cdf of the best solutions for all

three initial values. It also displays the cdf of pre-calibrated value and of the value obtained by solving the problem with

the analytical traffic model only (i.e., no simulation). The solid black curves correspond to Am solutions. Only two curves

appear, because Am yields the same solution ( θ = −4 . 7 h 

−1 ) for two initial values ( θ0 = −40 h 

−1 or θ0 = −60 h 

−1 ). Hence, the

left-most solid black curve represents two solutions. The dashed red curves correspond to the three solutions of A φ. The
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Fig. 22. Objective function distributions for each solution of each method, when initialized with θ0 = −40 h 
−1 

. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 23. Objective function distributions for each solution of each method, when initialized with θ0 = −60 h 
−1 

. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 9 

Best solution of each method 

and each initial θ value. 

Am A φ

θ0 = 0 −2.1 −1.1 

θ0 = −40 −4.7 −2.8 

θ0 = −60 −4.7 −0.4 

 

 

 

 

 

 

 

 

 

dash-dotted blue curve corresponds to the solution of the analytical traffic model (i.e., no simulation) and the dotted black

curve corresponds to the pre-calibrated value. 

Fig. 24 indicates that the solutions proposed by Am , for each of the three initial values, outperform all 3 solutions pro-

posed by A φ. It also outperforms the pre-calibrated value. This figure also shows that the analytical solution outperforms all

A φ solutions. This indicates the added value of the analytical network model information. All Am solutions outperform the

analytical solution. This indicates the added value of combining analytical and simulation-based information, rather than

merely solving the problem with an analytical-only approach. 

Recall that the traffic field data consists of traffic counts from sensors on 346 links. Fig. 25 compares the performance

of the best Am solution ( θ = −4 . 7 h 

−1 
, the left-most curve in Fig. 24 ) and the pre-calibrated solution. For each solution and

each sensor location, we compute the relative error of the count: (y i − ˆ E [ F i (θ ; x )]) /y i , where y i represents the field count at

location i and 

ˆ E [ F (θ ; x )] represents the simulated estimate of the count at that location. Fig. 25 displays two curves, one for
i 
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Fig. 24. Objective function distributions for the best solutions of each method and each initial θ value. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 25. Empirical cdf of the relative difference of traffic counts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each solution ( Am or pre-calibrated). The curve is the cumulative distribution function of the relative error. The distribution

is over all 346 links. Let us illustrate how to interpret these curves. The solid black curve corresponds to method Am . A

vertical line through x = 0 intersects the Am curve at y = 0 . 17 . This means that under the Am solution, 17% of the sensor

locations yield a negative relative difference, i.e., they overestimate 17% of the counts. The pre-calibrated curve intersects

this vertical line at y = 0 . 07 , meaning that 7% of the locations overestimate the counts. Similarly, a horizontal line through

y = 0 . 6 intersects the Am curve at x = 0 . 35 . This indicates that 60% of the relative errors are below 0.35. This horizontal line

intersects the pre-calibrated curve at x = 0 . 44 , which indicates that 60% of the relative errors are below the x = 0 . 44 . From

this figure we can deduce that 31% of the counts have a relative error within [ −0 . 2 , 0 . 2] under the Am value, while this is

the case of only 21% of the counts under the pre-calibrated value. 

We now carry out a more detailed analysis of the performance of the different points within the green equivalent region.

Fig. 26 considers the equivalent region [ −6 , −1] (in units h 

−1 ). It displays a more detailed simulation-based estimate of the

objective function. The function is now sampled with a step size of 0.25 (i.e., a smaller step size than in Fig. 16 ). Each

estimate is obtained as an average over 30 simulation replications. Its corresponding 95% confidence interval is displayed.

Within this interval [ −6 , −1] (in units h 

−1 ), we compute a new green equivalent region. We identify the point with the

smallest objective function estimate. This is ˆ θ = −4 . 75 h 

−1 
. We conduct for each point, a paired t -test to test whether its

performance (i.e., objective function value) is equivalent to that of ˆ θ . If two adjacent points have statistically equivalent

performance to that of ˆ θ, then both points belong to the new equivalent region. The resulting green region is now defined

(in units h 

−1 ) as: [ −5 , −4 . 5] , [ −3 . 75 , −2 . 75] , and [ −2 . 25 , −2] . This new region is displayed in green in Fig. 26 . 

