Efficient calibration of microscopic car-following models for
large-scale stochastic network simulators

Paper accepted for publication in Transportation Research
Part B

Carolina Osorio* and Vincenzo Punzo!

Abstract

This paper proposes a simulation-based optimization methodology for the efficient calibra-
tion of microscopic traffic flow models (i.e., car-following models) of large-scale stochastic
network simulators. The approach is a metamodel simulation-based optimization (SO)
method. To improve computational efficiency of the SO algorithm, problem-specific and
simulator-specific structural information is embedded into a metamodel. As a closed-form
expression is sought, we propose adopting the steady-state solution of the car-following
model as an approximation of its simulation-based input-output mapping. This general
approach is applied for the calibration of the Gipps car-following model embedded in a
microscopic traffic network simulator, on a large network. To this end, a novel formulation
for the traffic stream models corresponding to the Gipps car-following law is provided.

The proposed approach identifies points with good performance within few simulation
runs. Comparing its performances to that of a traditional approach, which does not take
advantage of the structural information, the objective function is improved by two orders
of magnitude in most experiments. Moreover, this is achieved within tight computational
budgets, i.e., few simulation runs. The solutions identified improve the fit to the field
measurements by one order of magnitude, on average. The structural information provided
to the metamodel is shown to enable the SO algorithm to become robust to both the quality
of the initial points and the simulator stochasticity.

1 Introduction

Our urban transportation systems are becoming increasingly connected, automated, real-
time responsive and intricate. This has led to the design of higher resolution models
that aim to describe both demand and supply in greater detail. A recent review of traf-
fic simulation models is given in Barcelé (2010). Nonetheless, as these models become

*Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Office 1-232,
Cambridge, Massachusetts 02139, USA, osorioc@mit.edu

"Department of Transportation Engineering, Universitd di Napoli Federico II, Via Claudio 21, 80125
Napoli, Italy, vinpunzo@unina.it

more intricate, so does the challenge of properly calibrating them. The problem of model
calibration consists of fitting the input parameters of the traffic model such as to repli-
cate field-observed traffic patterns (e.g., link counts, link speeds). It has been extensively
studied with seminal work such as Cascetta et al. (1993), Cascetta and Nguyen (1988).
Reviews include Balakrishna (2006) and Zhang et al. (2017).

The calibration of simulation-based network models remains a difficult optimization
problem to address. It is a simulation-based optimization (SO) problem that is non-convex
and often non-differentiable (Ciuffo et al. 2008). The underlying network simulator is
stochastic. Hence, the performance metrics can only be estimated via simulation. Each
estimation involves running multiple simulation replications, each of which is computa-
tionally costly to evaluate. Both the intricacy of the optimization problem and the cost of
each single simulation run call for computationally efficient calibration algorithms that are
able to yield good quality solutions within few simulations. Yet, there is a lack of efficient
algorithms in the scientific literature.

Given the high computational cost of evaluating the simulator, the most common algo-
rithmic approach for calibration is the use of general-purpose derivative-free optimization
algorithms, such as the genetic algorithm or the Box-Cox algorithm (Vaze et al. 2009,
Balakrishna et al. 2007, Kattan and Abdulhai 2006, Stathopoulos and Tsekeris 2004,
Kunde 2002). General-purpose algorithms that require first-order derivative information,
yet that are designed to estimate it efficiently, have also been extensively adopted by the
transportation community. For instance, the simultaneous perturbation stochastic approx-
imation (SPSA) algorithm of Spall (2003) has been often used. Recent work has focused
on tailoring it to transportation problems to improve its short-term (i.e., small sample)
performance (Lu et al. 2015, Tympakianaki et al. 2015, Cipriani et al. 2011). A traditional
approach to address calibration problems in a computationally efficient way has been the
use of parallelization techniques (Huang 2010), as well as the use of methods to reduce
the problem dimensionality, such as global sensitivity analysis (Zhong et al. 2016, Punzo
et al. 2015, Ciuffo and Azevedo 2014, Ge et al. 2014, Ciuffo et al. 2013).

While general purpose optimization algorithms are designed to achieve asymptotic
performance guarantees (e.g., asymptotic convergence properties), they are used for trans-
portation calibration problems under tight computational budgets. Practitioners increas-
ingly apply these models in computationally challenging settings (e.g., online applications),
where good quality solutions are needed within few simulation evaluations. This paper,
therefore, contributes to the challenge of designing efficient algorithms for the calibration
of stochastic simulation-based traffic models.

In particular, it focuses on the calibration of microscopic traffic flow models (i.e.,
car-following) in large-scale network simulation models. In a network simulator, a given
car-following model is specified for each vehicle class. The car-following model determines
the speed of each vehicle for each simulation time step.

This calibration problem has attracted a significant amount of research efforts in recent
years and is expected to become even more relevant with the increasing heterogeneity of
technologies brought by the growth of vehicle automation. We view the efficient calibra-
tion of disaggregate vehicle-specific traffic models (e.g., car-following, lane-changing) as a
particularly important problem for the next generation of transportation network models.

The main idea of the proposed approach is to achieve efficiency by formulating and em-
bedding problem-specific structural information within the SO algorithm. Our approach is
to formulate an analytical approximation of the input-output mapping between calibration

parameters (i.e., the decision vector) and simulation outputs of interest (e.g., expected link
counts, expected link speeds). In particular, this analytical mapping is derived from the
microscopic vehicle-level models of the simulator. By embedding such structural informa-
tion into the SO algorithm, the simulator is no longer a black-box for the algorithm itself.
This differs from general-purpose algorithms that treat the simulator as a black-box. This
allows the SO algorithm to identify good solutions within fewer simulation runs.

In order to embed the analytical mapping within the SO algorithm, we use a metamodel
approach. A metamodel is defined as an analytical approximation of a simulation-based
function. We use the derivative-free metamodel SO algorithm of Osorio and Bierlaire
(2013), which defines the metamodel as the sum of a problem-specific component (known
in the literature as a physical metamodel) and a general-purpose component (known in
the literature as a functional metamodel). For details on the comparison of functional
and physical metamodels, see Sgndergaard (2003). In the metamodel literature, the most
common choice of metamodels are functional metamodels such as low-order polynomial
functions, radial-basis functions, Kriging functions. In the field of calibration, functional
metamodels have been used in combination with sensitivity analysis (Azevedo et al. 2015,
Ciuffo and Azevedo 2014, Ge et al. 2014, Ciuffo et al. 2013).

This general idea of combining physical and functional metamodels has been success-
fully used to efficiently address various types of transportation optimization problems,
including signal control problems (Chong and Osorio 2017, Osorio and Nanduri 2015),
congestion pricing (Osorio and Atastoy 2017) and demand calibration (Zhang et al. 2017).
For a given optimization problem, the main challenge in developing an efficient metamodel
SO algorithm is the formulation of the problem-specific (i.e., physical) model. In other
words, the key to achieving efficiency is the formulation of an efficient analytical input-
output mapping that approximates well the (unknown) simulation-based input-output
mapping.

The idea of this paper is to formulate a steady-state expression of a car-following
model. This expression analytically approximates the simulation-based (non-stationary)
input-output mapping. It is used as the physical component of a metamodel.

Traffic stream models corresponding to a specific microscopic car-following law can be
derived from the steady-state solution of that law (i.e., from the function that describes
driver behavior at equilibrium) (see e.g., Treiber et al. (2000)). Unlike classical traffic
stream models (Hall 2001), which involve only macroscopic quantities, the bivariate rela-
tionships derived from a car-following model relate the macroscopic traffic variables (i.e.,
flow, speed and density) to the microscopic parameters of the car-following model, such
as maximum speed or minimum time headway (Treiber et al. 2000). Hence, they can be
directly used to approximate the mapping between calibration parameters and expected
network performance (e.g., expected link speeds).

