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Abstract 

 
This work considers an urban traffic network, and represents it as a Markovian queueing 

network. This work proposes an analytical approximation of the time-dependent joint 

queue-length distribution of the network. The challenge is to provide an accurate 

analytical description of between and within queue (i.e. link) dynamics, while deriving a 

tractable approach. In order to achieve this, we use an aggregate description of queue 

states (i.e. state space reduction). These are referred to as aggregate (queue-length) 

distributions. This reduces the dimensionality of the joint distribution. 

 

The proposed method is formulated over three different stages: we approximate the time-

dependent aggregate distribution of 1) a single queue, 2) a tandem 3-queue network, 3) a 

tandem network of arbitrary size. The third stage decomposes the network into 

overlapping 3-queue sub-networks. The methods are validated versus simulation results. 

We then use the proposed tandem network model to solve an urban traffic signal control 

problem, and analyze the added value of accounting for time-dependent between queue 

dependency in traffic management problems for congested urban networks.  
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Chapter 1. Introduction 
 

 

In urban traffic networks, to reduce congestion and improve network-wide performance, 

one must understand two aspects of the network: the dynamics within each link (i.e., 

road), and the possibilities of blockings to occur and propagate over time. Blocking 

occurs when a customer completes service in a link but cannot proceed downstream 

because the downstream link is full. Queueing theory helps in analyzing both aspects of 

the network by modeling links as queues. One can study the behavior of queues over time 

if the arrival process of customers and service mechanism are known. In this thesis, we 

will represent an urban road network as a Markovian finite capacity queueing network. 

We are interested in understanding the distribution of customers in the network at any 

point in time, which can be done through the analysis of the transient joint queue-length 

distribution (denoted transient joint distribution hereafter) of the network. Calculating the 

exact transient joint distribution is a computationally expensive task given the high 

dimensional system of differential equations to be solved; hence, the objective of this 

thesis is to analytically approximate the transient joint queue-length distribution of the 

network.  

 

We will specifically look at M/M/1/K queues. The number of customers in an M/M/1/K 

queue is defined as a stochastic process, its state space is the set {0,1,2é,K}, where K is 

the state capacity of the queue. This type of queue is governed by independent identically 

distributed (iid) exponential interarrival times with arrival rate ʇ and iid exponential 

service times with service rate ʈ. M/M/1/K queues are the most elementary of finite 

capacity queueing models (Strugul, 2000). They are also appealing to study because of 

the availability of closed-form expressions that describe a wide range of queue metrics.  
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1.2 Literature review  

 

Calculating the exact transient queue-length distribution of a network requires working 

with exponentials of high-dimensional matrices that are computationally expensive to 

compute. Due to the mathematical difficulty of computing the transient distribution of a 

network, researchers have previously focused on developing models that calculate the 

steady-state distribution instead of the transient distribution  (Phillips, 1995). In cases 

where there is a need to understand the transient distribution of the network before it 

reaches to steady-state or when the system does not reach a steady state, the transient 

solution accurately portrays the behavior of the system as opposed to the stationary which 

if exists showcases only the final state of the network (Kaczynski, Leemis and Drew, 

2012). 

 

Although the literature focuses on steady-state queueing models (Phillips, 1995), 

transient queueing models have been studied and developed by researchers. In this 

section, we will focus our investigation on models that look at finite capacity queues and 

yield expressions for the transient queue-length distributions for a single queue or a 

network of queues. These models are generally classified into three groups: exact models, 

analytical approximation models, and numerical approximation models.  

 

The first exact closed-form expression to the transient queue-length distribution of an 

M/M/1/K queue was developed by Morse (1958, p.65-67). Morseôs closed-form equation 

expresses the transient distribution as the sum of the steady state solution and a transient 

term. As time increases in the network, the transient term becomes negligible compared 

to the steady-state solution. The transient solution given by Morse, while useful for a 

single queue, does not allow us to model a joint queue-length distribution of multiple 

queues. Takacs (1961) also derived a closed form that yields the same results as Morse 

(1958) and also has the same limitations.  
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Another exact model is one developed by Parthasarathy (1987), which derives a transient 

expression for a single M/M/1/K queues that include integrals of Bessel functions. With 

small modifications, the expression given can be applied to different types of queues 

including single or multiple server queues, and queues with or without balking. For 

instance, Abou-El-Ata (1993) extended Parthasarathyôs work to solve the transient 

behavior of an M/M/1/K queue with balking customers.  Despite the fact that the 

transient expression can be applied to different queue types, the integrals of Bessel 

functions are complex and hard to accurately compute since they are defined as an 

infinite series. Given the above, exact models have certain limitations and complexities 

that can be overcome by approximate models.  

 

When it comes to analytical approximation models, Sternôs (1979) model for a single 

M/M/1 queue uses the form of the queue-length distribution of the exact model in his 

approximation. The transient queue-length distribution is then expressed as a sum of 

exponential terms. The expression of the transient is then transformed to a form where 

the eigenvalues and vectors of the expression is used. Stern shows that the expression for 

the marginal distribution is in a form that lends itself to simple approximation for the 

transient mean queue-length. Not only does this method apply for a single queue, a 

similar approach can be taken to obtain an approximation for the joint distribution of a 

network of queues. While this model seems to work well for any degree of accuracy, it is 

crucial to use a small time-step when computing the queue-length distributions, which 

would result in longer running periods.   

 

Filipiakôs (1988) model is another example of an analytical approximation model for 

calculating the transient queue-length distribution of a single M/M//K queue. The model 

is called a fluid flow approximation because the core of the model consists of differential 

equations describing the rate of flow of customers into and out of the queue and relating 

it to the transient distribution of the queue (Phillips, 1995). The differential equations 

contain some characteristic functions that if their roots were found, yield the transient 

distribution for the M/M/1/K queue.  

 



 16 

Filipiakôs method was then extended by Phillips (1995). Phillipsô method however uses 

different characteristic functions that are easier to solve roots for. Either way, solving 

roots of high degree polynomials are usually expensive and time-consuming to compute.  

 

Apart from analytical approximation models, numerical approximation models have also 

been developed to evaluate the transient queue-length distribution. These methods, 

however, deal directly with the differential equations of the queue-length distributions, 

which in most cases are high-dimensional systems to solve (Rothkopf and Oren,  1979). 

Grassmannôs paper (1977), for instance, explores three different numerical methods to 

solve the transient queue-length distribution of M/M/1/K queues. The three methods are: 

Rung-Kutta, Modified Runge-Kutta and Liou, and Randomization. The methods are 

closely related, yet the randomization method is shown to be superior than the others. An 

important trait that these methods exploit is that they preserve the sparsity of the 

transition rate matrix. It is also important to note that these methods can be applied to 

solve the queue-length distribution of a single Markovian queue or the joint queue-length 

distribution of a network of Markovian queues.  

 

Despite the fact that numerical methods have very low execution time compared to exact 

and analytical approximation methods, the main problem faced by many authors is the 

high dimensional system of differential equations being solved. A queueing system with 

n queues leads to n-tuple states. There is then Б ὑ different states, where ὑ is the 

capacity of  queue i. The transition rate matrix will then be of dimension 

Б ὑ Ȣ Even for small values of ὑ and n, this number can be very large and very 

hard to store (Grassmann, 1977).   

 

Dealing with a network with large numbers of queues or large queue capacities have been 

found challenging for many of the methods above. One way to reduce the dimensions of 

the system of equations being solved is by aggregating the queue-length state space. The 

aggregation process is done by combining some states into an aggregate states. 

Aggregation of queue states for stationary Markov chain was introduced by Takahashi 

(1975). Takahashi later extended the previous work to propose an exact numerical 
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derivation of a marginal aggregate queue-length distribution and a joint aggregate queue-

length distribution (Takahashi and Song, 1991). In Takahashi and Songôs paper (1991), 

they enhanced the aggregation model by modeling the joint queue-length distribution of 

adjacent queues, therefore accounting for any blockings between queues. They showed 

an example of approximating the stationary distribution for a 5-queue tandem network 

with blocking by looking at joints with different number of queues. They first looked at 

individual queues in the network and calculated the marginal queue-length distribution of 

each queue independently. They then looked at two queues at a time and calculated the 

two-queue joint queue-length distribution.  Lastly, they looked at three queues and higher 

at a time and calculated the three-queue or more joint queue-length distribution. They 

showed that the higher the number of queues represented in the joint, the more accurate 

the stationary distribution is. The reason is because calculating joint distributions with 

more queues means accounting for more between-queue activities including blockings 

(Takahashi and Song, 1991). 

 

The papers on aggregation-disaggregation from Takahashi tackled two of the challenges 

of estimating the stationary queue-length distribution: the size of the system and the 

dependencies between queues that lead to blocking. The work done by Takahashi was 

then extended by Schweitzer (1984) to introduce the same aggregation-disaggregation 

techniques for the transient analysis of Markov chains and itôs application to queueing 

networks. Schweitzerôs approach tackles the same transient model challenges, but also 

ensures the convergence to stationary distribution.  

 

Most of the work in this thesis combines ideas from both exact and analytical 

approximation models surveyed above, as well as aggregation-disaggregation techniques 

from Takahashi and Schweitzer.  
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1.2 Model background  

 

To introduce the model, we introduce the following notation: 

 

ὢὸ number of customers in the queue at time t; 

K queue capacity; 

  state space of the Markovian queue; 

 ὗ transition rate matrix for a single queue; 

 ή  transition rate from state i to state j; 

 ‗ customer arrival rate to the queue; 

‘ service rate of the queue; 

ὴὸ probability of being in state i at time t;  

ὴὸ row vector representing the transient queue-length distribution of a queue; 

ὴ initial queue-length distribution. 

 

Let ὢὸȟὸ π represent a finite-state continuous-time Markovian queueing system 

with state space   and state space dimension K+1, where the states represent the number 

of customers in the system. For a single queue, the transition rate matrix is given by 

ὗ ή , with values ή ‗ȟή ‘. The diagonal elements are given by, 

ή ή

ȟ

ȟ 

(1) 

and all other terms being null.  

 

Let ὴὸ be the probability that the queue has i customers at time t, then the row vector 

ὴὸ represents the transient queue-length distribution of all states. The behavior of the 

finite Markovian queue can be described by the Kolmogorov system of differential 

equations (Muppala and Trivedi, 1992): 
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Ὠ

Ὠὸ
ὴὸ ὴὸὗȟ ὴπ ὴȢ 

(2) 

Here, ὴ represents the initial queue-length distribution of the Markovian queue. 

The solution of this system of first order linear differential equations yields the transient 

queue-length distribution of the queue at time t, ὴὸ. Several methods for solving the 

differential equations are available. For instance, differential equation solver like Runge-

Kutta or Randomization (Grassmann, 1977) can solve this numerically. However, we are 

interested in solving this equation analytically.  

 

We can write the general solution of equation (2) as: 

ὴὸ ὴπὩ  ὴ Ὡ Ȣ 

(3) 

We can rewrite equation (3) differently, by shifting the origin of the time axis to ὸ 

instead of 0 since the process is time-homogeneous (Grassman, 1977): 

ὴὸ ὴὸὩ Ȣ 

(4) 

For a single queue, it is convenient to solve the transient queue-length distribution using 

equations (3) or (4). However, the dimensions of Q increases exponentially as the number 

of queues in the network or capacities of the queues get larger. In addition, direct 

evaluation of the matrix exponential can run into high accumulation of round-off errors 

since the Q matrix contains both positive and negative entries. In the next chapter we will 

present a model that accounts for these challenges.  

 

1.3 Overview  

 

The remainder of this thesis is structured as follows. 

 

In chapter 2, we will formulate the model. We will present the aggregation-

disaggregation framework, and then apply the aggregation on a single queue, a 3-queue 

tandem network, and an M-queue tandem network. We will present the analytical 
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approximation model of the transient queue-length distribution of an M-queue tandem 

network in the last section of the chapter.  

 

In chapter 3, we will validate the model by comparing the transient joint distribution 

obtained from our model against those estimated from an exact model for one queue and 

a discrete event simulation model for a network of queues.  

 

In chapter 4, we will apply the transient model to a traditional signal control problem on a 

network to measure the added value of accounting for the transient behavior. We will 

evaluate multiple scenarios that consider the same road network and different travel 

demands. Our interest is to see how our model performs with different demand scenarios 

compared to a stationary joint model.  

 

Finally, in chapter 5, we will present a summary of the model and of the results from the 

case study, and show the added value for accounting for the transient joint distribution.  
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Chapter 2. Model formulation 
 

2.1 Aggregation-disaggregation framework  

 

For us to overcome the dimensionality problem mentioned in the first chapter, we apply 

Schweitzerôs (1984) aggregation technique for transient Markovian queueing systems. 