Fig. 26 indicates along the x -axis the location of: the 9 solutions proposed by Am (all 9 solutions fall in the initial

green equivalent region of [ −6 , −1] (in units h 

−1 ); they are represented by black crosses), 2 solutions proposed by A φ (2

solutions fall in [ −6 , −1] (in units h 

−1 ); they are represented by red squares), the pre-calibrated value ˜ θ (represented by a
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Fig. 26. More detailed estimation of the simulation-based objective function in the region [ −6 , −1] (in units h 
−1 

). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

black triangle), and the solution obtained using only the analytical traffic model (i.e., no simulation-based optimization; it

is represented by a blue asterisk). Note that 3 of the Am solutions overlap at the value −4 . 7 h 

−1 
, hence they are displayed

as stacked upon each other on the x -axis. 

Considering this more accurate estimation of the equivalent region, we observe that 5 out of the 9 solutions of Am fall

within this region, while only 1 solution of A φ is in the region. The solution using only the analytical traffic model also falls

in this region. 

The scenarios of Section 3 all consider high levels of congestion. For instance, in the toy network the expected demand

is 1400 veh/h, and the expected supply of links 1 and 6 is 1200 veh/h. Hence, the ratio of expected demand to expected

supply is 1.17. The analytical model describes the within link build-up of congestion but does not capture the occurrence

and impact of vehicular spillbacks. Nonetheless, as shown in Figs. 2, 6 and 10 , it provides an accurate approximation of

the simulation-based objective function. The Berlin network consists of a set of links with varying levels of congestion:

ranging from uncongested to highly congested. For instance, the city center contains approximately 7% of links with a ratio

of expected demand to expected supply that is greater than 1. For the entire metropolitan network, 2% of the links have a

ratio greater than 1. 

4. Conclusions and discussion 

In this paper, we propose a computationally efficient calibration algorithm. Efficiency is achieved by providing analyti-

cal problem-specific information to the algorithm. We formulate a metamodel that embeds information from an analytical

differentiable and tractable network model. The analytical network model provides an analytical description of how the cal-

ibration parameter is related to the objective function. The performance of the method is evaluated with case studies for

both a hypothetical toy network and for the Berlin metropolitan area network. The performance of the proposed method is

compared to that of an algorithm that differs only in that the information from the analytical network model is not pro-

vided to it. For both networks, the proposed approach significantly improves the computational efficiency of the calibration

algorithm with an average reduction in the simulation runtime until convergence of more than 80%. The simulator used in

both case studies of this paper, MATSim, is computationally efficient compared to other higher-resolution simulators. Inef-

ficient simulators are typically calibrated under tight computational budgets. By accelerating the convergence of traditional

black-box calibration algorithms, the proposed approach is of particular interest for the calibration of inefficient simulators. 

This metamodel framework can be extended to address any continuous calibration problem. It can be extended to allow

for other types of demand or supply calibration parameters, as well as to allow for other types of traffic measurements

to be used (e.g., speeds or occupancies). For a given calibration problem formulation, one of two types of approaches can

be followed. One approach is to extend the analytical model (system of Eqs. (15) ) to describe the relationship between

any new calibration parameters and any traffic measurements. This involves formulating an analytical and differentiable ap-

proximation of the mapping between the calibration parameters and the traffic measurements. As part of ongoing work,

this has been formulated and is being tested for several problems, including: (i) the supply calibration of various types of

traffic simulators ( Zhang et al., 2016a ), (ii) calibration of origin-destination matrices. For instance, the latter uses an endoge-

nous representation of the external travel demand (i.e, γ of Eq. (15) g becomes endogenous). Second, if the extension of the

analytical model deems computationally inefficient, then the current analytical traffic model can be used as is, and the addi-

tional parameters can be included in the polynomial error term of the metamodel. In this second case, since the dimension
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of the system of equations scales linearly with the number of links in the network and linearly with the number of OD

pairs, higher-dimensional problems can be readily addressed. In the first case, the use for higher-dimensional problems will

depend on the scalability of the new traffic model formulation. 

A generalization to other data sources and parameters to be calibrated is part of the planned research effort. Ongoing

work is also investigating the use of these metamodel ideas to enhance the efficiency and robustness of traditional data-

driven calibration algorithms (e.g., Kalman and particle filters). 

The analytical route choice model ( Eq. (15) b) is a multinomial logit (MNL) model. This calibration algorithm can be

used for a simulator that embeds a different route choice model specification by replacing Eq. (15) b with an analytical

and differentiable approximation of the simulator’s route choice model. If such an approximation is not available or is not

computationally efficient, then one can continue to use the MNL formulation of this paper. In this case, the polynomial error

term of the metamodel will capture the effects of this specification difference between the analytical and the simulation-

based models. 