In this paper, we formulate this idea to calibrate the Gipps car-following model (Gipps
1981). The traffic stream models corresponding to the Gipps car-following model have been
derived by Punzo and Tripodi (2007), based on the equilibrium speed-distance function
obtained by Wilson (2001). We extend the models in Punzo and Tripodi (2007) such as to
tailor them to a specific car-following model formulation that is used as part of a commonly
used microscopic network simulator. In fact, the latter implements a car-following model
that is an extension of the Gipps car-following model.

It is worth mentioning that, although the proposed approach is herein applied for a
specific traffic simulator, which implements a specific car-following model, it is general.

Whenever an equilibrium (or steady state) formulation of a car-following model can be
derived, the proposed approach can be applied to calibrate the corresponding traffic sim-
ulator.

As the case studies of Section 4 indicate, the use of this analytical traffic model enables
the SO algorithm to become computationally efficient, scalable and robust to both the
simulator’s stochasticity and to the quality of the initial points. The key to achieving
these improvements is shown to be the proposed analytical traffic model formulation. The
latter provides the SO algorithm with problem-specific and simulator-specific structural
analytical information. By exploiting this structural information, the SO algorithm no
longer treats the simulator as a black-box and can identify points with good performance
within few simulation evaluations.

More specifically, Section 4 shows that the use of the analytical traffic model leads
to a computationally efficient algorithm: it identifies, within few simulation evaluations,
points that improve: (i) the objective function estimates by 2 orders of magnitude, and
(ii) the fit to the field measurements (link speeds) by 1 order of magnitude, on average.
The scalability of the proposed algorithm is achieved by formulating the analytical traffic
model as a system of n nonlinear and n linear equations, for a network with n links. Since
the traffic model is formulated as a system of nonlinear equations, it can be evaluated
efficiently with a variety of traditional solvers.

This paper is structured as follows. Section 2 formulates the calibration problem of
interest. The proposed methodology is formulated in Section 3. The method is compared
to a benchmark method both for a small synthetic network as well as for a network of the
city of Lausanne (Section 4). Conclusions are presented in Section 5.

2 Problem formulation

Different simulation softwares embed different car-following model specifications. The
proposed methodology is suitable for software that embed car-following models that are
based on the Gipps model, which is a popular and commonly used model. The formulation
of the Gipps model is briefly summarized in Appendix A. For the case studies of this paper,
we use a software that uses a car-following model which is an extension of the Gipps
model. For instance, the software’s car-following model accounts for local attributes for
each vehicle (e.g., attributes of the link the vehicle is currently on).

In this work, we consider a single vehicle class (i.e., the speeds of all vehicles are
governed by the same car-following model). We consider a single time interval, i.e., we do
not use time-dependent field measurements nor time-dependent calibration parameters.
Hereafter, the term speed refers to the expected space-mean speed. To formulate the
calibration problem of interest, we introduce the following notation.

x decision vector (i.e., calibration parameter vector);

f(x) (unknown) simulation-based objective function;

U1 endogenous simulation variables;

U exogenous simulation parameters;

Yi field measurement of average (space mean) speed of link i;
E[Si(z,u1;u2)] expected (space mean) speed of link i;

xy lower bound vector;

Ty upper bound vector;

T set of links with sensors.

4

The calibration problem is formulated as follows:

min f(z) = > (yi — ElSi(, u1; us)])’ (1)

€T
subject to
rr, <x < xy. (2)

The objective function f (Eq. (1)) id defined as the sum of the squared distance be-
tween the speed measurement for link ¢, y;, and the simulator’s expected speed for link i,
E[Si(z,u1;u2)], which is hereafter denoted E[S;]. The latter expectation depends on the
decision vector x (i.e., the calibration parameter vector), on the vector of endogenous sim-
ulation variables (e.g., link queue-lengths, route choice probabilities) and on the vector of
exogenous simulation parameters (e.g., network topology, traffic management strategies).
This expectation is an unknown function, which needs to be estimated via simulation.
Lower and upper bound constraints are assumed (Eq. (2)). These bounds are analyti-
cal constraints. Hence the problem is a continuous SO problem with simulation-based
objective function and analytical deterministic constraints.

In this paper, the decision vector x is a three dimensional vector that represents: (i) 7:
the sum of a reaction time parameter and an additional “comfort” lag (using the notation
of the Gipps model in Appendix A: 7 = 7+46), (ii) vmax: the vehicles desired speed, (iii) s:
the sum of the vehicle length and the minimum between-vehicle safety distance (using the
notation of the Gipps model in Appendix A: s = S, ¥n). In other words z = [7, Umax, 5.

3 Methodology

To address Problem (1)-(2), we consider a metamodel SO approach. The main idea
of metamodel SO approaches is to approximate the unknown and intricate (often non-
convex) simulation-based objective function with an analytical function, which is known
as the metamodel. The metamodel is a parametric function, the parameters of which are
fitted, at every iteration of the algorithm, such as to minimize a distance function between
metamodel predictions and simulated observations. At every iteration of the algorithm,
the metamodel is optimized. Thus, at every iteration of the SO algorithm, an analytical
optimization problem is solved. This allows for a variety of efficient optimization solvers for
analytical problems to be used. This optimization of analytical subproblems contributes
to the overall efficiency of the SO approach.

As previously discussed, our past work has proposed metamodel formulations for var-
ious classes of transportation optimization problems. The main goal of our SO work is
to derive computationally efficient algorithms. That is, algorithms that can derive good
quality solutions by simulating few points. This reflects how transportation practition-
ers, and even researchers, use SO algorithms: they terminate the algorithm when a fi-
nite, and typically small, set of points has been simulated. Our general approach to this
challenge of developing efficient SO algorithms is to formulate metamodels that provide
structural problem-specific information to the general-purpose SO algorithm. This dif-
fers from traditional SO algorithms that are suitable for a broader class of problems (e.g.,
non-transportation problems) and are designed such as to achieve asymptotic performance
guarantees.

I 1. Determine current iterate I

| =

|
|
|
|
| 2. Fit metamodel my, | |
|
|
|
|

/ék\

3a. Optimize my, (z; B) | | 3b. Sampling strategy |
Trial point lMQdel improvethent|
point |

— o ——————— — — — ——— — — —— — — — —]

l Evaluate new point x

| New performance estimate: f(z)

Figure 1: Metamodel simulation-based optimization framework. Figure from Chong and
Osorio (2017).

The main steps of a metamodel SO algorithm are depicted in Figure 1. A detailed
description of the SO calibration algorithm is given in Appendix 5. At a given iteration
k, consider the set of points (i.e. of decision vectors z) that have been simulated until
iteration k. Let us denote this set as the current sample. Step 1 selects the point that is
considered to have the best performance among the current sample. This point, denoted
xr, is known as the current iterate. Step 2 considers a metamodel function, my(z; B),
with parameter vector 8. Step 2 uses the current sample to fit the parameter vector [;
this yields Bk The goal of step 3a is to identify points that perform well according to the
just estimated metamodel. Hence, Step 3a solves the (analytical) metamodel optimization
problem for the decision vector x, whose solution is known as a trial point. It may also
be of interest to simulate points that achieve other goals. For instance, one might want to
simulate points that improve the fit of the metamodel, or points that improve geometric
properties of the sampled space. These types of points are known as model improvement
points, and are derived in step 3b. Step 4 considers any points obtained through steps 3a
and 3b and simulates them to obtain estimates of their objective function, f (). These
steps are carried out at each SO iteration until the algorithm terminates. In our work,
since we consider computationally inefficient simulators, we evaluate the performance of
the algorithms for small sample sizes (i.e., few points are simulated). More specifically,
we determine a priori a small maximum number of points to simulate, known as the
computational budget, and we terminate the algorithm once this budget has been depleted.
Hence, the solutions proposed by the method are not assumed to be optimal. Instead, the
goal is to derive solutions with improved quality (compared to initial points, or to points
used by practitioners) within few simulations.