The technique assumes a finite-state Markovian queueing system with aperiodic and 

communicative properties. The urban transportation network that weôre looking to 

analyze meets all the assumption addressed by Schweitzer.  

 

To present the framework, we first introduce the following notation:  

ɱ  state space of the Markovian queueing system; 

ὓ  size of ɱ; 

ɱ  aggregate state space of the Markovian queueing system; 

ɱ   state space representing all disaggregate states that are in aggregate 

state a; 

ὓ  size of ɱ; 

ὔ  disaggregate state; 

ὃ  aggregate state; 

ὴ ὸ probability of being in disaggregate state n at time ὸȠ 

ὴ ὸ probability of being in aggregate state a at time ὸȠ 

ὴ ὸ row vector representing the disaggregate transient queue-length 

distribution of a queue; 

ὴ ὸ row vector representing the aggregate transient queue-length 

distribution of a queue; 

ή    transition rate from aggregate state aᶰɱ to aggregate state b ɴɱ; 

ή ὸ  transition rate from aggregate state aᶰɱ to disaggregate state           

                            Ὦɴ ɱ; 

‗Ӷ ὸ  aggregate arrival rate at time ὸ; 

‘ ὸ   aggregate service rate at time ὸȢ 
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Assume our Markovian queueing system has a state space ɱ of dimension M, the 

probability of being in any state n ɴɱ at time t is denoted by ὴ ὸ, and the transition 

rate from going from state Ὥɴ ɱ to state Ὦɴ ɱ is denoted by ή . To aggregate the state 

space, we cluster states together to get an aggregated state space ɱ, of size ὓ ὓ. For 

an aggregate state a ᶰɱ, the set ɱ  represents all disaggregate states that are in a.  

Hence, the probability of being in an aggregate state a denoted ὴ ὸ, is defined as a 

function of the disaggregate probabilities, 

ὴ ὸ ὴ ὸȢ

ᶰ

 

(5) 

The transition rate ή  from aggregate state aɴ ɱ to aggregate state b ɴɱ as defined by 

Schweitzer (1985) is: 

 

ή ὸ
В В ὴ ὸ ή ὸᶰᶰ

В ὴ ὸᶰ
Ȣ 

(6) 

Additionally, the transition rate ή  from aggregate state aɴɱ to disaggregate state Ὦɴ ɱ 

as defined by Schweitzer (1985) is: 

ή ὸ
В ὴ ὸ ή ὸᶰ

В ὴ ὸᶰ
Ȣ 

(7) 

 

 

In this paper, we use the same decomposition of aggregate states as in Osorio and Wang 

(2012). Figure 2-1 shows the state transition diagram, before and after aggregating the 

state space. Each circle in the diagram represents a state, and each arrow represents 

possible transitions between the states with their rates. Arrivals in the figure are 

determined by the arrival rate ‗ π , and departures by the service rate ‘ π  .  
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Single Queue 

 

Single aggregate queue 

 

Simplified single aggregate queue 

Figure 2-1: Aggregating the state space of a single queue to three aggregate states 

(Osorio and Wang, 2012)  

 

Initially, we have M= + ρ states, where K is the queue capacity. We aggregate to get 

-  3 aggregate states. Our system now has only 3 aggregate states: aggregate state 0 

representing an empty queue, aggregate state 2 representing a full queue, and aggregate 

state 1 representing a non-empty and non-full queue. For a network of queues, this means 

that the number of equations for the network is linear in the number of queues instead of 

exponential.  

 

The third image in Figure 2-1 shows that the rates for leaving aggregate state 1 have 

changed. The other transition rates remain the same because aggregate state 0 and 

disaggregate state 0 are equivalent. Additionally, aggregate state 2 and disaggregate state 

K are equivalent. The aggregate system is now fully described by a set of four rates 

‗ȟ‘ȟ‗Ӷ ÁÎÄ ‘Ӷ. The first two are known and the last two (denoted aggregate arrival rate and 
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aggregate service rate respectively) can be defined from Equations (6), (7) (Osorio and 

Wang , 2012) and ( Schweitzer, 1984) as: 

 

‗Ӷ ὸ ‗
ὴ ὸ

ὴ ὸ
‗ ὴ ȿ ὸ ȟ 

(8) 

 

‘ ὸ ‘
ὴ ὸ

ὴ ὸ
‘ ὴ ȿ ὸ ȟ 

(9)  

 

where ὴ ȟὴ  are the probabilities that the queue is in disaggregate states K-1, 1 

respectively, while ὴ  is the probability that the queue is in aggregate state 1. 
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2.2 Aggregate transient model for a single and a 

network of tandem queues 

 

In this section, we will apply the aggregation-disaggregation techniques from 2.1 to 

derive the model for calculating the transient queue-length distribution of a single 

M/M/1/K queue and the transient joint queue-length distribution for a network of 

M/M/1/K queues in tandem. We propose to calculate the joint transient distribution of a 

network of queues in tandem by decomposing the system into overlapping sub-networks 

of three queues. Below we present this formulation at three different network size levels: 

a single queue, a network of 3 queues in tandem, and a network of M queues in tandem.  

  

2.2.1 Aggregate transient model for a single queue  

 

 For a single finite-capacity Markovian queue, the state space is given by ɱ

πȟρȟȢȢȟ+, where K π is the queue capacity.  To derive the aggregate model for a 

single queue-length distribution over time, we will use the same framework introduced in 

2.1, where our system now has only 3 aggregate states. This results in a 3x3 aggregate 

transition rate matrix, ὗ . 

 

The model is implemented in discrete time, and within each time interval, we assume 

aggregate transition rates to be constant.  To present the model, we introduce the 

following notation:  

‗  queue arrival rate; 

‘  queue service rate; 

”  queue traffic intensity; 

K  queue capacity; 

ὴ  initial disaggregate queue-length distribution of the queue; 

ὴ ὸ aggregate transient queue-length distribution at continuous time ὸ 

within time interval Ὧ; 
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ὴ ὸ disaggregate transient queue-length distribution at continuous time  

ὸ within time interval Ὧ; 

ὗ   aggregate transition rate matrix during time interval Ὧ; 

‗  approximated queue arrival rate during time interval k; 

‘  approximated queue service rate during time interval k; 

”  approximated queue traffic intensity during time interval k; 

‗Ӷ  aggregate arrival rate during time interval Ὧ; 

‘Ӷ  aggregate service rate during time interval Ὧ; 

ὖ  probability of being in disaggregate state n at stationarity; 

 ;time step length  ‏

Ὕ  duration of entire time horizon; 

ὸ  continuous time within the πȟ‏ interval.  

 

For a queue with arrival rate ‗, service rate ‘, capacity K and initial disaggregate queue-

length distribution ὴ, the traffic intensity ” is defined as the ratio of the arrival rate to 

service rate ” Ȣ The discrete form of the aggregate queue-length distribution over time 

is defined as:  

 

ὴ ὸ ὴ Ὡ ȟ     ᶅὸɴ‏ πȟ‏ȟ ὴ π ὴ  ȟ‏

(10a) 

ὗ
 ‗  ‗ π
‘Ӷ ‗Ӷ  ‘Ӷ ‗Ӷ

π ‘ ‘
ȟ 

(10b) 

 

where the initial aggregate queue-length distribution and initial service and arrival rates 

are defined as: 

 

ὴ  

ὴ

ρ ὴ ὴ

ὴ

ȟ ‗Ӷ ‗
ὴ

ὴ   
ȟ  ‘Ӷ‘

ὴ

ὴ   
Ȣ 
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(10c) 

 

 

To calculate the aggregate transition rates ‗Ӷȟ‘Ӷȟ we refer to equations (8) and (9). In 

discrete time, we get: 

‗Ӷ  ‗
ὴ ‏

ὴ ‏
‗ ὴ ȿ  ȟ‏

(11a) 

 ‘Ӷ ‘
ὴ ‏

ὴ ‏
‘ ὴ ȿ  Ȣ‏

(11b) 

Equations (11a) and (11b) require calculations of the disaggregate queue-length 

distributions (i.e.,  ὴ ȟ and ὴ‏ ‏ . Since these are not available, we apply the 

closed form expression of the queue-length distribution from Morseôs exact method 

(1958, p.65-67) to approximate the disaggregate distributions. The transient queue-length 

distribution as derived by Morse (1958) in continuous time is given by:  

 

ὴ Ὕ В ὴ  Ὠ Ὕȟ    

 ρςὥ ρ 

In discrete time at time interval k, the transient queue-length distribution is defined as: 

ὴ ὸ В ὴ Ὠ ‏ ȟ ὸȟᶅ ὸɴ πȟ‏ȟ    

 ρςὥ ς 

 

where ὴ  is the initial probability of being in disaggregate state m, ὴ π is the 

probability of being in disaggregate state m from the previous time step. In continuous 

time, Ὠ Ὕ is defined as: 
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Ὠ Ὕ  ὖ

ς”

ὑ ρ
 
ρ

ὼ
ÓÉÎ
ίά“

ὑ ρ
  ”ÓÉÎ

ίά ρ“

ὑ ρ
 ÓÉÎ

ίὲ“

ὑ ρ
  

”ÓÉÎ
ίὲ ρ“

ὑ ρ
Ὡ    ȟ  

(12b-1) 

and in discrete time during time interval k with continuous time t, Ὠ ȟ ὸ is defined as: 

Ὠ ȟ ὸ  ὖ

ς”

ὑ ρ
 
ρ

ὼ
ÓÉÎ
ίά“

ὑ ρ
  ”ÓÉÎ

ίά ρ“

ὑ ρ
 ÓÉÎ

ίὲ“

ὑ ρ
  

”ÓÉÎ
ίὲ ρ“

ὑ ρ
Ὡ    ȟ  

(12b-2) 

 

ὼ
‎

‘

 ‗ ‘ ς ‗‘ÃÏÓ
ί“
ὑ ρ

‘
ȟ 

(12c) 

where, ὖ   is the stationary distribution of an M/M/1/K queueȟÁÎÄ ὲᶰ

πȟρȟȣȢȟὑ. Both ὲ and Ὧ ρ are exponents in the stationary distribution  equation.  

 

To approximate the disaggregate probabilitiesȟὴ ȟ and ὴ‏  we solve a ,‏

nonlinear system of equations for ‘ ȟ‗ . The nonlinear system consists of two 

equations: The first states that ὴ and ὴ ‏  are equal, and the second states that ‏

ὴ and ὴ ‏  are equal. We end up solving two nonlinear equations for two ‏

unknowns. The nonlinear system is defined below in Equations (13) and (14) and in more 

details in Equations (15) and (16). 
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ὴ ‏ ὴ Ὠ ‏ ȟ ‏ πȟ     

(13) 

 

ὴ ‏ ὴ Ὠ  ‏ ȟ ‏ πȢ   

(14) 

 

We plug Equation (12) into (13) and (14) and get 

 

ὴ ‏

ὴ ὖ ‏

ς”

ὑ ρ
 

‘

  ‗ ‘ ς‗ ‘ ÃÏÓ
ί“
ὑ ρ

ÓÉÎ
ίά“

ὑ ρ
  

” ÓÉÎ
ίά ρ“

ὑ ρ
 ɀ ”  ÓÉÎ

ί“

ὑ ρ
  Ὡ   

πȟ 

 

(15) 
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ὴ ‏

ὴ ὖ ‏

ς”

ὑ ρ
 

‘

  ‗ ‘ ς‗ ‘ ÃÏÓ
ί“
ὑ ρ

ÓÉÎ
ίά“

ὑ ρ
  

” ÓÉÎ
ίά ρ“

ὑ ρ
 ÓÉÎ

ίὑ“

ὑ ρ
  Ὡ    

πȟ 

(16) 

 

where ‗ ȟ‘ ȟ are the queue arrival rate and service rate during time interval Ὧ ρ 

that we want to solve for, and ” , where Ὧ ρ represents the time interval 

index.  