In this paper, the simulation-based optimization algorithm used is derivative-free, i.e., it does not require the evaluation

of derivatives of the simulation-based objective function. Derivative-based algorithms have been proposed for calibration

problems (e.g., Yang, 1995; Antoniou et al., 2011; Balakrishna, 2006 ). Such algorithms have been traditionally designed to

achieve asymptotic properties. There is now extensive ongoing and recent work that formulates their extensions for use

under tight computational budgets ( Lu et al., 2015; Tympakianaki et al., 2015 ). Another area of ongoing research aims to

achieve efficiency through the combined use of multiple models with varying efficiency-accuracy trade-offs (e.g., Corthout

et al., 2014; Osorio and Selvam, 2016 ). 

The analytical model of the proposed approach is based on the use of an exogenous route choice set. This set is computed

once prior to calibration. This contributes to the computational efficiency of the calibration algorithm. For cases where the

use of an endogenous route choice set is desirable, one efficient approach would be to use at each iteration of the calibration

algorithm, the route choice set used by the simulator for the current iterate (i.e., the calibration vector value considered as

best so far). This would require, at every iteration of the calibration algorithm, to compute a smaller set of routes to be used

by the analytical model (this can be done as described in Section 2.3 ), and then to compute the exogenous parameters of

the analytical model that depend on the route choice set. This can be done efficiently. This would allow the route choice set

used to solve Problem (7) –(8) to vary across iterations of the calibration algorithm. However, for a given iteration, Problem

(7) –(8) would still be solved assuming a fixed route choice set. 
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Appendix A 

This appendix presents the SO algorithm. The algorithm is described using notation of Osorio and Bierlaire (2013) . The

following notations are defined for a given iteration k : current iterate as x k , trust region radius as �k , metamodel coefficient

vector as νk , metamodel as m k , total number of simulation runs carried out up until and including iteration k as n k , and

total number of successive trial points rejected as μk . 

The constants η1 , γ̄ , γ inc , τ̄ , d̄ , μ̄, �max are given such that: 0 < η1 < 1, 0 < γ̄ < 1 < γinc , 0 < τ̄ < 1 , 0 < d̄ < �max ,

μ̄ ∈ N 

∗. Set the total number of simulation runs permitted, n max , this determines the computational budget. Set the number

of simulation replications per point r̄ . 

0. Initialization. 

Set k = 0 , n 0 = 0 , μ0 = 0 . Determine x 0 and �0 ( �0 ∈ (0, �max ]). Given the initial point x 0 , compute f A ( x 0 ) (analytical

approximation of Eq. (4) or equivalently of Eq. (9) ) and 

ˆ f (x 0 ) (simulated estimate of Eq. (4) or equivalently of Eq. (9) ). 

1. Analytical-only calibration. 

Solve a Problem (11) –(13) using only the analytical network model and without using any simulation information, i.e.,

set the metamodel equal to f A . Let x 1 denote the solution to this problem, compute f A ( x 1 ) and 

ˆ f (x 1 ) . Fit the metamodel

m 1 . 

2. Step calculation. 

Solve Problem (11) –(13) , and find a solution, denoted x k + s k and referred to as the trial point, that lies in the trust region

(i.e., ‖ s k ‖ ≤ �k ). 

3. Acceptance or rejection of the trial point. 

http://dx.doi.org/10.13039/100000001
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Compute ˆ f (x k + s k ) and 

ρk = 

ˆ f (x k ) − ˆ f (x k + s k ) 

m k (x k ) − m k (x k + s k ) 
(18)

• If ρk ≥ η1 and 

ˆ f (x k ) − ˆ f (x k + s k ) > 0 , then accept the trial point: x k +1 = x k + s k , μk = 0 ; 
• Otherwise, reject the trial point: x k +1 = x k , μk = μk + 1 . 

Include the new observation in the set of sampled points ( n k = n k + ̄r ), and fit the new metamodel m k +1 . 

4. Model improvement. 

Compute τk +1 = 

‖ νk +1 −νk ‖ ‖ νk ‖ . If τk +1 < τ̄ , then improve the model by simulating the performance of a new point x , which

is uniformly and randomly drawn from the feasible space. Evaluate f A and 

ˆ f at x . Include this new observation in the set

of sampled points ( n k = n k + ̄r ). Update metamodel m k +1 . 

5. Trust region radius update. 

�k +1 = 

⎧ ⎨ 

⎩ 

min { γinc �k , �max } , if ρk > η1 

max { ̄γ�k , d̄ } , if ρk ≤ η1 and μk ≥ μ̄
�k , otherwise. 