In this paper, we use the SO algorithm of Osorio and Bierlaire (2013). The focus of
this paper is on the formulation of a metamodel that enables the algorithm to address
the calibration problem of interest in a computationally efficient way (i.e., with a small
sample size). In other words, the focus of this paper is on the formulation of the function
myg(z; Bx), such that, with small samples, step 3a can yield solutions that perform well

according to the simulator (i.e., they have low f(z) values).

To formulate the optimization problem solved at Step 3a, we use the following notation.
The index k refers to a given iteration of the SO algorithm. The index i refers to a given
link.

my(z; fr) metamodel function;

B, element j of the metamodel parameter vector [5;

o(x; Br) functional metamodel component (polynomial function);
Endogenous variables of the analytical traffic model:

x decision vector;

T sum of the reaction time and the “comfort” time lag;

Vmax vehicle’s desired (maximum) speed;

S sum of the vehicle length and the minimum between-vehicle safety distance;

v; average (space-mean) speed of link ¢ derived by the analytical traffic model;

k; average density of link 4 derived by the analytical traffic model;
Exogenous parameters of the analytical traffic model:

v{“ax'hnk maximum link speed;

b deceleration parameter;

c1,c2,d1,ds exogenous scalar parameters;
Exogenous calibration problem parameters:

Ui field measurement of average (space mean) speed of link i;
Ty lower bound vector;

Ty upper bound vector;

z set of links with sensors.

The proposed formulation for the metamodel optimization problem of Step 3a is given
by:

minmy (23 Bx) = Pro (Z (yi — Ui)2> + ¢(z; Br) (3)

€L
rxr <z <ay (4)
: max-lin 1T 2(1000 kl —s)b
v; = min {vmax,vi fink 3.617 (—1 + \/1 + ((cl/%)Q)) } (5)
S — d1
ki = . 6
2 —d (6)

Recall that the decision vector is the three-dimensional vector: z = [T, Upmax, §|. Prob-
lem (3)-(6) differs from Problem (1)-(2) in the following two ways. First, the (unknown)
SO objective function (f of Eq. (1)) is replaced by an analytical function (mg). Hence,
Problem (3)-(6) is a fully analytical problem that can be addressed with traditional solvers.
Second, there are a new set of constraints (5)-(6). It is this set of constraints that we refer
to as the analytical traffic model. They provide an analytical approximation of how the
calibration parameters (i.e. the decision vector) relate to (average) link speeds and densi-
ties. Constraints (4) are lower and upper bound constraints for the decision vector. These
constraints are the same as those of the SO problem (Eq. (2)).

The objective function of this problem (Eq. (3)) is the metamodel. The first term of
the metamodel is the sum of squares distance between the speed field measurements and

the speeds derived by the analytical traffic model. This summation corresponds to the
physical or problem-specific component of the metamodel. This summation represents the
approximation of the objective function (f of Eq. (1)) provided by the analytical traffic
model. This simple analytical approximation is corrected for parametrically in two ways:
with a scaling parameter (0 0) and with an additive error term (¢). The latter corresponds
to the functional or general-purpose metamodel component. It is defined as a quadratic
polynomial with diagonal second-order derivative matrix:

D D
A5 Br) = Bra + Y 2iBrjr1 + DT3Bkt (7)

J=1 J=1

where D denotes the dimension of the decision vector.

The key element of the metamodel (my, of Eq. (3)) is the term v;, which is an analytical
problem-specific approximation of the simulation-based expected speed of link i (E[S;] of
Eq. (1)). It is defined by Eq. (5), which itself is based on Equation (9) of Punzo and
Tripodi (2007). The latter equation is the macroscopic speed-density relationship arising
from the Gipps car-following model (Gipps 1981) at equilibrium (i.e., when vehicles follow
each other at stationary speed).

Note that in this work, we aim to calibrate the car-following model of a network
simulator, while in the work of Punzo and Tripodi (2007) the goal is to calibrate an
isolated Gipps model (i.e., the car-following model is considered a stand-alone model, it
is not embedded within a broader traffic network simulation tool). In particular, for the
simulation software used in the case studies of this paper (Section 4), the standard (and
often default) car-following model of the software is an extension of the Gipps model. The
simulator’s car-following model differs from the Gipps model in several ways. For instance,
for every vehicle it uses local information (such as the maximum speed of the link that the
vehicle is currently on) to specify the desired speed of each vehicle. To account for these
differences, we have extended the expression in Punzo and Tripodi (2007) in the following
two simple ways: (i) Equation (5) uses the parameter ¢;, which is not used in Punzo and
Tripodi (2007), and (ii) the maximum link speed v"®link is accounted for.

In Equation. (6), we formulate an analytical (approximate) function that maps the
spacing calibration parameter, s, and the average density of link ¢, k;. Underlying this for-
mulation is a linear proportionality assumption between the spacing parameter s and the
density k;. The exogenous scalar parameters of the analytical traffic model (c1, co,d1, d2)
allow to account for the differences between the Gipps car-following model and the Gipps
extension deployed in a specific traffic network simulation software. They are estimated
prior to optimization based on preliminary simulation results from small synthetic net-
works.

For a network of n links, the analytical traffic model (Eq. (5)-(6)) is defined as a system
of n linear and n non-linear constraints. This makes it a scalable model suitable for the
calibration of large-scale network models.

The deceleration parameter b in Eq. (5) is equivalent to the term denoted 1/b, —1/b,_1
of the Gipps model in Appendix A. In this paper, we assume it is fixed. For the simulation
software used for the case studies of this paper, the implementation of this deceleration
parameter (TSS 2010, Sections 13.6.1-13.6.2) differs from that formulated in the original
Gipps model (Gipps 1981). Hence, in this formulation we do not calibrate it.

The metamodel of Eq. (3) combines a functional metamodel term (¢) with a physical
metamodel term (term within parenthesis of Eq. (3)). The latter has a functional form

8

that is problem-specific. This paper contributes by formulating a problem-specific (i.e.,
physical metamodel) function that approximates the mapping between the microscopic
car-following model calibration parameters and aggregate traffic metrics (e.g., speeds).
More generally, the role of this physical component is to provide problem-specific analyti-
cal structural information to the SO algorithm. Recall that this analytical information is
an approximation of the car-following model embedded in the simulator. Providing this
information within the SO algorithm enables the algorithm to no longer treat the simulator
as black-box. As is illustrated in the case studies of Section 4, this problem-specific infor-
mation enhances both the computational efficiency of the SO algorithm and its robustness
to the quality of the initial points.

In particular, the goal of the metamodel is not to replace the simulator. Instead, its
goal is to provide an analytical approximate mapping of the simulator’s input-output map-
ping that captures sufficient structural information such that it can guide the calibration
algorithm to identify points with good quality performance within small computational
budgets. In other words, its role is to accelerate the optimization process.

The formulation of a metamodel defined as the sum of a physical component and a
functional component, as in Eq. (3), was first proposed in Osorio and Bierlaire (2013). In
our past metamodel work, all metamodels have been based on this general specification.
Linear or quadratic polynomials have been used as functional components (term ¢ of
Eq. (3)). For a specific family of SO problems, the key to designing a computationally
efficient algorithm lies in the formulation of the physical component. The latter should
provide a good approximation of the SO objective function such that points with good
(simulation-based) performance can be identified within few simulation evaluations. In
other words, the physical component should capture sufficient problem-specific structural
information to enable the acceleration of the optimization process. Nonetheless, since
the metamodel optimization problem (Problem (3)-(6)) is solved at every iteration of the
SO algorithm, it needs to be solved efficiently (otherwise, one is better off allocating the
computational resources to evaluating the simulation-based objective function). Hence,
the physical model should also be efficient. Therefore, the main challenge in formulating
an efficient metamodel approach lies in the formulation of a physical component that
provides a suitable balance between accuracy and efficiency.