   

Once we solve for ‗  and ‘ , we plug them into the discrete form of Equation (12) 

with the initial disaggregate distribution ὴ  to get the disaggregate probabilities ‏

ὴ ȟÁÎÄ ὴ‏  Ȣ The disaggregate probabilities will then be plugged into‏

Equations (11a) and (11b) to calculate the disaggregate transition rates ‗Ӷȟ‘ӶȢ 

 

The full algorithm for solving the transient distribution of a single queue can be described 

in the following steps: 

 

Input:  

Arrival rate to the queue: ‗ 

Service rate of the queue: ‘ 

Queue capacity: ὑ 

Initial disaggregate queue-length distribution of the queue: ὴ  

Duration of entire time horizon;Ὕ 

 



 31 

Output :  

Assuming that   is an integer, the output is an approximation of the aggregate 

queue-length distribution of a queue at time T (in discrete time at time interval 

Ὧ : ὴ ὸ, where ὸ can be any value between πȟ‏Ȣ 

 

Algorithm: 

 

 .can be initiated as any small number ‏

 

For Ὧ πȟρȟςȟȣȟ   

If  Ὧ π 

1) Calculate the initial aggregate distribution (ὴ  from the initial 

disaggregate distribution ὴ  using the following equation: 

ὴ  

ὴ

ρ ὴ ὴ

ὴ

ȟ   

 

2) Calculate the initial aggregate transition rates ‗Ӷȟ‘Ӷ: 

‗Ӷ ‗
ὴ

ὴ   
ȟ  ‘Ӷ‘

ὴ

ὴ   
Ȣ 

 

Else 

 

1) The aggregate queue-length distribution for time step k of continuous 

time t is defined as: 

ὴ ὸ ὴ  Ὡ ȟ‏

 

where ὴ π ὴ ȟ ὗ‏
 ‗  ‗ π
‘Ӷ ‗Ӷ  ‘Ӷ ‗Ӷ

π ‘ ‘
Ȣ 
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2) Solve the following nonlinear system of equations to obtain ‗ȟ‘, 

where Ὠ ȟ  : is given by Equation (12b-2) ‏

ὴ ‏ ὴ Ὠ ‏ ȟ ‏ πȟ     

ὴ ‏ ὴ Ὠ  ‏ ȟ ‏ πȢ   

 

3) Plug ‗ȟ‘ into Equation (12) to get the disaggregate probabilities of 

being in disaggregate states ρȟ ὑ ρ: 

ὴ ‏ ὴ Ὠ‏ ȟ  ȟ‏

ὴ ‏  ὴ Ὠ ‏ ȟ  Ȣ‏

 

4) Calculate ‗Ӷ ȟ‘Ӷ  for the next time step from the following 

equations: 

 

‗Ӷ  ‗
ὴ ‏

ὴ ‏
ȟ 

‘Ӷ ‘
ὴ ‏

ὴ ‏
Ȣ 

 

End 

End 

 

 

2.2.2 Aggregate transient model for a three-queue 

tandem network 
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In this section, we consider three M/M/1/K queues in tandem. For this type of network, 

we want to approximate the aggregate joint queue-length distribution ὴ ȟȟ ὸ which 

is defined as the probability that the first, second and third queue, are in aggregate states 

ὭȟὮȟὰ respectively at continuous time ὸɴ πȟ‏ within time interval Ὧ. The aggregate state 

space is defined as the triplets with 27 unique states where ὭȟὮȟὰ ᶰπȟρȟς . Therefore, 

the dimension of the transition rate matrix is independent of the individual queue 

capacities and is always 27x27.  

 

We introduce the following notation: 

ὔ   disaggregate state of queue i; 

ὃ    aggregate state of queue i; 

‎    external arrival rate to queue i; 

‘    service rate of queue i; 

ὑ    capacity of queue i; 

ὑ    capacity of the queue corresponding to blocking scenario j; 

‗ approximated queue arrival rate for blocking scenario j 

during time interval k; 

‘ approximated queue service rate for blocking scenario j 

during time interval k; 

” approximated queue traffic intensity for blocking scenario j 

during time interval k; 

ὴ ȟȟ ὸ aggregate joint queue-length distribution at continuous time 

ὸ within time interval Ὧ; 

ὴ ȟȟ ὸ disaggregate joint queue-length distribution at continuous 

time ὸ within time interval Ὧ; 

ὴ ὸ the marginal probability that queue i is in aggregate state a 

at continuous time t within time interval k; 

ὴ ὸ the marginal probability that queue i is in disaggregate state 

n at continuous time t within time interval k; 
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ὴ   initial disaggregate queue-length distribution for queue i; 

ὴ   initial aggregate queue-length distribution for queue i; 

ὴ ȟȟ  initial aggregate joint queue-length distribution; 

ὴ ȟȟ  initial disaggregate joint queue-length distribution; 

ὗ   aggregate joint transition rate matrix (AJ is a shorthand for 

aggregate joint) within time interval k; 

‌  empty aggregate transition rate probability for blocking 

scenario j during time interval Ὧ; 

‌   full aggregate transition rate probability for blocking 

scenario j during time interval ὯȠ 

 ;time step length  ‏

Ὕ  duration of entire time horizon; 

ὸ  continuous time within the πȟ‏ interval. 

 

Each of the three queues in the network has an external arrival rate ‎ȟ service rate ‘, 

queue capacity ὑ and initial disaggregate queue-length distribution ὴ , where i ɴ

 {1,2,3}.  We calculate the initial disaggregate joint distribution ὴ ȟȟ by assuming a 

product-form joint queue-length distribution, i.e., the initial joint can be decomposed as a 

product of its marginals. Unfortunately, finite-capacity queueing systems, in general, do 

not have a product-form joint queue-length distribution. The reason for that is because 

finite-capacity queueing system give rise to blocking which might cause intricate 

dependency between queues, where service and arrival rates of queues might increase of 

decrease depending on any blocking that might occur in the system.  

 

When a queue is causing blocking on upstream queues, the service rates of upstream 

queues might get decreased because of the blocking. Additionally, when the queue 

causing the blocking has a service completion, service rates of some blocked upstream 

queues might increase. Hence, calculating the joint is a challenge in that blocking should 
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be captured in all its scenarios and accounting for these dependencies between queues is 

necessary.  

 

In a three-queue tandem network, where ή is the most upstream,  ή can be either be not 

blocked or blocked by either ή or ή, and ή can either be not blocked or blocked by ή, 

and ή is always not blocked. This gives us a total of 6 blocking scenarios. The 

probability of a job being blocked for each of these scenarios has been approximated in 

Osorio and Wang (2012). Table 2-1 shows all these scenarios with an approximation of 

their probabilities of occurrence. 

 

 

Table 2-1: All blocking scenarios with joint states, blocking probabilities, and 

aggregate transition rate probabilities   

 

To calculate the transient joint queue-length distribution, we refer to Equation (10) from 

the single queue model and modify it to apply for the 3-queue joint model. The joint 

model is also implemented in discrete time, and within each time interval, we assume 

Blocking 

scenario 

Joint State Blocking Probability Aggregate 

transition rate 

probabilities 

ή not blocked {(0,1,2), (0,1),(0,1,2)} 0 ‌ ȟ‌  

ήblocked by 

ή 

{(0,1,2),2,(0,1)} ὄ  
‘

‘ ‘
 ‌ ȟ‌  

ήblocked by 

ή 

{(0,1,2),2,2} ὄ  
‘

‘ ‘ ‘
 
‘

‘ ‘

  
‘

‘ ‘ ‘
 
‘

‘ ‘
 

‌ ȟ‌  

ή not blocked {(0,1,2), (0,1,2) ,(0,1)} 0 ‌ ȟ‌  

ήblocked by 

ή 

{(0,1,2), 1 ,2} 

 

{0,2,2} 

ὄ  
‘

‘ ‘
 

ὄ
‘

‘ ‘ ‘
 
‘

‘ ‘
 

‌ ȟ‌  

ή not blocked All states 0 ‌ ȟ‌  
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aggregate transition rates for all blocking scenarios to be constant.  The main equations 

for the joint transient models is presented below in Equations (17) and (18): 

 

ὴ ȟȟ ὸ ὴ ȟȟ Ὡ‏
 ȟ     ᶅὸɴ πȟ‏ȟ ὴ ȟȟ π ὴ ȟȟ  ȟ‏

(17) 

 

where ὗ Ὢ‎ȟ‘ȟ‌ȟὄ  is a 27x27 sparse matrix with nonzero elements given in 

appendix A. The parameters for the matrix are:  ‎ ‎ȟ‎ȟ‎ȟ‘ ‘ȟ‘ȟ‘ ȟ  

ὄ ὄȟὄȟὄȟὄ  ȟ‌ ‌ ȟ‌ ȟ‌  ȟ‌ ȟ‌  ȟ‌ ȟ‌ ȟ   ‌ ȟ‌  ȟ‌ ȟ‌ ȟ

‌ . The initial aggregate joint queue-length distribution ὴ ȟȟ, is calculated 

assuming independent initial marginal aggregate queue-length distributions of the three 

queues. To calculate it, we perform a cross product of the three initial aggregate queue-

length distributions, where ὴ ȟȟ ὴ  ὴ ὴ .  

 

We define the aggregate transition rate probabilities as follows:  

‌ ὴ ȿ ȿ ȿ ‏  
ὴ  ȿ  ‏

ὴ ȿ ‏
  

‌ ὴ ȿ ȿ ȿ ‏  
ὴ  ȿ  ‏

ὴ ȿ ‏
 

‌ ὴ ȿ ȟ ȿ ȿ ȟ ‏  
ὴ  ȿ ȟ  ‏

ὴ ȿ ȟ ‏
  

‌ ὴ ȿ ȟ ȿ ȿ ȟ ‏  
ὴ  ȿ ȟ  ‏

ὴ ȿ  ȟ ‏
 

‌ ὴ ȿ  ȟ ȿ ȿ  ȟ ‏  
ὴ  ȿ  ȟ  ‏

ὴ ȿ  ȟ ‏
  

‌ ὴ ȿ  ȟ ȿ ȿ  ȟ ‏  
ὴ  ȿ  ȟ  ‏

ὴ ȿ  ȟ ‏
 

‌ ὴ ȿ ȿ ȿ ‏  
ὴ  ȿ  ‏

ὴ ȿ ‏
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‌ ὴ ȿ ȿ ȿ ‏  
ὴ  ȿ  ‏

ὴ ȿ ‏
 

‌ ὴ ȿ  ȿ ‏  
ὴ  ȿ  ‏

ὴ ȿ ‏
  

‌ ὴ ȿ  ȿ ‏  
ὴ  ȿ  ‏

ὴ ȿ ‏
 

‌ ὴ  ȿ ‏  
ὴ  ‏

ὴ ‏
  

‌ ὴ  ȿ ‏  
ὴ  ‏

ὴ ‏
 

(18) 

 

For each of the 6 blocking scenarios in Table 2-1, at time step k, we define 2 aggregate 

transition rate probabilities, the full aggregate transition rate probability, denoted ‌ , 

and the empty aggregate transition rate probability, denoted ‌ . ‌  represents the ratio 

of the probability of being in disaggregate state 1 given blocking scenario j to the 

probability of being in aggregate state 1 given blocking scenario j at time interval k-1. 

While ‌  represents the ratio of the probability of being in disaggregate state ὑ-1 given 

blocking scenario j to the probability of being in aggregate state 1 given blocking 

scenario j at time interval k-1.  

 

Calculating the full and empty aggregate transition rate probabilities for all the blocking 

scenarios, defined in Equation (18), is somewhat of a challenge given that the 

disaggregate probabilities in the numerators are unknown. To approximate the 

disaggregate probabilities, we follow the same approach as in the one queue model. That 

is by assuming the disaggregate probabilities of the blocking scenarios follow the 

functional form given by Morse (1958) in Equation (12). We solve 6 different nonlinear 

systems for all blocking scenarios. We solve the nonlinear systems in Equations (19) 
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through (24) to obtain six different pairs of ‗  ÁÎÄ ‘ , where j represents the 

blocking scenario index.  