If ρ ≤ η1 and μk ≥ μ̄, then set μk = 0 . Set n k +1 = n k , μk +1 = μk , k = k + 1 . 

If n k < n max , then go to step 2. Otherwise, stop. 

The general-purpose method A φ differs from the proposed method Am as follows: (i) the metamodel is formulated as

Eq. (16) instead of Eq. (14) ; (ii) step 1 is not carried out. 

Appendix B 

Table 10 displays a list of the notation used in the paper. The variables and parameters in the table are listed in the same

order as they appear in the paper. 
Table 10 

List of all variables and parameters. 

Notation Description 

T simulation time interval size 

τ simulation time interval index 

i network link index 

n traveler index 

N total number of travelers in the system 

�ni τ stochastic binary indicator of traveler n crossing link i in time interval τ

F i , τ stochastic simulated link flow rate on link i in time interval τ

δni τ probability that traveler n crosses link i in time interval τ

θ general calibration parameter vector 

x network conditions 

y i , τ number of vehicles counted in the field on link i in time interval τ

I set of links with measurements available 

� feasible region of the behavioral parameter 

k SO algorithm iteration index 

z endogenous simulation model variables 

ˆ q exogenous simulation model variables 

f (θ, z; ˆ q ) simulation-based objective function 

β i , k vector of metamodel parameters for link i at iteration k 

m i , k ( θ ; β i , k ) metamodel for link i at iteration k 

f A ( θ ) analytical problem-specific approximation of f ( θ ) 

˜ v endogenous analytical model variables 

˜ q exogenous analytical model variables 

h (θ, ̃ v ; ˜ q ) analytical macroscopic traffic model 

θ L lower bound for θ

θU upper bound for θ

λi ( θ ) expected demand for link i 

s OD pair index 

d s expected travel demand for OD pair s 


 i space capacity of queue i 

l i length of link i (road length) 

v i maximum speed of link i 

μi service rate of queue i 

γ i expected external demand of link i 
˜ t i expected travel time of queue i 

˜ n i expected number of vehicles in queue i 

( continued on next page ) 
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Table 10 ( continued ) 

Notation Description 

p ij turning probability from queue i to queue j 

t r expected travel time of route r 

f r expected demand on route r 

˜ p sr probability that a traveler of OD pair s takes route r 

S set of OD pairs 

Q set of queues 

R set of routes 

R s set of routes of OD pair s 

G i j set of routes that consecutively go through queues i and j 

H i set of routes that go through queue i 

T i set of routes that start with queue i 

�r set of links of route r 

Am proposed metamodel approach 

A φ general-purpose metamodel approach 

φ i , k ( θ ; β i , k ) general-purpose metamodel for link i at iteration k 

θ ∗ true value for θ

θ0 initial value for θ

Table 11 

Numerical values of the solutions (in units h 
−1 

) derived by each method for each 

experiment of the toy network. 

Am A φ

θ ∗ = −5 θ0 = 0 −4.7 −5.3 −4.0 −5.2 −5.3 −5.5 

θ0 = −40 −5.7 −5.5 −5.0 −5.2 −5.5 −5.3 

θ0 = −60 −4.8 −5.5 −5.8 −5.1 −5.0 −5.4 

θ ∗ = −20 θ0 = 0 −18.1 −18.4 −18.7 −18.3 −19.1 −18.5 

θ0 = −40 −19.6 −18.1 −18.6 −18.6 −17.7 −18.3 

θ0 = −60 −18.1 −18.5 −19.5 −18.3 −18.5 −18.0 

θ ∗ = −55 θ0 = 0 −56.1 −55.9 −55.9 −57.2 −56.4 −56.0 

θ0 = −40 −55.8 −56.3 −55.2 −56.0 −56.2 −56.4 

θ0 = −60 −55.8 −55.5 −56.6 −55.8 −56.3 −56.0 

Table 12 

Numerical values of the solutions (in units h 
−1 

) derived by 

each method for each experiment of the Berlin network. 

Am A φ

θ0 = 0 −2.5 −1.2 −2.1 0 .0 0 .0 −1.1 

θ0 = −40 −4.7 −4.7 −1.6 0 .0 0 .0 −2.8 

θ0 = −60 −1.4 −4.7 −3.5 0 .0 0 .0 −0.4 

 

 

 

 

 

 

Appendix C 

Numerical values of the solutions derived by each method 

Table 11 (resp. 12 ) displays the numerical values of the solutions derived by each method and each experiment of the

toy (resp. Berlin) network. 
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