Past work has formulated physical metamodel components for the calibration of route
choice models (Zhang et al. 2017) and for the calibration of OD matrices (Zhang and
Osorio 2017, Osorio 2018, 2017). This past work did not require a detailed description
of car-following behavior. Hence, the analytical traffic models used relied on traditional
fundamental diagrams formulated based on the link’s supply parameters (e.g., maximum
speed, jam density, flow capacity). Since the proposed work aims to calibrate car-following
model parameters, a different and novel formulation for the analytical traffic model is
proposed. The latter relates the parameters of the car-following model to the link’s traffic
conditions (e.g., average speeds and densities).

The proposed analytical traffic model assumes exogenous route choice, while those of
Zhang et al. (2017), Osorio (2018, 2017) allow for endogenous route choice. The proposed
model can be extended to account for endogenous route choice following the ideas in Osorio
(2018, 2017). The proposed model is similar to that of Zhang et al. (2017) in that it uses
a single metamodel, rather than one metamodel per link with a measurement sensor.

A

Figure 2: Road network.

NaKIED

4 Case studies

In this section, we evaluate the performance of the proposed method with experiments on
two networks: (i) a small synthetic network, (ii) the Lausanne city network. We compare
the performance of our proposed method to that of an SO method that differs only in that
it does not include the structural equations (Eq. (5)-(6)). In other words, the benchmark
method uses a metamodel that consists only of the ¢ term in Eq. (3). Both methods
use the same metamodel SO algorithm and differ only in the metamodel choice. This
comparison serves to evaluate the added value of the problem-specific component of the
metamodel (i.e., the term in parenthesis of Eq. (3)). The benchmark method is referred
to as the traditional method, since the use of a polynomial metamodel is a traditional and
common choice in the metamodel literature.

For both networks, we use synthetic speed data. This means that the term g; of
Equations (1) and (3) is obtained by considering a given decision vector and assuming
it to be the “true” optimal solution. We then use it to create synthetic “true” speed
observations by running 50 simulation replications. For each link with a sensor, we take
the sample average (over the 50 simulation replications) speed and consider it to be the
“true” speed.

4.1 Synthetic network

The synthetic road network is that of Osorio and Yamani (2017). It is displayed in Fig-
ure 2. It consists of 20 single-lane roads and 4 signalized intersections. Drivers travel
along a single direction (i.e., they do not turn within the network). External arrivals and
departures to the network occur at the boundaries of the network (represented by the cir-
cles in Figure 2). The network is also represented in Figure 3, where each road is denoted
with a rectangle. Using the link labeling of Figure 3, we consider the demand scenario
with origin-destination demand defined in Table 1. The indices in the first row of Table 1
correspond to the link indices of Figure 3. We assume an initially empty network and
allow for a 15 minute warm-up period followed by a 1 hour simulation. We assume that
all 20 links have sensors. We use the Aimsun simulator (TSS 2010).

We consider 6 random initial points, which are uniformly drawn from the feasible

10

N [R Y A o [o O N T
(2] 4~ [][] [] [20]

Figure 3: Road network: permitted turning movements.

Origin — destination [19 12520 354|759 |10—-8 |14 - 13|17 — 18

Demand level | 700 | 700 | 100 | 600 | 600 | 100 | 100
Table 1: Demand in vehicles per hour for the synthetic network.

region (Eq. (2)). For each initial point, we run each method (i.e., algorithm) 5 times.
Running a method multiple times for the same scenario allows us to evaluate the impact
of stochasticity on the method’s performance. We consider a computational budget of 50
points. In other words, an algorithm is terminated once it has simulated 50 points. Each
point is evaluated by running 5 replications and using the sample average to estimate the
objective function.

Figure 4 displays six plots. Each plot considers a given initial point. Each plot contains
5 black solid (respectively, red dashed) curves that represent the 5 runs of the proposed
(resp. traditional) method. The z-axis considers the number of simulated points, the
y-axis considers the objective function estimate of the best point found so far (i.e., the
current iterate). Note that the different plots have different y-axis limits. For 3 of the
6 points (i.e., the top plots), the proposed method tends to identify points with lower
objective functions faster than the traditional method. For the remaining 3 points, both
methods have similar performance. The lower left plot considers an initial point that has
good performance. In this case, 3 of the 5 runs of the traditional method do not identify
any points with better performance than that of the initial point. These are displayed as
straight horizontal lines. For the proposed method, this occurs for 1 of the 5 runs.

Figure 5 considers the points proposed by each algorithmic run (i.e., the current iterate
upon termination of the algorithm). Let us refer to these points as the “best” points.
We run 50 simulation replications of these best points to obtain 50 realizations of their
objective function. We do this for each of the 5 algorithmic runs of each method. Hence,
for a given initial point and a given method, we obtain 50*5=250 simulation observations
of the objective function. Figure 5 compares the cumulative distribution function (cdf)
of these 250 points. Each plot of Figure 5 considers an initial point. Each plot contains
2 curves: a black solid curve, which represents the proposed method, and a red dashed
curve, which represents the traditional method. The curve is the cdf of the 250 simulation

11

¢l

1600 6000 5000
777777 ‘1 proposed S=q, proposed - proposed
S 1400 | — — — traditional 5 byt — — — traditional c == — — — traditional
k=l | .2 5000 ! kel e
© S T I3 Wy ! S 4000 f RN
% 1200 - | I_]1 \\ g H\l { g 1 ‘\
= - bl = [-
o IR 9 4000 I o et
= L (T = ! = oy
7 1000 R B i Sa000f | 1|
2 ! 2 HT‘\ 2 ‘ |
2 800 | S 3000 s S o
2 : 2 iy 2 1
2 600 \ o I ‘$ \ g2000r | I}
gl © 2000 | gl I
e I
E 400 £ ! 'ﬁ‘\ ! £ 1000 + ‘
7 % 1000 | Lo 7
w200] 1 k\ TNl ____]
\
0 ‘ ‘ ‘ ‘ ‘ ‘ o &H‘ T= *T*:*:*:*QL e ‘ o ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 60
Number of simulated points Number of simulated points Number of simulated points
350 r proposed 12000 1600 r
— — — traditional = proposed proposed
S0 |
Q (8] Q
s 250 | s S 1200
o L 8000 o
= = 2 1000 |
8,200} g 8
2 S 6000 S 800}
g 1507 g g
2 o 0 2 600 f
E 100 | E 4000 r 1 E
IS] 5 L
E — £ g™
— — 2 L —
& 50t i & ,,,,,,,,,,, G 2000 W 200}
0 : : : : : : 0 ' 0 : : : : : '
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of simulated points Number of simulated points Number of simulated points

Figure 4: Estimated performance of the current iterate (i.e., best point found so far) as a function of the number of simulated points.
Each plot represents one initial point and displays the performance of the proposed and of the traditional methods.

observations. The z-axis of the plots is the objective function estimate, and the y-axis is
the proportion of observations (out of the 250) that have an objective function smaller or
equal to z. Thus, the more a curve is shifted to the left, the better the performance of
the corresponding method. As an example of how to interpret these curves, consider the
top left plot. For z = 200, the y value of the red dashed curve is 0.1. This means that
10% of the 250 observations of the best solutions of the traditional method have objective
functions smaller or equal to 200. The corresponding y value of the black solid curve is
approximately 0.4, i.e., 40% of the 250 observations of the best solutions of the traditional
method have objective functions smaller or equal to 200. For 4 out of the 6 initial points
(i.e., in initial points 1-4), the proposed method outperforms the traditional method. For
initial point 5, the traditional method outperforms the proposed method. For initial point
6, the performance of both methods appears similar. However, the traditional method has
a tail of points with objective function values that are sensibly higher than the worst one
in the proposed method (see upper part of the diagram).