 

To approximate the disaggregate probabilities for blocking scenario 1: ὴ ȿ  ,‏

ὴ ȿ during time interval Ὧ ,(‏) ρ, we solve the following nonlinear system 

for  ‗   ÁÎÄ ‘ : 

ὴ ȿ ‏ ὴ ȿ Ὠ ‏ ȟ ‏ πȟ     

ὴ ȿ ‏ ὴ ȿ Ὠ  ‏ ȟ ‏ πȢ   

(19) 

 

 

To approximate the disaggregate probabilities for blocking scenario 2: 

ὴ  ȿ ȟ ὴ ,‏  ȿ ȟ during time interval Ὧ ‏ ρ, we solve the 

following nonlinear system for  ‗  ÁÎÄ ‘ : 

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ ‏  ȟ ‏ πȟ     

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ ‏  ȟ ‏ πȢ   

(20) 

To approximate the disaggregate probabilities for blocking scenario 3: 

ὴ  ȿ ȟ ὴ ,‏  ȿ ȟ during time interval Ὧ ‏ ρ, we solve the 

following nonlinear system for ‗  ÁÎÄ ‘ : 

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ  ‏  ȟ ‏ πȟ     
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ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ ‏  ȟ ‏ πȢ   

(21) 

To approximate the disaggregate probabilities for blocking scenario 4: ὴ  ȿ  ,‏

ὴ  ȿ during time interval Ὧ ‏ ρ, we solve the following nonlinear system 

for ‗  ÁÎÄ ‘ : 

ὴ  ȿ ‏ ὴ  ȿ Ὠ  ‏ ȟ ‏ πȟ     

ὴ  ȿ ‏ ὴ  ȿ Ὠ ‏  ȟ ‏ πȟ   

(22) 

 

To approximate the disaggregate probabilities for blocking scenario 5: ὴ  ȿ  ,‏

ὴ  ȿ during time interval Ὧ ‏ ρ, we solve the following nonlinear system 

for  ‗  ÁÎÄ ‘ : 

ὴ  ȿ ‏ ὴ  ȿ Ὠ ‏  ȟ ‏ πȟ     

ὴ  ȿ ‏ ὴ  ȿ Ὠ  ‏ ȟ ‏ πȢ   

(23) 

To approximate the disaggregate probability for blocking scenario 6: ὴ  ,‏

ὴ ȟ during time interval Ὧ‏ ρ, we solve the following nonlinear system for 

‗  ÁÎÄ ‘ : 

ὴ ‏ ὴ Ὠ  ‏ ȟ ‏ πȟ     
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ὴ ‏ ὴ Ὠ ‏  ȟ ‏ πȢ   

(24) 

For Equations (19) through (24), we calculate  Ὠ ȟ ȟὨ‏ ȟ  from equation ‏

(12b-2). Once  ‗  ÁÎÄ ‘  for Ὦ ‭ρȟςȟσȟτȟυȟφ are obtained from the nonlinear solver, 

we plug them into the discrete form of Equation (12) to get the disaggregate probabilities 

needed. These steps are described in more details in the algorithm description below. 

 

The full algorithm for solving the transient joint distribution of a three-queue network can 

be described in the following steps: 

 

Input:  

External arrival rates to each of the three queues : ‎ ‎ȟ‎ȟ‎Ȣ 

Service rate for each of the three queues: ‘ ‘ȟ‘ȟ‘ Ȣ 

Queue capacity for each of the three queues ὑ ὑȟὑȟὑ Ȣ 

Initial disaggregate distribution for each of the three queues: ὴ ȟὴ ȟὴ Ȣ 

Duration of entire time horizon: Ὕ. 

Output :  

Assuming that  is an integer, the output is an approximation of the aggregate 

queue-length distribution of a queue at time T (in discrete time at time interval : 

ὴ
ȟȟ

  
ὸ,) where ὸ can be any value between πȟ‏Ȣ Ȣ 

 

Algorithm: 

 .can be initiated as any small number ‏

 

For time step Ὧ πȟρȟςȟȣȟ  

If  Ὧ π 
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1) Calculate the initial aggregate distribution (ὴ  from the initial 

disaggregate distribution ὴ  for Ὥ‭ρȟςȟσ using the following 

equation: 

ὴ  

ὴ

ρ ὴ ὴ

ὴ

ȟ   

 

2) Calculate the initial joint queue-length distribution from the following 

equation: 

ὴ ȟȟ ὴ  ὴ ὴ  

3) Calculate the initial aggregate transition rates for each of the blocking 

scenarios ‌ ȟ‌  ÆÏÒ Ὥ ‭ ρȟςȟσȟτȟυȟφ from the initial joint ὴ ȟȟ 

and the initial disaggregate distributions ὴ ȟὴ ȟὴ : 

 

‌
ὴ  ȿ  

ὴ ȿ

 ȟ‌  
ὴ  ȿ  

ὴ ȿ

 

‌  
ὴ  ȿ ȟ  

ὴ ȿ ȟ

 ȟ‌  
ὴ  ȿ ȟ  

ὴ ȿ  ȟ

 

‌  
ὴ  ȿ  ȟ  

ὴ ȿ  ȟ

 ȟ‌  
ὴ  ȿ  ȟ  

ὴ ȿ  ȟ

 

‌  
ὴ  ȿ  

ὴ ȿ

ȟ‌  
ὴ  ȿ  

ὴ ȿ 

  

‌  
ὴ  ȿ  

ὴ ȿ

 ȟ‌  
ὴ  ȿ  

ὴ ȿ

 

‌  
ὴ  

ὴ
 ȟ‌  

ὴ  

ὴ
 

 

Else  

1) The aggregate joint queue-length distribution for time step k of 

continuous time t is defined as:  
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ὴ ȟȟ ὸ ὴ ȟȟ Ὡ‏
 ȟ     ᶅὸɴ πȟ‏ ȟ  

 

where ὗ Ὢ‎ȟ‘ȟ‌ȟὄ  is a 27x27 sparse matrix with nonzero 

elements described in appendix A. The parameters for the matrix are:  

‎ ‎ȟ‎ȟ‎ȟ‘ ‘ȟ‘ȟ‘  given initially as input , 

ὄ ὄȟὄȟὄȟὄ  given in Table 2-1, and  

‌ ‌ ȟ‌ ȟ‌  ȟ‌ ȟ‌  ȟ‌ ȟ‌ ȟ   ‌ ȟ‌  ȟ‌ ȟ‌ ȟ‌  

approximated in the previous time step. 

 

2) Solve six nonlinear system of equations for the six blocking scenarios 

to obtain ‗ȟ‘ where j is the blocking scenario index: 

 

Nonlinear system 1: Solve to obtain ‗ȟ‘ 

ὴ ȿ ‏ ὴ ȿ Ὠ ‏ ȟ ‏ π     

ὴ ȿ ‏ ὴ ȿ Ὠ  ‏ ȟ ‏ π   

 

Nonlinear system 2: Solve to obtain ‗ȟ‘ 

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ ‏ ȟ ‏ π    

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ‏ ȟ ‏ π   

Nonlinear system 3: Solve to obtain ‗ȟ‘ 

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ  ‏ ȟ ‏ π    
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ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ ‏  ȟ ‏ π   

Nonlinear system 4: Solve to obtain ‗ȟ‘ 

ὴ  ȿ ‏ ὴ  ȿ Ὠ  ‏ ȟ ‏ π    

ὴ  ȿ ‏ ὴ  ȿ Ὠ ‏  ȟ ‏ π   

 

Nonlinear system 5: Solve to obtain ‗ȟ‘ 

ὴ  ȿ ‏ ὴ  ȿ Ὠ ‏  ȟ ‏ π    

ὴ  ȿ ‏ ὴ  ȿ Ὠ  ‏ ȟ ‏ π   

Nonlinear system 6: Solve to obtain ‗ȟ‘ 

ὴ ‏ ὴ Ὠ  ‏ ȟ ‏ π    

ὴ ‏ ὴ Ὠ ‏  ȟ ‏ π   

 

3) Plug each pair ‗ȟ‘ and the disaggregate distribution for each 

blocking scenario from time step Ὧ ρ as the initial distribution into 

the discrete form of Equation (12) to get the disaggregate probabilities 

of being in disaggregate states 1, ὑ ρ. 

 

Plug ‗ȟ‘ and the disaggregate distribution for this blocking scenario 

from time step Ὧ ρ as the initial distribution, into Equation (12) to 

get:  
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ὴ ȿ ‏ ὴ ȿ Ὠ‏ ȟ  ȟ‏

ὴ ȿ ‏  ὴ ȿ Ὠ‏ ȟ  Ȣ‏

 

Plug ‗ȟ‘ into equation (12) to get  

ὴ  ȿ ȟ ‏ ὴ ȿ ȟ Ὠ ‏ ȟ  ȟ‏

ὴ  ȿ ȟ ὴ  ‏ ȿ ȟ Ὠ ‏ ȟ  Ȣ‏

 

Plug ‗ȟ‘ into equation (12) to get  

ὴ ȿ ȟ ‏ ὴ ȿ ȟ Ὠ‏ ȟ  ȟ‏

ὴ ȿ ȟ ‏  ὴ ȿ ȟ Ὠ‏ ȟ  Ȣ‏

 

Plug ‗ȟ‘ into equation (12) to get  

ὴ ȿ ‏ ὴ ȿ Ὠ‏ ȟ  ȟ‏

ὴ ȿ ‏  ὴ ȿ Ὠ‏ ȟ  Ȣ‏

Plug ‗ȟ‘ into equation (12) to get  

ὴ ȿ ‏ ὴ ȿ Ὠ‏ ȟ  ȟ‏

ὴ ȿ ‏  ὴ ȿ Ὠ‏ ȟ  Ȣ‏
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Plug ‗ȟ‘ into equation (12) to get  

ὴ ‏ ὴ Ὠ‏ ȟ  ȟ‏

ὴ ‏  ὴ Ὠ‏ ȟ  Ȣ‏

 

4) Calculate ‌ ȟ‌ , where j is the blocking scenario for time step 

Ὧ ρ from the following equations: 

 

‌
ὴ  ȿ  ‏

ὴ ȿ ‏
 ȟ‌  

ὴ  ȿ  ‏

ὴ ȿ ‏
 

 

‌
ὴ  ȿ ȟ  ‏

ὴ ȿ ȟ ‏
 ȟ‌  

ὴ  ȿ ȟ  ‏

ὴ ȿ  ȟ ‏
 

 

‌  
ὴ  ȿ  ȟ  ‏

ὴ ȿ  ȟ ‏
 ȟ‌  

ὴ  ȿ  ȟ  ‏

ὴ ȿ  ȟ ‏
 

 

‌  
ὴ  ȿ  ‏

ὴ ȿ ‏
 ȟ‌

ὴ  ȿ  ‏

ὴ ȿ ‏
 

 

‌  
ὴ  ȿ  ‏

ὴ ȿ ‏
 ȟ‌  

ὴ  ȿ  ‏

ὴ ȿ ‏
 

 

‌  
ὴ  ‏

ὴ ‏
 ȟ‌  

ὴ  ‏

ὴ ‏
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End 

End 

 

2.2.3 Aggregate transient model for an M-queue tandem 

network 

 

We generalize the method of computing the transient queue-length distributions for M 

queues in tandem by decomposing the network into overlapping 3-queue sub-networks, 

illustrated in Figure 2-2. The method that we will apply for each of the sub-networks is 

based on the one developed in the previous section. This approach not only maintains the 

same level of linear computational complexity that we mentioned in the previous section, 

but also allows us to validate the accuracy of marginal transient distributions for 

individual queues. The total number of sub-networks that we need to evaluate is M-2.  

 

 

Figure 2-2: Decomposing the network to overlapping sub-networks of three tandem 

queues (Osorio and Wang, 2012) 

 

To present the model, we introduce the following notation: 

ή  queue i; 

ὔ  disaggregate state of queue i; 

ὃ  aggregate state of queue i; 

‎  external arrival rate to queue i; 

‘  exogenous service rate of queue i; 

ὑ  capacity of queue i; 

ὑ  capacity of the queue corresponding to blocking scenario j; 

 ‗  total arrival rate to queue i during time interval k; 
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‘   effective service rate of queue i during time interval k; 

‘   unblocking rate of queue i during time interval k; 

ὴ   blocking probability of queue i during time interval k; 

‗ȟ approximated queue arrival rate for sub-network s and blocking 

scenario j during time interval k; 

‘ȟ approximated queue arrival rate for sub-network s and blocking 

scenario j during time interval k; 

”ȟ approximated queue traffic intensity for sub-network s and 

blocking scenario j during time interval k; 

‌ȟ  empty aggregate transition rate probability for sub-network s and 

blocking scenario i during time interval Ὧ; 

‌ȟ  full aggregate transition rate probability for sub-network s  and 

blocking scenario i during time interval Ὧ; 

ὗ  aggregate joint transition rate matrix for sub-network s during time 

interval Ὧ; 

ὴ  initial disaggregate queue-length distribution for queue i; 

ὴ  initial aggregate queue-length distribution for queue i; 

ὴȟ ὸ the marginal probability that queue i in sub-network s is in 

aggregate state a at continuous time t within time interval k; 

ὴȟ ὸ the marginal probability that queue i in sub-network s is in 

disaggregate state n at continuous time t within time interval k. 

ὴȟ ȟȟ  initial aggregate joint queue-length distribution for sub-network s; 

ὴȟ ȟȟ initial disaggregate joint queue-length distribution for sub-network 

s; 

ὴȟ ȟȟ ὸ aggregate joint queue-length distribution of sub-network s at 

continuous time ὸ within time interval Ὧ; 

ὴȟ ȟȟ ὸ disaggregate joint queue-length distribution of sub-network s at 

continuous time ὸ within time interval Ὧ; 
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ɿ  time step length; 

Ὕ duration of entire time horizon of which the joint queue-length 

distribution of the M-queue network is evaluated; 

ὸ continuous time within the πȟ‏ interval. 

  

For any sub-network i, with queue indices ὭȟὭ ρ ȟὭ ς, to calculate an accurate joint 

queue-length distribution, we need to understand the dependencies between adjacent 

queues to the sub-networks and the effects of both upstream and downstream queues. The 

adjacent upstream queue i-1 gives us information on the arrival rate of queue i, and the 

adjacent downstream queue i+3 gives us information on the service rate of queue i+2 . 

Hence, for each sub-network i, the total arrival rate to the first queue ‗, and the effective 

service rate of the third queue ‘ , during time interval k, is calculated by using 

information from adjacent queues. The total arrival rate to the most upstream queue in 

system i, queue i, is obtained by solving the flow conservation equation derived by 

Osorio and Bierlaire (2009a) and given by: 

 

‗  ‎
‗ ρ ὴ π

ρ ὴ π
Ȣ  

(25) 

The effective service rate,  ‘ ,  for the most downstream queue in system i, queue i+2, 

accounts for service and for potential blocking from downstream queues. It is also 

derived by Osorio and Bierlaire (2009a), and given by:  

‘
ρ

‘
ὴ  

ρ

‘
ȟ 

(26) 

where ‘ is the exogenous service rate,  ὴ is the blocking probability during time 

interval Ὧ, and ‘  is the unblocking rate during time interval k of ή. The approximation 

for ‘  for a single queue is derived by Osorio and Bierlaire (2009b), and is given by: 

ρ

‘

‗ ρ ὴ π

‗ ρ ὴ π
 
ρ

‘Ƕ
Ȣ 
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(27) 

Additionally, ὴ  is approximated by: 

ὴ ὴ π 
‘

‘ ‘
Ȣ 

(28) 

We substitute Equations (27) and (28) in (26) and get  

  

‘
ρ

‘
ὴ π 

‘

‘ ‘
 
‗ ρ ὴ π

‗ ρ ὴ π
 
ρ

‘Ƕ
Ȣ 

(29) 

 

The other important aspect to consider for this method is the consistency of marginal 

queue-length distributions of same queues in different sub-networks. Our method does 

not ensure consistency among same queue marginal distributions in different sub-

network. However, we ensure consistency among the aggregate transition rate 

probabilities for the same queues in different sub-networks through system of Equations 

(30). 

  

‌ȟ  ‌ ȟ  

(30a) 
 

‌ȟ  ‌ ȟ  

(30b) 
 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ 

(30c) 
 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ 

(30d) 
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‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ  

ὴ ȟ ‌ ‏ ȟ ὴ ȟ ὴ ‏ ȟ ‌ ‏ ȟ

ὴ ȟ ‌ ‏ ȟ  

(30e) 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ  

ὴ ȟ ‌ ‏ ȟ ὴ ȟ ὴ ‏ ȟ ‌ ‏ ȟ

ὴ ȟ ‌ ‏ ȟ  

(30f) 
 

 

If we have two overlapping sub-networks, i and i+1, then ή  is the second queue of 

sub-network i and the first queue of sub-network i+1 . In sub-network i, ή  has two 

blocking scenarios: ή  is not blocked and ή  is blocked by ή .  The aggregate 

transition rate probabilities for these scenarios are ‌ȟȟ‌ȟȟ‌ȟȟ‌ȟ. The same queue 

ή  of the sub-network i+1 has instead three blocking scenarios: ή  not blocked, 

ή  blocked by ή  , and ή  blocked by ή  . The aggregate transition rate 

probabilities for these scenarios are ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟȢ  Equation 

(30a) shows that ‌ȟ and ‌ ȟ are equal , and equation (30b) shows that ‌ȟ and ‌ ȟ 

are equal, since they are the probabilities for the scenario that ή  is not blocked by ή .  

 

Additionally, ‌ȟȟ‌ȟ are the probabilities for the scenario that  ή  is blocked by ή  

whereas ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟ are the probabilities for the scenario that  ή  is 

blocked by  ή  but conditioned upon information on  ή . Statistically, ‌ȟ is defined 

as a weighted average of ‌ ȟ ȟ‌ ȟȟ with weights 

ὴ ȟ ȟὴ‏ ȟ  ,respectively, as defined in equation (30c). Similarly  ‏

‌ȟ is defined as a weighted average of ‌ ȟ ȟ‌ ȟȟ with weights 

ὴ ȟ ȟὴ‏ ȟ   .respectively, as defined in equation (30d) ‏
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If we look at sub-networks i,i+1, and i+2, then ή  is the third queue of sub-network i, 

the second queue of sub-network i+1, and the first queue of sub-network i+2 . In sub-

network i, ή  has one blocking scenarios: ή  is not blocked. The aggregate transition 

rate probabilities for these scenarios are ‌ȟȟ‌ȟ. The same queue ή  of sub-network 

i+1 has instead two blocking scenarios: ή  not blocked and ή  blocked by ή  . The 

aggregate transition rate probabilities for these scenarios are ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟ . 

Additionally, ή  of sub-network i+2 has instead three blocking scenarios: ή  not 

blocked, ή  blocked by ή , and ή  blocked by ή  . The aggregate transition rate 

probabilities for these scenarios are ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟȟ‌ ȟȢ  Equation 

(30e) shows that statistically, ‌ȟ is the weighted sum of ‌ ȟand ‌ ȟ with weights 

ὴ ȟ and ὴ ‏ ȟ  Ȣ This can be explained using the same logic as in the‏

previous paragraph. Equation (30f) defines the same relations as in (30e) but for the full 

aggregate transition probability instead of the empty aggregate transition probability.  

 

The full algorithm for solving the transient joint distribution of an M-queue tandem 

network can be described in the following steps: 

 

Input:  

External arrival rates to each of the M queues : ‎ ‎ȟ‎ȟȣȟ‎   

Service rate for each of the M queues: ‘ ‘ȟ‘ȟȢȢȟ‘  

Queue capacity for each of the M queues ὑ ὑȟὑȟȢȢȟὑ  

Initial disaggregate distribution for each of the M queues: ὴ ȟὴ ȟȢȢȟὴ  

Duration of entire time horizon of which the joint queue-length distribution of the 

M-queue network is evaluate: Ὕ 

Output :  

Assuming that   is an integer, the output are multiple 3-queue joint queue-length 

distribution at time T (in discrete time at time interval : ὴ
ȟ ȟȟ

 
ὸ, for each 
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of the M-3 overlapping sub-networks in the M-queue network, where ὸ can be any 

value between πȟ‏Ȣ   

 

Algorithm: 

 .can be initiated as any small number ‏

 

For time step Ὧ πȟρȟςȟȣȟ  

If  Ὧ π 

1) Calculate the initial marginal aggregate distribution (ὴ  from the 

initial marginal disaggregate distribution ὴ  for 

Ὥ‭ρȟςȟσȟȣȟὓȟ using the following equation: 

ὴ  

ὴ

ρ ὴ ὴ

ὴ

ȟ   

 

2) Calculate the initial joint queue-length distribution for each sub-

network ίɴ ρȟςȟσȟȣȟὓ ς, from the following equation: 

ὴȟ ȟȟ ὴ  ὴ ὴ  

3) Calculate the initial aggregate transition rates for each subs-

network ίɴ ρȟςȟσȟȣȟὓ ς, and blocking scenario Ὦ‭ρȟςȟσȟτȟυȟφȟ

‌ȟȟ‌ȟȟ from the initial joint ὴȟ ȟȟ and the initial disaggregate 

distributions ὴ ȟὴ ȟὴ : 

Ȣ 

‌ȟ
ὴ  ȿ  

ὴ
 ȟ‌ȟ  

ὴ  ȿ  

ὴ
 

‌ȟ  
ὴ  ȿ ȟ  

ὴ ȿ ȟ

 ȟ‌ȟ  
ὴ  ȿ ȟ  

ὴ ȿ ȟ

 

‌ȟ  
ὴ  ȿ ȟ  

ὴ
ȟ

 ȟ‌ȟ  
ὴ  ȿ ȟ  

ὴ
ȟ
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‌ȟ  
ὴ   

ὴ
ȟ‌ȟ  

ὴ   

ὴ ȿ 

  

‌ȟ  
ὴ   

ὴ
 ȟ‌ȟ  

ὴ   

ὴ
 

‌ȟ  
ὴ  

ὴ
 ȟ‌ȟ  

ὴ  

ὴ
 

 

Else  

1) For each sub-network s, calculate the total arrival rate to its first queue, 

and the effective service rate to its third queue from equations (25) and 

(29) 

‗  ‎
‗ ρ ὴ ȟȟ

π

ρ ὴȟ π
ȟ 

‘

 ὴ ȟ π  
ȟ

ȟ

 ȟ   

 

where ὴȟ π, ὴ ȟȟ
π are sub-networks ί, ί ρ marginal 

distributions of queues ί, ί ρ respectively. 

 

2) For each sub-network s, calculate the aggregate joint queue-length 

distribution for time step Ὧ: 

ὴȟ ȟȟ ὸ ὴȟ ȟȟ Ὡ‏
 ȟ     ᶅὸɴ πȟ‏Ȣ 

 

 

where ὗ Ὢ‎ȟ‘ȟ‌ȟὄ  is a 27x27 sparse matrix with nonzero 

elements described in appendix A. The parameters for the matrix are:  

‎ ‗ȟ‎ ȟ‎ ȟ‘ ‘ȟ‘ ȟ‘ , 

ὄ ὄȟὄȟὄȟὄ  given in Table 2-1, 
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‌ ‌ȟ ȟ‌ȟȟ‌ȟ  ȟ‌ȟ ȟ‌ȟ  ȟ‌ȟ ȟ‌ȟ ȟ   ‌ȟ ȟ‌ȟ  ȟ

‌ȟ ȟ‌ȟ ȟ‌ȟ . 

 

3) For each sub-network s except the last, where s is the index of the sub-

network, solve three nonlinear system of equations for the first three 

blocking scenarios to obtain ‗ȟ‘ȟ where jᶰρȟςȟσ is the blocking 

scenario index. For the last sub-network s=M-2, we solve three 

additional nonlinear systems for jᶰτȟυȟφ to obtain ‗ȟ‘ȟȢThe 

reason we do this is because the first queue of each sub-network has 

the most blocking scenarios than any of the other queues in the sub-

network, which means capturing the most information on the 

dependencies between the queues in the sub-network.  

 

Nonlinear system 1: Solve to obtain ‗ȟȟ‘ȟ, where ί is the index of 

the sub-network with queue indices (ίȟί ρȟί ς)  

ὴȟ ‏ ὴȟ Ὠ ‏ ȟ ‏ π     

ὴȟ ‏ ὴȟ Ὠ  ‏ ȟ ‏ π   

 

Nonlinear system 2: Solve to obtain ‗ȟȟ‘ȟ 

ὴȟ  ȿ ȟ ‏

В ὴȟ ȟ Ὠ ‏  ȟ ‏ π    

ὴȟ  ȿ ȟ ‏

В ὴȟ ȟ Ὠ‏  ȟ ‏ π   

Nonlinear system 3: Solve to obtain ‗ȟ‘ 
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ὴȟ  ȿ ȟ ‏

В ὴȟ ȟ Ὠ  ‏ ȟ ‏ π    

ὴȟ  ȿ ȟ ‏

В ὴȟ ȟ πὨ‏  ȟ ‏ π   

 

For s=M-2 proceed to solve the following as well:  

Nonlinear system 4: Solve to obtain ‗ȟȟ‘ȟ 

ὴȟ ‏ 

В ὴȟ Ὠ  ‏  ȟ ‏ π    

ὴȟ  π

В ὴȟ   π Ὠ ȟ ‏ π   

 

Nonlinear system 5: Solve to obtain ‗ȟȟ‘ȟ 

ὴȟ ‏  В ὴȟ Ὠ  ‏  ȟ ‏

π    

ὴȟ  π В ὴȟ Ὠ ‏   ȟ ‏

π   

 

Nonlinear system 6: Solve to obtain ‗ȟȟ‘ȟ 

ὴȟ ‏ ὴȟ Ὠ  ‏ ȟ ‏ π    

ὴȟ ‏ ὴȟ Ὠ ‏  ȟ ‏ π   

4) For each sub-network s, plug each pair of ‗ȟ‘ and previous 

disaggregate for the blocking scenario as the initial distribution into 
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Equation (12) to get the disaggregate probabilities of being in 

disaggregate states 1, K-1.  