4.2 Lausanne network

We now evaluate the performance of the two methods for a larger network case study of the
city of Lausanne. The city map is displayed in Figure 7, the considered area is delimited
in white. We use a microscopic traffic simulation model of the Lausanne city developed by
Dumont and Bert (2006). It is implemented with the Aimsun simulator (TSS 2010), and
is calibrated for evening peak period demand. The corresponding network model consists
of 603 links and 231 intersections. It is displayed in Figure 8. We consider an hour of the
evening peak-period 5pm-6pm. During this period, congestion gradually increases. The 3
boxplots of Figure 6 display, respectively, the average link density, the average link delay
and the average link queue length. This figure indicates that the links of the network have
various levels of congestion, ranging from free flowing to congested. We consider 5 links
to have sensors.

We proceed similarly as for the synthetic network. Given that the Lausanne simulation
model is computationally more time-consuming to run than that of the synthetic network,
we consider a smaller set of 3 random initial points uniformly drawn from the feasible
region. For each initial point, we run each method 5 times.

Figure 9 displays three plots. Each plot considers a given initial point and contains
5 black solid (respectively, red dashed) curves that represent the 5 runs of the proposed
(resp. traditional) method. As before, these plots display the objective function estimate
of the current iterate as a function of the number of simulated points. For each initial
point (i.e., for each plot), all 5 runs of the proposed method outperform all 5 runs of the
traditional method. The right-most plot shows a case where the quality of the initial point
is relatively good. In this case, for all runs, the traditional method proposes solutions with
similar performance than those of the initial point. On the other hand, for 3 of the 5 runs,
the proposed method identifies points with significantly better performance.

Table 2 displays for each method and each initial point, the average objective function
estimate of the final solution (i.e., current iterate of the last iteration). The average is
computed over the 5 algorithm runs. The standard deviation is displayed in parenthesis
beside its corresponding average. Initial points 1, and 3 correspond, respectively, to the
left-most, center and right-most plots of Figure 9. For initial points 1 and 2, the proposed
method improves, on average, the objective function by 2 orders of magnitude compared
to the traditional method. For initial point 3, the improvement in average performance is

13

4!

c c - c e

9 §e b3 §e .~

3 R N E

c c 1/ c

S S i S

5 5067+ / 5

2 2 / 2

S S s S

@ @ ' @

S T o4t / T

(] (] ¢ (]

= =] =

ks 3) 3

g proposed g 0.2 Iff proposed g proposed

S / — — — traditional > — — — traditional > — — — traditional

@) L @) O
O d L L Il O L L Il L L L Il

0 500 1000 1500 0 500 1000 1500 0 200 400 600 800
Objective function estimate Objective function estimate Objective function estimate

1 1¢ —

c c c

9 je je)

E E E

E 08¢ 5 08¢ 5

c c c

9 . .

506 506 =

2 2 2

@ @ @

T 04} T 04+ S

(O] (] (]

= = =

ks 3 s

g 0.2 proposed g 0.2 proposed g proposed

S — — — traditional S) — — — traditional S — — — traditional

O ©) O
0 : : : 0 : : : : : :

0 200 400 600 0 500 1000 1500 0 500 1000 1500
Objective function estimate Objective function estimate Objective function estimate

Figure 5: Aggregate estimated performance of the final solution proposed by each method. Each plot represents one initial point and
displays the performance of the proposed and of the traditional methods.

average link density [veh/km]

average link delay [min]

average link queue length [veh]

120

100 -

80

60 -

40+

Figure 6:

Link congestion metrics.

+ + 12 +
51 +
4
45}
10 +
+ 4l +
4+
% 35 8r $
3+ +
1
L 6 *
25 N
2| T
| 4+ +
| 15t
[.l
20t 2f
05 ¢
o ol — o -
1 1 1

Figure 7: Lausanne road network (adapted from Dumont and Bert (2006))

15

Figure 8: Lausanne network model

Traditional method Proposed method

Initial point 1 539.5 (202.5) 6.4 (3.4)
Initial point 2 570.5 (100.8) 5.4 (0.4)
Initial point 3 658.1 (41.6) 249.2 (318.3)

Table 2: Average (over the 5 optimization runs) and standard deviation of the objective
function of the final solution

of 62%.

Similar to the previous figure, Figure 10 also displays the objective function estimate
as a function of the number of simulated points. It displays all the curves of the previous
figure in the same plot and focuses on the performance of the last 10 simulated points
(i.e., points indexed 40 to 50 in the previous figure). This figure shows that 14 of the 15
runs of the traditional method, yield solutions with objective estimates higher than 400.
This is the case for 2 of the 15 runs of the proposed method, while the remaining 13 runs
yield objective function estimates smaller than 15. This illustrates how, regardless of the
initial point, the proposed method tends to outperform the traditional method.

Figure 11 is similar to Figure 5. For each initial point and each method, it considers the
best points proposed by each of the 5 algorithmic runs, it runs 50 simulation replications
for each best point, leading to 250 simulation observations. Each plot displays the cdf
of the objective function estimates. The curves of the proposed method are now in blue
(rather than black) so that they can be distinguished from the y-axis. All plots have the
same y-axis range. To improve the legibility of the figure, the axis values along the y-axis
are not displayed in the middle nor the right-most plots. For the left two plots, the cdf
curves of the proposed method are approximately straight vertical lines that overlap with

16

LT

4000

3500

w
o
o
o

2500

Estimated best objective function
= N
a1 o
o o
o o

[ay
o
o
o

500

—

T

1

proposed
— — — traditional

T

T

I

N
o
o
(@]

Estimated best objective function
&
o
o

T

B —

—_———_m—e === -7

10 20 30 40 50

Number of simulated points

proposed
— — — traditional

20 30 40 50 60
Number of simulated points

Figure 9: Estimated performance of the current iterate as a function of the number of simulated points
point and displays the performance of the proposed and of the traditional methods.

800 r

——— proposed
| — — — traditional

700 |

D

o

o
T

500 r

Estimated best objective function
w H
o o
o o

N

o

o
T

T

100

L

0 10 20 30 40
Number of simulated points

. Each plot represents one initial

800

700

9]
o
o

(6]

o

o
T

w

o

o
T

Estimated best objective function
5
o
T

200 proposed
— — — traditional
100
———

40 41 42 43 44 45 46 47 48 49 50
Number of simulated points

Figure 10: Estimated performance of the current iterate as a function of the number of
simulated points. Each plot represents one initial point and displays the performance of
the proposed and of the traditional methods, for the last 10 simulated points.

the y-axis. This overlap indicates that all solutions derived by the proposed method yield
low (i.e., close to zero) objective function values. The verticality of the lines indicates
that, for a given initial point, the proposed method yields solutions with similar quality.
In other words, its performance is not affected by the stochasticity of the simulator. For
the right most plot, the cdf of the proposed method has higher variability, and hence the
quality of its best points does vary across runs. For all 3 plots of this figure, the proposed
method outperforms the traditional method.