 

Plug ‗ȟȟ‘ȟ into equation (12) to get  

ὴȟ ‏ ὴȟ Ὠ‏ ȟ  ȟ‏

ὴȟ ‏  ὴȟ πὨ ȟ  Ȣ‏

 

Plug ‗ȟȟ‘ȟ into equation (12) to get  

 

ὴȟ  ȿ ȟ ‏

В ὴȟ ȟ Ὠ‏ ȟ   ȟ‏

ὴȟ  ȿ ȟ  ‏

 В ὴȟ ȟ Ὠ ‏ ȟ   Ȣ‏

 

Plug ‗ȟȟ‘ȟ into equation (12) to get  

ὴȟ  ȿ ȟ ‏

В ὴȟ ȟ Ὠ‏ ȟ   ȟ‏

ὴȟ  ȿ ȟ  ‏

 В ὴȟ ȟ Ὠ ‏ ȟ   Ȣ‏

 

For s=M-1, calculate the following as well:  

Plug ‗ȟȟ‘ȟ into equation (12) to get  

 

ὴȟ ‏ В ὴȟ Ὠ‏ ȟ   ȟ‏
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ὴȟ ‏

 В ὴȟ Ὠ‏ ȟ   Ȣ‏

 

Plug ‗ȟȟ‘ȟ into equation (12) to get  

ὴȟ ‏ В ὴȟ Ὠ‏ ȟ   ȟ‏

ὴȟ ‏

 В ὴȟ Ὠ‏ ȟ   Ȣ‏

 

Plug ‗ȟȟ‘ȟ in equation (12) to get  

ὴȟ ‏ ὴȟ Ὠ‏ ȟ  ȟ‏

ὴȟ ‏  ὴȟ Ὠ‏ ȟ  Ȣ‏

 

5) For each sub-network s except the last, calculate ‌ȟ ȟ‌ȟ , for 

Ὦɴ ρȟςȟσ for the next time step. For ί ὓ ς, calculate 

‌ȟ ȟ‌ȟ , for Ὦɴ ρȟςȟσȟτȟυȟφ for the next time step: 

‌ȟ
ὴȟ  ȿ  ‏

ὴ
ȟ

‏
 ȟ‌ȟ  

ὴȟ  ȿ  ‏

ὴ
ȟ

‏
 

‌ȟ
ὴȟ  ȿ ȟ  ‏

ὴȟ ȿ ȟ ‏
 ȟ‌ȟ  

ὴȟ  ȿ ȟ  ‏

ὴȟ ȿ  ȟ ‏
 

‌ȟ
ὴȟ  ȿ ȟ  ‏

ὴȟ ȿ ȟ ‏
 ȟ‌ȟ  

ὴȟ  ȿ ȟ  ‏

ὴȟ ȿ  ȟ ‏
 

 

If ί ὓ ς, calculate the following: 
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‌ȟ  
ὴȟ  ‏ 

ὴ
ȟ

‏
 ȟ‌ȟ

ὴȟ  ‏ 

ὴȟ ȿ ‏
 

‌ȟ  
ὴȟ  ‏ 

ὴ
ȟ

‏
 ȟ‌ȟ

ὴȟ  ‏ 

ὴ
ȟ

‏
 

‌ȟ  
ὴȟ  ‏

ὴ
ȟ

‏
 ȟ‌ȟ  

ὴȟ  ‏

ὴ
ȟ

‏
 

 

6) We then infer the rest of the aggregate transition rate probabilities of 

the second and third queue blocking scenarios from system of 

Equations (30). For each sub-network s except the last, calculate 

‌ȟ ȟ‌ȟ , for Ὦɴ τȟυȟφ : 

 ‌ȟ  ‌ ȟ  

‌ȟ  ‌ ȟ  

 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ 

 

If ί ὓ σ 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ 

‌ȟ ὴ ȟ ‌ ‏ ȟ ὴ ȟ ‌ ‏ ȟ 

 

else  

‌ȟ ὴ ȟ ‌ ‏ ȟ

ὴ ȟ ὴ ‏ ȟ ‌ ‏ ȟ

ὴ ȟ ‌ ‏ ȟ  
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‌ȟ

 ὴ ȟ ‌ ‏ ȟ

ὴ ȟ ὴ ‏ ȟ ‌ ‏ ȟ

ὴ ȟ ‌ ‏ ȟ  

End  

End 

End 
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Chapter 3. Validation 

 

Just as we developed the transient model in three different levels of network sizes, we 

will validate it for different network sizes. We will first look at a single queue and 

compare the results we get for the transient queue-length distribution from our model 

with that we get from the exact model developed by Morse (1958) in equation (12). We 

will then look at a network of three queues in tandem and compare the transient joint 

queue-length distribution results we yield from our model with results we get from a 

discrete event simulator model. Lastly, we will look at tandem networks with different 

sizes and make comparisons between the transient joint queue-length distributions 

obtained from our model and those obtained from the discrete event simulator model. 

Given that our model approximates the transient, weôll present these comparisons at 

different times including the time at ὸ ρȟρπȟυπ. We start with empty queues for all tests 

in this chapter (i.e., the initial marginal probability of being in aggregate state 0 is set to 

1) . The time step used for all the experiments is set to ‏ πȢρȢ 

 

For the discrete event simulator model, we ran 10,000 simulation replications. The 

distribution results that we got from the event simulator are given for disaggregate states. 

we derive the aggregate statesô distribution from them so we can compare them with 

results from our model.   

 

We calculate a 95% confidence interval, based on the simulation outputs. We do so by 

assuming that the sampled probabilities follow a Bernoulli distribution with true value ὴ 

and sampled value of ὴǶ. A %95 confidence interval for ὴ is given from Osorio and Wang 

(2012) by: 

ὴǶρȢωφ
ὴǶρ ὴ

ρπȟπππρ
 ȟὴǶρȢωφ

ὴǶρ ὴ

ρπȟπππρ
Ȣ 

 

The confidence interval is displayed as error bars in figures 3-11 through 3-17.   
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3.1 Single queue 

 

We consider 10 experiments for testing the transient queue-length distribution, displayed 

in Table 3-1. The experiments showcase a wide range of values for ‗ ȟ‘ and traffic 

intensities ”. The queue capacity is, however, constant with K=10 for all single queue 

experiments.  

 

The first three plots of figures 3-1 to 3-10 show the results of our model in comparison to 

results from the exact model given in equation (12). For each experiment, we compare 

the results at ὸ  ρȟρπȟυπ. By ὸ  υπ some of the results from our model reach 

stationarity. We assume that stationarity is reached when the L2-norm of the change of 

the distributions for two consecutive iterations is less than ρπ .  In the figures below, 

the blue circles represent the queue-length distributions for each aggregate state from our 

model, and the red cross represents the queue-length distribution obtained from the exact 

model. The x-axis in the figures represents the aggregate states (in our case, the aggregate 

states are: 0,1,2), and the y-axis represents the state probabilities at the time specified in 

the figures.  The last plot of each figure represents the error over time until ὸ  υπ. The 

error calculated in these experiments is defined as the difference between the solution 

from our approximation model, denoted ὴ  , and the solution from the exact 

model, denoted ὴ , for each aggregate state. The errors for aggregate state 0, 1, 2 are 

defined as ὴ  ὴ , ὴ  ὴ , ὴ  ὴ  respectively. 
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Experiment ‗ ‘ ” K 

1 0.1 1 0.1 10 

2 1 10 0.1 10 

3 0.3 1 0.3 10 

4 3 10 0.3 10 

5 0.7 1 0.7 10 

6 7 10 0.7 10 

7 0.99 1 0.99 10 

8 9.9 10 0.99 10 

9 1.2 1 1.2 10 

10 12 10 1.2 10 

Table 3-1: Experiments to test a single queue 

 

 

 

Figure 3-1: Results of experiment 1 at t = 1, 10, 50 and the errors for each 

aggregate state as a function of time  
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Figure 3-2: Results of experiment 2 at t =1, and the errors for each aggregate 

state as a function of time  

 

 

Figure 3-3: Results of experiment 3 at t =1,10,50 and the errors for each 

aggregate state as a function of time  
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Figure 3-4: Result of experiment 4 at  t=1,10, 50 and the errors for each 

aggregate state as a function of time  

 

 

 

Figure 3-5: Results of experiment 5  at t = 1,10, 50 and the errors for each 

aggregate state as a function of time  
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Figure 3-6: Results of experiment 6 at t=1,10, 50 and the errors for each 

aggregate state as a function of time  

 

 

 

Figure 3-7: Results of experiment 7 at  t =1,10, 50 and the errors for each 

aggregate state as a function of time  
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Figure 3-8: Results of experiment 8  at t=1,10 and the errors for each aggregate 

state as a function of time  

 

 

 

Figure 3-9: Results of experiment 9 at t=1,10,50 and the errors for each 

aggregate state as a function of time  
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Figure 3-10: Results of experiment 10 at t=1,10 and the errors for each 

aggregate state as a function of time  

 

The graphs show consistent and accurate approximations of the transient queue-

length distribution from our model for all experiments. The maximum error that we 

see is mostly early in the time iteration at ὸ  ρ.  The error decreases exponentially 

for all experiments until it reaches ρπ  for cases when the stationary solution has 

been reached.   

 

3.2 Three-queue tandem network 

 

Here, we compare results from our three-queue transient joint approximation model with 

results given by a discrete event simulator. The experiments, displayed in Table 3-2, test 

a wide range of traffic intensities, some with low traffic intensities (”  πȢσ and some 

with high traffic intensities ( ”  πȢω. With an empty initial state of the network, we 
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assume an external arrival only to the first queue with the rate ‎ ρȢψ.  For each 

experiment, we plot the results at time ὸ =1,10,50.  

 

Experiment ‎ ‘ ” K 

1 1.8 [2,2,2] [0.9, 0.9, 0.9] [2,2,2] 

2 1.8 [2,2,2] [0.9, 0.9, 0.9] [5,5,5] 

3 1.8 [2,2,2] [0.9, 0.9, 0.9] [10,10,10] 

4 1.8 [2,4,6] [0.9, 0.45, 0.3] [2,2,2] 

5 1.8 [2,4,6] [0.9, 0.45, 0.3] [5,5,5] 

6 1.8 [2,4,6] [0.9, 0.45, 0.3] [10,10,10] 

7 1.8 [6,4,2] [0.3, 0.45, 0.9] [2,2,2] 

8 1.8 [6,4,2] [0.3, 0.45, 0.9] [5,5,5] 

9 1.8 [6,4,2] [0.3, 0.45, 0.9] [10,10,10] 

Table 3-2: Experiments to test a three -queue network  

 

Each of the figures below displays the aggregate joint queue-length distribution obtained 

from our model in comparison to the aggregate joint queue-length distribution obtained 

from the discrete event simulator for each of the 27 aggregate joint states. The blue stars 

represent the solution from our model and the red circles with error bars represent the 

solution given from the discrete event simulator. In most of of the experiments in this 

section, the stationarity is reached by ὸ =50. We define a distribution reaching stationarity 

when the norm of the difference of the distributions between two consecutive time 

iterations is less than ρπ.  
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Figure 3-11: Results of experiments 1,2,3 for the 3 joint queue -length 

distributions with service rate Ⱨ ȟȟ  at t=1,10,50 
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Figure 3-12: Results of experiments 4,5,6 for the 3 joint queue -length 

distributions with service rate Ⱨ ȟȟ  and t=1,10,50 
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Figure 3-13: Results of experiments 7,8,9 for the 3 joint queue -length 

distributions with service rate Ⱨ ȟȟ  and t=1,10,50 

 

Experiments 1,4, and 7 show the joint queue-length distributions of queues with 

capacities 2. If we look at the aggregated queue-length distributions of these experiments, 

they are equivalent to the disaggregated queue-length distributions because the state 

space is the same for both the aggregates and disaggregates. The results are, therefore, 

very accurate at all times. 

 

Experiments 5, and 6 also give precise approximations that are very similar to the 

simulator results.  
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Experiments 2,3,8, and 9 start with very accurate results of the joint queue-length 

distribution similar to those we observe from the discrete even simulator, but because 

blocking occurs, the joint queue-length distributions become less accurate, but the trends 

of the distribution from our model and the simulator seems to be similar.  

 

3.3 M-queue tandem network 

 

In this section, we will run experiments for three different network sizes. We start with a 

fairly small network of five queues in tandem, then a network of eight queues in tandem 

and conclude with a network of twenty-five queues in tandem. The assumptions 

mentioned in the beginning of the chapter still applies here where the time step is  still 

‏ πȢρ, and all initial marginal distributions for queues are set to 1 for the empty state.  

 

3.3.1 Five queue network 

 

We look at a network of five queues in tandem with parameters displayed in Table 4. The 

traffic intensity differs for each of the queues. The highest traffic intensity is at the fourth 

and fifth queues with value ” πȢω, with blocking most likely to occur. Based on the 

model we developed in 2.2.3, we get three different overlapping three-queue sub-

networks. The corresponding joint queue-length distributions for the three sub-networks 

are shown in figure 3-14 below. Each row in the figure plots the sub-network solution at 

three points in time, t=1,10,50. 

Queue i ‎ ‘ ” ὑ 

1 3 10 0.3 25 

2 0 10 0.3 10 

3 3 10 0.6 25 

4 3 10 0.9 10 

5 0 10 0.9 25 

Table 3-3: Experiment to test a 5-queue tandem network 
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Figure 3-14: Experiment results for the 5 queue joint distribution   

 

The results for the joint queue-length distributions are the most accurate very early on in 

the time iteration. As time increases, the distribution reached shows similar distribution 

trends, but not an exact match. At t=50, the stationary solution has been reached since the 

norm of the difference of all the subsystem distributions between two consecutive time 

iterations is less than ρπ. 

 

3.3.2 Eight queue network 

 
We now look at a network of 8 queues in tandem with 6 overlapping three-queue sub-

network. The traffic intensity for this network is similar to the five queue network with 

blocking most likely to occur at queues 6,7, and 8. The parameters for each queue are 

displayed in Table 5.  Figures 3-15 to 3-17 display the aggregate joint queue-length 

distribution for each of the 6 subsystems at three points in time t=1,10,50.  
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Queue Ὥ ‎ ‘ ” ὑ 

1 4 10 0.4 25 

2 0 10 0.4 10 

3 1 10 0.5 25 

4 1 10 0.6 10 

5 0 10 0.6 25 

6 2 10 0.8 10 

7 0 10 0.8 25 

8 1 10 0.9 10 

Table 3-4: Experiment to test an 8-queue tandem network 

 

 

 

 
 

Figure 3-15: Experiment results for the 8 -queue joint distribution at  t=1  
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Figure 3-16: Experiment results for the 8 -queue joint distribution at t=10  

 

 

 
Figure 3-17: Experiment results for the 8 -queue joint distribution at t=50  

 

The approximations that we see at t=1 are accurate for the first two sub-networks; 

however, they are not as accurate for the rest of the sub-networks. As time increases, we 

see that the solutions for the sub-networks that were not very accurate in the beginning 

become more accurate then it settles on distributions at t=50 with the same trends as the 

simulator. The stationary distribution is reached at t=50 since the norm of the difference 

of the distributions for all subsystems is less than ρπȢ 
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3.3.3 Twenty-five queue network 

 

The twenty-five queue network has alternating capacity where odd queues have a 

capacity of 25 and even queues have a capacity of 10. The service rate for each queue is 

10 and external arrival occurs at queues 1,11, and 21 with a rate of 2 with traffic intensity 

increasing from 0.2 in the first queue to 0.6 on queues 21 onwards. Three histograms of 

the errors between the results from our model and results from the simulator for all states 

of the sub-networks at three different times t=1,10,50 are displayed in figures 3-18 to 3-

20.  For any aggregate joint state probability ὃ ὭȟὮȟὰ, the error is defined as the 

difference between the joint distribution obtained from our model and the joint 

distribution obtained from the simulator, Error  ὴ ȟȟ
 ὴ ȟȟ . Our model 

approximation of the distribution at t=1 is accurate for most states. However, it is more 

accurate at t=10, 50.  In this experiment, by t=50 stationarity was not reached because the 

norm of the difference of the distribution between two consecutive is not less than ρπȢ 

 

Figure 3-18: Histogram of the errors between the simulated results and the 

analytical results for each of the 23*26= 621 states of the 25 -queue network  
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Figure 3-19: Histogram of the errors between the simulated results and the 

analytical results for each of th e 23*26= 621 states of the 25 -queue network  

 

 

Figure 3-20: Histogram of the errors between the simulated results and the 

analytical results for each of the 23*26= 621 states of the 25 -queue network  
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Chapter 4. Case Study  
 

Now that we validated our model against an exact model and a discrete event simulator, 

we are interested in using it to address a traditional urban traffic signal control problem. 

Our goal for this chapter is to investigate the added value of accounting for the transient 

joint queue-length distribution for different network demand scenarios. We evaluate our 

proposed analytically approximated transient joint model by comparing it to an 

analytically approximated stationary joint model derived by Osorio and Wang (2012). 

 

We model the urban road network as a finite-capacity queueing network by following the 

approach presented in Osorio and Bierlaire (2009b). Each lane in the model is presented 

as a queue, and the flow capacities of the lanes correspond to the service rates of the 

queues. 

 

A microscopic traffic simulation model implemented in AIMSUN, version 6.1, evaluates 

the performance of the signal plans that are measured by both our model and the 

stationary joint model. We ran 50 simulation replications, each for an hour with a warm-

up period of fifteen minutes. For each replication, we obtained an average trip travel 

time. The cumulative distribution functions obtained from the 50 replications for both our 

model and the stationary joint model are then compared.  

 

4.1 Network  

We consider the same urban road network studied in Osorio and Wang (2012). The 

network, displayed in Figure 4-1, consists of 20 single lanes, with 4 intersections, each 

with 2 endogenous phases. All west-bound links of the main artery are modeled jointly, 

as are all east-bound links. All cross streets (north-bound and south-bound) are modeled 

independently. External arrivals and external departures only occur at the boundaries of 
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the network where the blue circles are. Customers can travel along a single direction 

without making any turns in the network.    

 

Figure 4-1: Urban road network of single roads for the case study (Osorio and 

Wang, 2012) 

 

We consider two demand scenarios in the network: medium demand and high demand 

scenarios. For the medium demand scenario, the east-bound and west-bound demands are 

700 vehicles per hour, and the demands for cross streets differ. For the high demand 

scenario, the east-bound and west-bound demands increase to 900 vehicles per hour. 

Details on the exact demand for each scenario are displayed in Table 4-1.  

 

Demand 

scenario 

West-

bound 

East-

bound 

South-

bound-1 

South-

bound-2 

North-

bound-2 

North-

bound-3 

South-

bound-4 

Medium 700 700 100 600 600 100 100 

high 900 900 100 600 600 200 200 

Table 4-1: Demand in vehicles per hour for the medium and high demand scenarios 
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4.2 Problem formulation 

 

We follow the signal control problem formulated in details in Osorio and Bierlaire 

(2009b). We briefly describe it here. We consider a fixed-time control strategy for a 

specific time duration Ὕ with time interval [(ὸȟὸ Ὕ and initial queue-length 

distribution of the each lane ὴ, which are exogenous problem parameters.  The strategy 

uses information on the transient queue-length distribution throughout the entire time 

interval of interest, [(ὸȟὸ Ὕ , to derive a fixed signal plan. The signal plans are 

calculated offline and signal plans for multiple intersections are determined jointly. The 

normalized green times of phases of the different intersections are the decision variables. 

All other traditional control variables like the cycle time, offsets and stage structure are 

assumed fixed.  

 

We introduce the following notation for the problem: 

ὦ        available cycle ratio of intersection i;  

ί        saturation flow rate [veh/h]; 

ὼὮ    green split of phase j; 

ὼ    vector of minimal green splits; 

Ꞌ    set of intersection indices; 

fl    set of indices of the signalized lanes; 

ע Ὥ    set of phase indices of intersection i; 

ע ὰ    set of phase indices of lane l; 

ὸ starting time of the interval of interest; 

Ὕ total duration of time interval of interest; 

ὴ initial marginal queue-length distributions of  lane l; 

ώὝ vector of time-dependent endogenous queueing variables (e.g., 

disaggregation probabilities); 

ό vector of exogenous queueing parameters (e.g., external arrival rate, space 

capacities). 

 time step length ‏
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The problem is formulated as follows: 

ÍÉÎὃὝȟὼȟώὝȟό 

(31) 

subject to  

ὼ ὦȟᶅ Ὥɴ  Ꞌ ȟ

ɴע

 

(32) 

‘ ὼί π ȟᶅ ὰɴ  flȟ

ɴע

 

(33) 

ὬὝȟώὝȟόȟὼ π 

(34) 

ώὝ πȟὼ ὼȢ 

(35) 

 

The decision vector x consists of the green times for each phase. Equation (32) in the 

constraints ensures that the available cycle time of each intersection are distributed 

among the phases of the intersection. Equation (33) in the constraints relates the service 

rate of signalized queue ‘ to the saturation flow ί (set to 1800 vehicles per hour) and to 

the green split of its phases, ὼȢ Equation (34) represents the equations for the time-

dependent queueing model that if solved yields the transient queue-length distribution of 

the network. The queueing model, Ὤȟ depends on a time-dependent vector of endogenous 

variables ώὝ, and a set of exogenous queue parameters ό as well as the decision vector 

x. In Equation (35) of the constraints, the endogenous queue variables are subject to 

positivity constraints and green splits ὼ have lower bounds which are set to 4 seconds 

here (following the transportation norms VSS (1992)).  The objective function 

ὃὝȟὼȟώὝȟό in Equation (31) represents the expected trip travel time during the 

period ὸȟὸ Ὕ  which depends on ώὝ,  u and the vector of green splits for each 

phase ὼ.  
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If we denote Ὁὔ  as the expected number of vehicles in queue Ὥ at the end of time 

interval Ὧ, and ὴ  as the probability of link i being full at the end of time ‏

interval Ὧ, then the expected travel time during discrete time interval Ὧ, denoted 

ὃ ὝȟὼȟώὝȟόȟ can be approximated with Littleôs law (Little, 2011, 1961): 

ὃ ὝȟὼȟώὝȟό
ВὉὔ  

В‎ὴ ‏
 ȟ  

(36) 

where the summation of Ὁὔ  considers all queues in the network (queues are indexed 

by i). Additionally,ὴ -can be calculated from the marginal aggregate queue ‏

length distribution during the end of time interval Ὧ from the following equation: 

ὴ ρ =‏  ὴ ‏ . 

 

Lastly, the expected travel time during the entire simulation period ὸȟὸ Ὕ can be 

approximated as: 

ὃὝȟὼȟώὝȟό

В ὃ ὝȟὼȟώὝȟό

Ὅ
ȟ  

 (37) 

where I is the total number of time intervals, and is equal to  , assuming both   

and  are integers. 

 

The derivation of Ὁὔ  , on the other hand, is calculated from the disaggregate queue-

length distribution of queue Ὥ during end of time interval Ὧ. The disaggregate distribution 

for an individually modeled queue is given from solving the nonlinear system of 

equations given in Equations (15) and (16) that yield the rates ‗ȟ‘, at time interval Ὧ and 

plugging then into equation (12) to get all disaggregate state probabilities of queue i 

during that time interval. Additionally, the marginal disaggregate queue-length 

distribution at end of time interval k for a jointly modeled queue i is given from analyzing 

the joint aggregate distribution of sub-network i during the end of time interval k, which 

is done by first calculating the marginal aggregate distribution of queue i, then 
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disaggregating it similarly as the individually modeled queue approach. To calculate the 

expected number of vehicles in all queues of the network at end of time interval k, we use 

the following equation: 

Ὁὔ ὲ ὴ  ȟ‏

 (38) 

where ὴ  is the probability that queue i is in disaggregate state ὲ during end of ‏

time interval Ὧ. 

 

The difference between our formulation of the signal control problem and the stationary 

modelôs formulation of the signal control problem is that the stationary formulation does 

not depend on time for any of the parameters above and solves for the signal plans based 

on stationary network information. The stationary formulation also includes a queueing 

model constraint that is not time-dependent, ὬώȠό πȟ that depends on the endogenous 

parameters y as well as the exogenous parameters u. For more details on the stationary 

model formulation and implementation details of the signal control problem, we refer the 

reader to chapter 4 of Osorio and Carter (2012).  

 

4.3 Implementation Notes 
 

 

The case study network (Figure 4-1) is made up of 20 single-lane roads that are modeled 

as follows: two sets of five-queue networks modeled jointly, and 10 queues, which are 

modeled individually (not part of a joint network).  

 

We assume empty initial queues for all queues in the network. The time at which we 

calculate the fixed signal plans is at t=seventy-five minutes (an hour and fifteen minutes 

which, in the simulation model, is decomposed as a fifteen minute warm-up period and 

one hour of further simulation). The time step used when calculating the transient queue-

length distribution and signal plans is set to ‏ πȢρ. 
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The initial signal plans for the 8 phase variables (2 per intersection) used in our model is 

the optimal plan that we get from a marginal model discussed in Osorio and Wang 

(2012), the remaining endogenous variables are obtained by calculating the transient 

queue-length distribution of the jointly modeled queues, as well as the individually 

modeled queues. The set of variables is used as an initial feasible point for the signal 

control problem which is then solved using the ñactive-setò algorithm of the fmincon 

solver of Matlab with constraint and function tolerance of ρπ and ρπ, respectively.  