We now compare the performance of the methods in terms of the simulated speed
estimates. For each initial point and for each method, we select the point with best
performance. The latter is defined as the point with smallest objective function average
(the average is obtained over the 50 replications). Figure 12 displays six plots. The top
(resp. bottom) plot considers the proposed (resp. benchmark) method. Each column
of plots considers a given initial point. A given plot compares the true synthetic speeds
(along the z-axis) to the simulated speeds of the best solution (along the y-axis). For a
given link with a sensor (i.e., a given x value), we display 50 points along the y-axis, these
correspond to the 50 speed observations obtained from the 50 simulation replications. The
blue dashed line is the diagonal line. Points closer to this line have better fit. All 6 plots
have the same axis limits, so they are directly comparable. To improve the legibility of
the figure, the axis values along the y-axis are not displayed in the middle nor the right-
most plots. For the proposed method (top plots), the best solution leads to speeds that
replicate well the synthetic speeds and this for all 3 initial points (i.e., all 3 top plots). For
the traditional method, this is the case for 1 of the 3 initial points (the left most plot of
the bottom row). For the first initial point (first column of plots), the proposed method

18

61

0.9

©
u
T

o
[
T

Cumulative distribution function
o o
IN ul
T T

o
w
T

2500

02—
!
I
|)
0.1y proposed i] proposed
,‘ — — — traditional (’ — — — traditional
0 | 1 1 1 1 I fI 1 1 1 1 I
0 500 1000 1500 2000 2500 0 500 1000 1500 2000
Objective function estimate

Objective function estimate

i

proposed
— — — traditional

!

r

1

1

"
£ 1

500

1000

1500

Objective function estimate

Figure 11: Aggregate estimated performance of the final solution proposed by each method. Each plot represents one initial point and

displays the performance of the proposed and of the traditional methods.

2000

Traditional method Proposed method

Tnitial point 1 0.06 (0.006) 0.03 (0.004)
Initial point 2 0.32 (0.015) 0.02 (0.006)
Initial point 3 0.26 (0.028) 0.03 (0.002)

Table 3: Average and standard deviation, over 50 simulation replications, of the root mean
square normalized error (RMSN) statistics for the final solutions proposed by each method

and the benchmark method have similar performance. For initial points 2 and 3 (i.e.,
columns 2 and 3), the proposed method outperforms the benchmark method in terms of
speed estimates. This is the case for all 5 links with sensors.

To quantify the quality of the fit of each method, we use the root mean square nor-
malized (RMSN) error of the link speeds. Table 3 displays for each method and each
initial point, the average (over the 50 replications) and the standard deviation (over the
50 replications) of the RMSN. The standard deviation appears in parenthesis beside its
corresponding average. For initial point 1, the proposed method improves the RMSN by
50%. For initial points 2 and 3, the RMSN is improved by one order of magnitude. On
average, over the 3 initial points, the proposed method yields an RMSN of 0.028 compared
to an RMSN of 0.21 for the traditional method. It improves, on average, the RMSN by
one order of magnitude.

Recall that the main goal of the analytical traffic model formulated in this paper is
to accelerate the identification of points with good performance. Figure 13 evaluates this.
It compares the performance of the proposed method (solid black lines) with that of the
traditional method (dashed red lines). For each method, there are 15 lines that correspond
to the 5 SO runs for each of the 3 initial points. The z-axis displays the SO algorithm
iteration. The y-axis displays the Euclidean norm distance between the current iterate
(point with best performance) and the true (optimal) solution. Since the experiments use
synthetic simulated speed data, we know the value of the calibration parameters that were
used to generate these synthetic speed measurements. These values are considered to be
the true (optimal) solutions to the calibration problem. This figure indicates that for 13
out of the 15 SO runs, the proposed method yields a final solution with a distance of less
than 8, while the traditional method achieves this for 2 final solutions. The average (over
the 15 SO runs) distance of the final solution is 23.1 for the proposed method and 111.4 for
the traditional method. Figure 14 displays, for each method, the average (over the 15 SO
runs) distance of the current iterate to the optimal solution. Figures 13 and 14 illustrate
how the structural information of the analytical traffic model accelerates the ability of the
SO algorithm to find solutions close to the optimal solution.

5 Conclusions

This paper considers the calibration of microscopic car-following models embedded within
stochastic simulation-based network models. Large-scale microscopic simulators are com-
putationally inefficient to evaluate. Hence, the main contribution of this paper is to pro-
pose a computationally efficient calibration technique for large-scale microscopic network
models. We propose a metamodel simulation-based optimization (SO) approach. A novel
analytical traffic model is formulated, which provides an analytical, scalable and computa-
tionally efficient mapping between the calibration vector (i.e., vehicle-specific parameters

20

1¢

73]

g

3

73]

B 40

je . e

© ’da#f#sxx

€301~

g

@D

3

Q 20

o . .

Q30 35 40
true speeds

&

@D

S

Q 50 |

3

£ 40| -

D !ﬁfﬁ.f!"”

e |

{530“

e

-E 20 ¢ | |

2 30 35 40

true speeds

_ - WX
,ffgx

30 35 40
true speeds

30 35 40
true speeds

30

35 40
true speeds

30

35 40
true speeds

Figure 12: Comparison of synthetic speeds with speeds of the best solutions. Each column of plots correspond to a given initial point.

The top (resp. bottom) row of plots correspond to the proposed (resp. traditional) method.

180

—>— proposed

160 F - —O— traditional

140

120

100 -

Q 'Q}@(%GO@@GOO@@GO@O

60 - d
oo , @@@@G@@@@d\@@@@@ee

Distance to optimal point

40

0 5 10 15 20 25 30 35 40
Algorithm iteration

Figure 13: Distance, for each SO run, of the current iterate to the optimal point across
iterations.

120 - poa,
p oo

Y © 00000600
0009

110

100 —>— proposed

—G— traditional

90

80

70

60

50

Average distance to optimal point

40

30

20 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Algorithm iteration

Figure 14: Average distance of the current iterate to the optimal point across iterations.

22

of the car-following model) and the simulation-based performance measures (expected link
speed). The analytical traffic model is embedded within the SO algorithm, as a component
of a metamodel.

We carry out case studies on both a synthetic small network and a large-scale real net-
work. We benchmark the approach versus an approach that differs only in that it does not
use information from the analytical mapping. The case studies indicate that the problem-
specific and simulator-specific structural information that the analytical mapping provides
to the SO algorithm enables the algorithm to become both computationally efficient (i.e.,
solutions with good performance are identified within few simulation evaluations) as well
as robust to the quality of the initial points and to the stochasticity of the simulator. Addi-
tionally, the proposed approach remains computationally efficient for large-scale networks.
Compared to the traditional benchmark approach, the proposed approach improves both
the objective function by 2 orders of magnitude and the fit to the field measurements by
one order of magnitude, on average.

The joint calibration of supply and demand parameters of the traffic network simulator
is of interest. We have recently proposed efficient metamodel approaches for the calibration
of origin-destination (OD) matrices (Zhang and Osorio 2017) and for behavioral parame-
ters of travel demand models (e.g., route choice) (Zhang et al. 2017). These approaches
can be readily integrated to propose the joint calibration of these parameters. Moreover,
the computational efficiency of the proposed approach makes it a suitable building block
for the design of online calibration techniques. The latter are of increasing importance,
given the growing interest by both public and private transportation stakeholders in the
design and use of real-time traffic models.

Problem formulations that exploit more information of the data are also of interest.
For instance, the objective function could account for the temporal variation of the field
measurements. This can be done by defining an objective function that minimizes the dis-
tance to measurements for shorter time intervals. From a methodological perspective, this
can lead to interesting metamodel formulations that capture traffic dynamics. Work along
these lines has been recently carried out for dynamic OD calibration problems (Osorio
2018).

The car-following calibration problem is an intricate optimization problem. A compre-
hensive discussion is given in Ciuffo et al. (2008), Punzo et al. (2012). As the intricacy of
the problem increases, so does the potential for analytical structural information, such as
that from analytical traffic models, to enhance the computational efficiency of calibration
algorithms.

Acknowledgments

The work of C. Osorio is partially supported by the U.S. National Science Foundation
under Grant No. 1334304. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

Appendix A: Gipps Model

Let us briefly recall the formulation of the Gipps model (Gipps 1981). Let vehicle n denote
the vehicle of interest. It is referred to as the follower vehicle. Let vehicle n — 1 denote

23

the vehicle in front of vehicle n. It is referred to as the leader. The speed of vehicle n is
governed by the following equations.

vn(t+7) = min{vg,(t + 7), 060 (t + 7)} ®
Van(t +7) = vn(t) + 2.5a,7 (1 - Z”(t)> 0.025 + Zn(t) o)

Vpn(t47) = —by (7/2 + 9)+\/b% (/2 +6)2 + by, (2(hn(t) —8,) — Ton(t) + vn_1(1)? /Bn_l),

(10)
with the following notation:
Van(t +7) follower’s speed at time (t 4 7) in case of free-flowing conditions;
vpn(t +7) follower’s speed at time (¢ + 7) in case of car-following conditions;
vn(t) speed of the follower vehicle at time ¢;
Up—1(t) speed of the leader vehicle at time ¢;
b (t) space headway between the follower and the leader at time ¢
(i.e., space distance between the two vehicles);
an follower’s maximum desired acceleration;
Umax follower’s desired (maximum) speed;
T reaction time;
0 “comfort” time lag;
S minimum distance to the leader vehicle (i.e., length of vehicle n plus
minimum between-vehicle safety distance);
b, maximum deceleration of the follower;
Bn_l follower’s estimate of leader’s desired deceleration.

In the Gipps model, the speed of a vehicle is limited by one of two factors. The first
is the minimal (i.e., safe) distance to the leader. This is represented by Equation (10)
and is referred to as the car-following conditions. The second are the limitations set by
the follower vehicle itself. This is represented by Equation (9) and is referred to as the
free-flowing conditions. In a network simulation model, at every simulation time step,
the velocity of each vehicle is revised based on a car-following idea along the lines of
Equations (8)-(10).

Appendix B: SO algorithm for car-following model calibra-
tion

The general metamodel SO framework and algorithm is that of Osorio and Bierlaire (2013).
The specification below is adapted for its use to calibrate a car-following model. We use

24

the following notation of Osorio and Bierlaire (2013).

k SO iteration index;

zF current iterate at iteration k;

Ay trust region radius at iteration k;

Sk step size at iteration k;

Nk total number of simulation runs carried out up until and including iteration k;
L total number of successive trial points rejected at iteration k;

Nmaz total number of points to simulate (i.e., computational budget);

7 number of simulation replications to evaluate per point;

The scalar constants 71, %, Vine, 7, d, i, Amae are defined such that: 0 < 7 < 1,
0<y<1<Yne, 0<7<1,0<d< Apaz, it €N*. Let fa(z) denote the term within
parenthesis of Eq (3). Algorithm 1 specifies the algorithm.

Algorithm 1 relates to the SO framework of Figure 1 as follows. Step 1 of Figure 1
refers to accepting or rejecting the current iterate, this step is labeled as lines 10-16 in
Algorithm 1. Step 2 of Figure 1 fits the metamodel by solving Problem (11). Step 3a of
Figure 1 solves the metamodel optimization problem, which corresponds to lines 8-9 of
Algorithm 1. Step 3b of Figure 1 samples points other than the trial point (i.e., the solution
to the metamodel optimization problem), it corresponds to lines 18-19 of Algorithm 1. Step
4 of Figure 1 corresponds to parts of Algorithm 1 that require evaluating the simulator,
(i.e., whenever we estimate F[S;(Z)] or when we estimate f(x) for a given x).

The traditional method differs from the proposed method as follows: (i) the step
“Analytical-only calibration” (lines labeled 3 and 4 of Algorithm 1) is not carried out; (ii)
the metamodel does not contain a physical component, i.e., the term S o of Eq. (3) is set
to zero throughout the algorithm; (iii) no computation of f4 is required.

At each iteration k of the SO algorithm, the parameters of the metamodel, (5, are
estimated using simulated observations obtained both at the current iteration as well as
at all previous iterations. More specifically, they are determined by solving the following
least squares problem.

2D+1
min 3 {uwy(2)(E[Si(2)] —mi(e)} +ud (B 102+ Y By). ()
¥ zesy j=1

where E [Si(x)] denotes the simulation-based estimate of the expected speed on link 7 for
point x, wg(z) denotes the weight for point x, wy denotes an exogenous (fixed) scalar
weight coefficient and Sy denotes the set of points simulated up until iteration k.

The first term of Eq. (11) represents the weighted distance between the speeds predicted
by the metamodel and those estimated by the simulator. The weights are defined as in
Osorio and Bierlaire (2013):

1

. S— 12
T e =, (12)

wy ()

where zF denotes the current iterate.

25

Algorithm 1 SO algorithm for the calibration of the Gipps car-following model

1:
2:

Initialization

Set values for n,,.. and for 7. Set &k = 0, ng = 0, ug = 0. Determine the initial
point 2° and the initial trust region radius Ag (Ag € (0, Apnaz]). Compute fa(x°) by
solving the System of Equations (5)-(6). Estimate E[S;(2°)] (of Eq. (1)) for each link
i € Z. Estimate f(z°) (Eq. (1)). Include the new simulation observation in the set of
sampled points, i.e., set ng = ng + 7.

Analytical-only calibration

4: Solve Problem (3)-(6) using only the analytical traffic model and without using any

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:

20:

21:

22:
23:
24:
25:

simulation information. This is done by setting: (o of Eq. (3) to 1 and by setting
Brj = 0 Vj > 0 (also of Eq. (3)) to 0. Let Z denote the solution to this problem.
Estimate E[S;(Z)] for each link i € Z and estimate f(Z) to yield f(Z). Set ng = ng+7.
Set the initial current iterate to this solution, i.e., set 2% = 7.
Initial metamodel fitting
Solve Problem (11) to fit the metamodel my.
while nj; < 14, do
Step calculation
Solve Problem (3)-(6) subject to a trust-region constraint (i.e., |[sgx|| < Ag), let
z¥ + s;, denote the solution, which is referred to as the trial point.
Acceptance or rejection of the trial point
Compute fa(z*+s;) by solving the System of Equations (5)-(6). Estimate E[S;(x*+
st)] for each link i € Z. Estimate f(x* + s3). Set nj = ny + 7. Compute:

f(a*) = f(a* + sx)

mg (k) — my (2% + i)

pr =

if pr. > and f(z*) — f(z* + s) > 0 then

Accept the trial point: a*+1 = 2% 4 55, pup = 0;
else

Reject the trial point: ¢t = 2%,y = g, + 1.
end if

Solve Problem (11) to fit the metamodel my.;.

Model improvement

||6k‘-‘}—1_”6kH
Bk)

uniformly and randomly drawn from the feasible region defined by Eq. (2). Evaluate

fa(z) by solving the System of Equations (5)-(6). Estimate E[S;(z)] and f(z). Set
ng = ng + 7. Solve Problem (11) to update the fit of the metamodel my 1.
Trust region radius update
min{YineAg, Amaz b, if pp > m
A1 = < max{yAy,d}, if pp <mp and pp > [

Compute 741 = If 7,41 < 7, then sample a new point x, which is

Ap, otherwise.
if p < and pg > p then
Set pr = 0. Set ngy1 = Nk, pkr1 = i, Kk =k + 1.
end if

end while

26

References

Azevedo, C. L., Ciuffo, B., Cardoso, J. L., and Ben-Akiva, M. E. (2015). Dealing with uncertainty
in detailed calibration of traffic simulation models for safety assessment. Transportation
Research Part C, 58, 395-412.