 

The effective service rates ‘Ƕ are calculated from Equation (26) from the exogenous 

service rates and the transient joint queue-length distribution at time t. The arrival rates ‗ 

are calculated from Equation (25) from the external arrival rates and transient joint 

queue-length distribution at time t.   

 

In the signal control problem, we implement the expected number of vehicles, Ὁὔ , for 

each queue i in the network during end of time interval Ὧ, from the marginal disaggregate 

probabilities obtained from the transient models.   

 

 

4.4 Results 

 
4.3.1 Medium demand scenario 

We present the cumulative distribution function (cdf) results for the average travel time, 

displayed in Figure 4-2, for signal plans solved using our model and the stationary joint 

model. We can see that the signal plan results from our method perform better than the 

joint stationary model because the cdf from our model is to the left of that from the 

stationary joint model.   

 

We ran a paired t-test at a 99% confidence level to test the hypothesis that the expected 

travel time derived from our model is equal to that derived from the stationary joint 

model for this scenario. The mean of the paired difference, denoted ὢȟ is approximately 
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0.0768 minutes. The standard deviation, denoted ίǶ, is approximately 0.0243 minutes. For 

the 50 observations, the paired t-test is given by Hogg and Tanis (2006, p.486): 

ὸ Ѝυπ
ὢ

ίǶ
 

Hence, the test statistics of this experiment is ςςȢσρυȢ The null hypothesis is rejected 

because the critical value, ὸȢ τω ςȢτπυ is less than the value of the test statistic for 

this experiment. 

 

Figure 4-2: #$&ȭÓ ÏÆ ÔÈÅ ÁÖÅÒÁÇÅ ÔÒÉÐ ÔÒÁÖÅÌ ÔÉÍÅ ÆÏÒ ÔÈÅ medium demand test  

 

4.3.2 High demand scenario 

 

As we did with the medium demand scenario, we present the cdf results of the average 

travel time, displayed in figure 4-2, for signal plans solved using our model and the 

stationary joint model. Similarly, we can see that the signal plan results from our method 

perform better than the joint stationary model.  
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We ran the same paired t-test as the medium scenario, at a 99% confidence level, to test 

the hypothesis that the expected travel time derived from our model is equal to that 

derived from the stationary joint model. The mean of the paired difference is 

approximately 0.0771 minutes. The standard deviation is approximately .0286 minutes. 

For the 50 observations, the test statistics of this experiment is 19.0564. The null 

hypothesis is rejected because the critical value, ὸȢ τω ςȢτπυ is less than the value 

of the test statistic for this experiment.  

 

Figure 4-ςȡ #$&ȭÓ ÏÆ ÔÈÅ ÁÖÅÒÁÇÅ ÔÒÉÐ ÔÒÁÖÅÌ ÔÉÍÅ ÆÏÒ ÔÈÅ ÈÉÇÈ ÄÅÍÁÎÄ ÔÅÓÔ 
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Chapter 5. Conclusions  
 

In this research work, we derived analytical approximation models for the transient 

queue-length distribution of a single M/M/1/K queue as well as the transient joint queue-

length distribution for a tandem network of three M/M/1/K queues in tandem. Both 

approximations were used to derive the transient joint queue-length distribution of any 

tandem network size by decomposing the network into overlapping 3-queue sub-

networks. The model does not ensure consistency between the marginal queue-length 

distributions of overlapping queues, however, the model ensures consistency between the 

aggregate transition rate probabilities of the same queues in different sub-network. The 

results, in most cases, show accuracy between our model and results obtained from a 

discrete event simulator. For cases when blocking occurs, we observe similar queue-

length distribution trends between results from our model and results from the discrete 

event simulator. In addition, accounting for the transient queue-length distribution of a 

network instead of the stationary queue-length distribution of the same network showed 

better average travel trip times when addressing a signal control problem for both 

medium and high demand network scenarios.   
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Appendix A: Transition rate matrix for the 

three-queue tandem network 

 
Matrix index From state To state Transition rate 

(1,2) {0,0,0} {0,0,1} ‎ 

(1,4) {0,0,0} {0,1,0} ‎ 

(1,10) {0,0,0} {1,0,0} ‎  
(2,1) {0,0,1} {0,0,0} ‘‌  
(2,3) {0,0,1} {0,0,2} ‎‌  

(2,5) {0,0,1} {0,1,1} ‎ 

(2,11) {0,0,1} {1,0,1} ‎  
(3,2) {0,0,2} {0,0,1} ‘ 

(3,6) {0,0,2} {0,1,2} ‎ 

(3,12) {0,0,2} {1,0,2} ‎  
(4,2) {0,1,0} {0,0,1} ‘‌  

(4,5) {0,1,0} {0,1,1} ‘ ρ ‌  

(4,7) {0,1,0} {0,2,0} ‎‌  

(4,13) {0,1,0} {1,1,0} ‎  
(5,2) {0,1,1} {0,0,1} ‘‌ ρ ‌  

(5,3) {0,1,1} {0,0,2} ‘‌‌  

(5,4) {0,1,1} {0,1,0} ‘‌  

(5,6) {0,1,1} {0,1,2} ‘ ρ ‌ ‌  

(5,8) {0,1,1} {0,2,1} ‎‌  

(5,14) {0,1,1} {1,1,1} ‎  
(6,3) {0,1,2} {0,0,2} ‘ ρ ‌ ὄ  
(6,5) {0,1,2} {0,1,1} ‘ ρ ὄ  

(6,9) {0,1,2} {0,2,2} ‎‌  

(6,15) {0,1,2} {1,1,2} ‎  
(7,5) {0,2,0} {0,1,1} ‘ 

(7,8) {0,2,0} {0,2,1} ‎ 

(7,16) {0,2,0} {1,2,0} ‎  
(8,5) {0,2,1} {0,1,1} ‘ ρ ‌  

(8,6) {0,2,1} {0,1,2} ‘‌  

(8,7) {0,2,1} {0,2,0} ‘‌  

(8,9) {0,2,1} {0,2,2} ‎‌  

(8,17) {0,2,1} {1,2,1} ‎  
(9,6) {0,2,2} {0,1,2} ‘ ρ ὄ  

(9,8) {0,2,2} {0,2,1} ‘ 

(9,18) {0,2,2} {1,2,2} ‎  
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(10,4) {1,0,0} {0,1,0} ‘‌  

(10,11) {1,0,0} {1,0,1} ‎ 

(10,13) {1,0,0} {1,1,0} ‘ ρ ‌  

(10,19) {1,0,0} {2,0,0} ‎ ‌  

(11,5) {1,0,1} {0,1,1} ‘‌  

(11,10) {1,0,1} {1,0,0} ‘‌  

(11,12) {1,0,1} {1,0,2} ‎‌  

(11,14) {1,0,1} {1,1,1} ‘ ρ ‌  

(11,20) {1,0,1} {2,0,1} ‎ ‌  

(12,6) {1,0,2} {0,1,2} ‘‌  

(12,11) {1,0,2} {1,0,1} ‘ 

(12,15) {1,0,2} {1,1,2} ‘ ρ ‌  

(12,21) {1,0,2} {2,0,2} ‎ ‌  

(13,4) {1,1,0} {0,1,0} ‘‌ ρ ‌  

(13,7) {1,1,0} {0,2,0} ‘‌‌  

(13,11) {1,1,0} {1,0,1} ‘‌  

(13,14) {1,1,0} {1,1,1} ‘ ρ ‌  

(13,16) {1,1,0} {1,2,0} ‘‌ ρ ‌  

(13,22) {1,1,0} {2,1,0} ‎ ‌  

(14,5) {1,1,1} {0,1,1} ‘‌ ρ ‌  

(14,8) {1,1,1} {0,2,1} ‘‌‌  

(14,11) {1,1,1} {1,0,1} ‘‌ ρ ‌  

(14,12) {1,1,1} {1,0,2} ‘‌‌  

(14,13) {1,1,1} {1,1,0} ‘‌  

(14,15) {1,1,1} {1,1,2} ‘ ρ ‌ ‌  

(14,17) {1,1,1} {1,2,1} ‘‌ ρ ‌  

(14,23) {1,1,1} {2,1,1} ‎ ‌  

(15,6) {1,1,2} {0,1,2} ‘‌ ρ ‌  

(15,9) {1,1,2} {0,2,2} ‘‌‌  

(15,12) {1,1,2} {1,0,2} ‘ὄ‌  

(15,14) {1,1,2} {1,1,1} ‘ ρ ὄ  

(15,18) {1,1,2} {1,2,2} ‘‌ ρ ‌  

(15,24) {1,1,2} {2,1,2} ‎ ‌  

(16,8) {1,2,0} {0,2,1} ‘ὄ‌  

(16,14) {1,2,0} {1,1,1} ‘ ρ ὄ  

(16,17) {1,2,0} {1,2,1} ‘ὄ ρ ‌  

(16,25) {1,2,0} {2,2,0} ‎ ‌  

(17,8) {1,2,1} {0,2,1} ‘‌ ρ ‌ ὄ 
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(17,9) {1,2,1} {0,2,2} ‘‌‌ὄ 

(17,14) {1,2,1} {1,1,1} ‘ ρ ‌ ρ ὄ  

(17,15) {1,2,1} {1,1,2} ‘‌ ρ ὄ  

(17,16) {1,2,1} {1,2,0} ‘‌  

(17,18) {1,2,1} {1,2,2} ‘‌ ρ ‌  

(17,26) {1,2,1} {2,2,1} ‎ ‌  

(18,9) {1,2,2} {0,2,2} ‘ὄ‌  

(18,15) {1,2,2} {1,1,2} ‘ὄ 

(18,17) {1,2,2} {1,2,1} ‘ ρ ὄ  

(18,27) {1,2,2} {2,2,2} ‎ ‌  

(19,13) {2,0,0} {1,1,0} ‘ 

(19,20) {2,0,0} {2,0,1} ‎ 

(19,22)  {2,0,0} {2,1,0} ‎ 

(20,14) {2,0,1} {1,1,1} ‘ 

(20,19) {2,0,1} {2,0,0} ‘‌  

(20,21) {2,0,1} {2,0,2} ‎‌  

(20,23) {2,0,1} {2,1,1} ‎ 

(21,15) {2,0,2} {1,1,2} ‘ 

(21,20) {2,0,2} {2,0,1} ‘ 

(21, 24) {2,0,2} {2,1,2} ‎ 

(22,13) {2,1,0} {1,1,1} ‘ ρ ‌  

(22,16) {2,1,0} {1,2,0} ‘‌  

(22,20) {2,1,0} {2,0,1} ‘‌  

(22,23) {2,1,0} {2,1,1} ‘ ρ ‌  

(22,25) {2,1,0} {2,2,0} ‎‌  

(23,14) {2,1,1} {1,1,1} ‘ ρ ‌  

(23,17) {2,1,1} {1,2,1} ‘‌  

(23,20) {2,1,1} {2,0,1} ‘ ρ ‌ ‌  

(23,21) {2,1,1} {2,0,2} ‘‌‌  

(23,22) {2,1,1} {2,1,0} ‘‌  

(23,24) {2,1,1} {2,1,2} ‘ ρ ‌ ‌  

(23,26) {2,1,1} {2,2,1} ‎‌  

(24,15) {2,1,2} {1,1,2} ‘ ρ ‌  

(24,18) {2,1,2} {1,2,2} ‘‌  

(24,21) {2,1,2} {2,0,2} ‘ὄ‌  

(24,23) {2,1,2} {2,1,1} ‘ ρ ὄ  

(24,27) {2,1,2} {2,2,2} ‎‌  

(25,19) {2,2,0} {2,0,0} ‘ὄ  
(25,23) {2,2,0} {2,1,1} ‘ ρ ὄ  
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The diagonal elements where not includes in the table above. The value of the diagonal 

element is the negative sum of all elements in that row except the diagonal.   

  

(25,26) {2,2,0} {2,2,1} ‎ 

(26,17) {2,2,1} {1,2,1} ‘ὄ ρ ‌  

(26,18) {2,2,1} {1,2,2} ‘ὄ ‌  

(26,23) {2,2,1} {2,1,1} ‘ ρ ὄ  ρ ‌  

(26,24) {2,2,1} {2,1,2} ‘ ρ ὄ  ‌  

(26,25) {2,2,1} {2,2,0} ‘‌  

(26,27) {2,2,1} {2,2,2} ‎‌  

(27,18) {2,2,2} {1,2,2} ‘ὄ 

(27,24) {2,2,2} {2,1,2} ‘ὄ 

(27,26) {2,2,2} {2,2,1} ‘ ρ ὄ  
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