Balakrishna, R. (2006). Off-line calibration of dynamic traffic assignment models. Ph.D. thesis,
Massachusetts Institute of Technology.

Balakrishna, R., Ben-Akiva, M. E., and Koutsopoulos, H. N. (2007). Offline calibration of dynamic
traffic assignment: simultaneous demand-and-supply estimation. Transportation Research
Record, 2003, 50-58.

Barceld, J. (2010). Fundamentals of traffic simulation, volume 145 of International Series in
Operations Research and Management Science. Springer, New York, USA.

Cascetta, E. and Nguyen, S. (1988). A unified framework for estimating or updating origin/desti-
nation matrices from traffic counts. Transportation Research Part B, 22(6), 437-455.

Cascetta, E., Inaudi, D., and Marquis, G. (1993). Dynamic estimators of origin-destination matrices
using traffic counts. Transportation Science, 27(4), 363-373.

Chong, L. and Osorio, C. (2017). A simulation-based optimization algorithm for dynamic large-
scale urban transportation problems. Transportation Science. Forthcoming, Available at:
http://web.mit.edu/osorioc/www/papers/choOso15dynSO.pdf.

Cipriani, E., Florian, M., Mahut, M., and Nigro, M. (2011). A gradient approximation approach
for adjusting temporal origin-destination matrices. Transportation Research Part C, 19(2),
270-282.

Ciuffo, B. and Azevedo, C. L. (2014). A sensitivity-analysis-based approach for the calibration of
traffic simulation models. IEEE Transactions on Intelligent Transportation Systems, 15(3),
1298-1309.

Ciuffo, B., Punzo, V., and Torrieri, V. (2008). Comparison between simulation-based and model-
based calibrations of traffic flow micro-simulation models. Transportation Research Record,
2088, 36-44.

Ciuffo, B., Casas, J., Montanino, M., Perarnau, J., and Punzo, V. (2013). Gaussian process
metamodels for sensitivity analysis of traffic simulation models. Transportation Research
Record, 2390, 87-98.

Dumont, A. G. and Bert, E. (2006). Simulation de 1’agglomération Lausannoise SIMLO. Tech-
nical report, Laboratoire des voies de circulation, ENAC, Ecole Polytechnique Fédérale de
Lausanne.

Ge, Q., Ciuffo, B., and Menendez, M. (2014). An exploratory study of two efficient approaches
for the sensitivity analysis of computationally expensive traffic simulation models. IEEE
Transactions on Intelligent Transportation Systems, 15(3), 1288-1297.

Gipps, P. G. (1981). A behavioural car-following model for computer simulation. Transportation
Research, 15B(2), 105-111.

Hall, F. (2001). Traffic stream characteristics. In N. Garthner, C. Messer, and A. Rathi, editors,
Revised Traffic Flow Theory Monograph. Transportation Research Board.

Huang, E. (2010). Algorithmic and implementation aspects of on-line calibration of dynamic traffic
assignment. Master’s thesis, Massachusetts Institute of Technology.

Kattan, L. and Abdulhai, B. (2006). Noniterative approach to dynamic traffic origin-destination
estimation with parallel evolutionary algorithms. Transportation Research Record, 1964,
201-210.

Kunde, K. K. (2002). Calibration of mesoscopic traffic simulation models for dynamic traffic
assignment. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

Lu, L., Xu, Y., Antoniou, C., and Ben-Akiva, M. (2015). An enhanced SPSA algorithm for the
calibration of dynamic traffic assignment models. Transportation Research Part C, 51, 149—
166.

27

Osorio, C. (2017). High-dimensional offline OD calibration for stochastic traffic simulators of large-
scale urban networks. Technical report, Massachusetts Institute of Technology. Under review.
Available at: http://web.mit.edu/osorioc/www/papers/osoODCalib.pdf .

Osorio, C. (2018). Dynamic OD calibration for large-scale network simulators. Tech-
nical report, Massachusetts Institute of Technology. Under review. Available at:
http://web.mit.edu/osorioc/www/papers/osoDynamicOD.pdf .

Osorio, C. and Atastoy, B. (2017). Efficient simulation-based toll optimization for large-scale
networks. Technical report, Massachusetts Institute of Technology. Under review. Available
at: http://web.mit.edu/osorioc/www/papers/osoAtaTollSO.pdf .

Osorio, C. and Bierlaire, M. (2013). A simulation-based optimization framework for urban trans-
portation problems. Operations Research, 61(6), 1333—1345.

Osorio, C. and Nanduri, K. (2015). Urban transportation emissions mitigation: coupling high-
resolution vehicular emissions and traffic models for traffic signal optimization. Transportation
Research Part B, 81, 520-538.

Osorio, C. and Yamani, J. (2017). Analytical and scalable analysis of transient tandem Markovian
finite capacity queueing networks. Transportation Science, 51(3), 823-840.

Punzo, V. and Tripodi, A. (2007). Steady-state solutions and multiclass calibration of Gipps
microscopic traffic flow model. Transportation Research Record: Journal of the Transportation
Research Board, 1999, 104-114.

Punzo, V., Ciuffo, B., and Montanino, M. (2012). Can results of car-following model calibra-
tion based on trajectory data be trusted? Transportation Research Record: Journal of the
Transportation Research Board, 2315, 11-24.

Punzo, V., Montanino, M., and Ciuffo, B. (2015). Do we really need to calibrate all the param-
eters? variance-based sensitivity analysis to simplify microscopic traffic flow models. IEEE
Transactions on Intelligent Transportation Systems, 16(1), 184-193.

Sendergaard, J. (2003). Optimization using surrogate models - by the Space Mapping technique.
Ph.D. thesis, Technical University of Denmark.

Spall, J. C. (2003). Introduction to stochastic search and optimization: estimation, simulation, and
control. Wiley-Interscience series in discrete mathematics and optimization. John Wiley &
Sons, New Jersey, USA.

Stathopoulos, A. and Tsekeris, T. (2004). Hybrid meta-heuristic algorithm for the simultaneous
optimization of the O-D trip matrix estimation. Computer-Aided Civil and Infrastructure
Engineering, 19(6), 421-435.

Treiber, M., Hennecke, A., and Helbing, D. (2000). Congested traffic states in empirical observa-
tions and microscopic simulations. Physical Review E, 62(2), 1805-1824.

TSS (2010). Microsimulator and Mesosimulator. AIMSUN 6.1 Users Manual. Transport Simula-
tion Systems.

Tympakianaki, A., Koutsopoulos, H., and Jenelius, E. (2015). c-SPSA: Cluster-wise simultane-
ous perturbation stochastic approximation algorithm and its application to dynamic origin-
destination matrix estimation. Transportation Research Part C, 55, 231-245.

Vaze, V., Antoniou, C., Wen, Y., and Ben-Akiva, M. (2009). Calibration of dynamic traffic assign-
ment models with point-to-point traffic surveillance. Transportation Research Record, 2090,
1-9.

Wilson, R. E. (2001). An analysis of Gipps car-following model of highway traffic. IMA Journal
of Applied Mathematics, 66, 509-537.

Zhang, C. and Osorio, C. (2017). Efficient offline calibration of origin-destination (demand) for
large-scale stochastic traffic models. Technical report, Massachusetts Institute of Technology.
Under review. Available at: http://web.mit.edu/osorioc/www/papers/zhaOsoODcalib.pdf .

Zhang, C., Osorio, C., and Flotterod, G. (2017). Efficient calibration techniques for large-scale
traffic simulators. Transportation Research Part B, 97, 214-239.

28

Zhong, R. X., Fu, K. Y., Sumalee, A., Ngoduy, D., and Lam, W. H. K. (2016). A cross-entropy
method and probabilistic sensitivity analysis framework for calibrating microscopic traffic
models. Transportation Research Part C', 63, 147-169.

29

