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Abstract

This work considers an urban traffic network, and represents iMaskavianqueleing
network. This work proposes an analytiapproximation of the timeependent joint
gueuelength distribution of the network. The challenge is to provide an accurate
analytical description of between and within queue (i.e. link) dynamics, while deriving a
tractable approach. In order to achievis,ttve use an aggregate description of queue
states (i.e. state ape reduction). These are reégtto as aggregate (queleagth)
distributions. This reduces the dimensionality of the joint distribution.

Theproposed rathod isformulatedover three diférent stages: we approximate the time
dependent aggregate distribution of 1) a single queue, 2) a tangeeu8 network, 3) a
tandem network of arbitrary size. The third stage decomposes the network into
overlapping 3queue suimetworks. The methods are validated versus simulation results.
We then use thproposedandem network model to solve an urban traffic signal control
problem, and analyze the added value of accounting fordapendent between queue
dependency in traffimanagement problems for congested urban networks.
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Chapter 1. Introduction

In urban traffic networks, to reduce congestion and improve neiwigldk performance,
one must understand two aspects of the network: the dynamics within each link (i.e.
road, and thepossibilitiesof blokingsto occurand propaga&tover time.Blocking
occurswhen a customer completes service Imk but cannot proceed downstream
because the downstredimk is full. Queueing theory helps in analyzing badpect®of

the networkoy modelinglinks as queueOne can study the behavior of queoeer time
if the arrival process of customers and service mechanism are kimothis thesis we

will represent an urban road network as a Markovian finite capacity queueing network.
We are iterested in understanding the distribution of customers in the neavarky
point in time which can be done through taealysis of théransienfoint queuelength
distribution(denoted transienoint distribution hereafterdf the networkCalculating the
exact transienpint distributionis a computationally expensivaskgiven the high
dimensional system dafifferentialequations to be solvetlence, th@bjective of this
thesis is tanalyticallyapproximate the transient joint queleagth distribution of the

network.

We will specifically look at M/M/1/K queued he number of customein an M/M/1/K

gueue igdefined as stochastic processsst at e space i s thkas set {0,
the statecapacity of the queud his type of queue is governed by independent identically
distributed (iid) exponential interarrival times with arrival ratend iid exponential

servicetimes withservice ratg¢ . M/M/1/K queues are the most Blentary of finite

capacity queueinmodek (Strugul, 2000)They are also appealing to study because of

the availability of closedorm expressions that describavide range of queue metrics

13



1.2 Literature review

Calculating theexacttransient queuength distribution ofinetwork requiresvorking
with exponentials ohigh-dimensional matrices that are computationally expensive to
compute Due to the mathematical difficulty abmputingthetransientdistributionof a
network researchers have previously focusedieveloping models that calculate the
steadystate distribution instead of the transient distribut{®hillips, 1995).In cases
where there is a need timderstand the transient distributioithenetwork before it
reaches to steaeltateor when the syem does not reach a steady state, the transient
solution accurately portrays the behavior of the systeoppssed to the stationamhich
if existsshowcasesnly the final state of the netwo(Kaczynski, Leemis and Drew,
2012).

Although the literaturéocuses on steaestate queueing modeRhillips, 1995)

transent queueing models have been studied and developed by resedmdhes's

section, we will focus our investigation on models that look at finite capacity queues and
yield expressions for thtransient queudkength distributiongor a single queue or a

network of queuesThese models are generally classified into three groups: exact models,

analytical approximation models, and numerical approximation models.

The first exactlosedform expessiono the transient quedength distribution of an

M/M/1/K queuewas developed by Morse (195865-67). Mo r s e 6 sfornec dquastor d
expresses the transient distribution as the sum of the steady state solution and a transient
term. As time increases in the network, the transient term becomes negligible compared
to the steadygtate solution. The transient stbn given by Morse, while useful for a

single queue, does not allow us to model a joint qenigth distribution of multiple

queues. Takagq4.961)also derived a closed forthat yields the same results as Morse

(1958)and alsdhas the same limitations.

14



Another exact mode$ onedeveloped by Parthasarathy (198which derives a transient

expressiorfor a singleM/M/1/K queusthat include integrals of Bessel functiok¢ith

small modifications,Hle expression given can be applied to different typesi@ues

includingsingle or multiple server queyemnd queues with or without balkingor

instance, AbotEl-Ata(1993)e x t ended Part hasarathyoés wor k tc
behavior of an M/M/1/K queue with balkirayistomers. Despite the fact that the

transient expression can be applied to different queue, typastegralsof Bessel

functionsare complex and hard to accurately comepsince they are defined @s

infinite series. Given the above, exact modelgehzertain limitations and complexities

that can be overcome by approximate models.

When it comes to anal yti Qa7Dmagfprasingle mat i on mo
M/M/1 queueusesthe form of the queukength distribution of the exact modalhis

approximation The transient quetlength distribution is then expressed as a sum of

exponential terms. The expression of the transient is then transformed to a form where

the eigenvalues and et@rs of the expression is us&tern shows that the expressior
themarginaldistribution is in a form that lends itself to simple approximation for the

transient mean quetdength. Not only does this method apply for a single queue, a

similar approach can be taken to obtain an approximatichdgoint distritution of a

networkof queues. While this model seems to work well for dagree of accuracyt is

crucial to use a small tirrggep when computing the queleagth distributions, which

would result in longer running periods.

Fi | i fLB88)kddsl isanother example of an analytical approximatiwodelfor
calculatingthetransient queutength distributiorof a singleM/M//K queue The model
is called a fluidflow approximation because tleereof the model consists diifferential
equationglescribing the rate of flow of customers into and out of the qaedeelating
it to the transient distribution of the queiihillips, 1995). The differential equations
contain some characteristic functiahatif their roots were foundsield the trangent
distribution for the M/M/1/K queue.

15
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differentcharacteristic functionthat aresasier tasolve roots for. Either way, solving

roots of high degree polynomials argually expensivand timeconsumingo compute

Apart from analytical approximation models, numerical approximation models have also
been developed tevaluatethe transient quediength distribution. These methods,
however, deal directly with the differential equations of the quength distributions,

which in most cases ahegh-dimensionakystems to solvéRothkopf and Oren1979).

Gr as s mann o0 9, fopirsiaree, expldred thrée different numerical methods to
solve the transient quedength distribution of M/M/1/K queues. The three methods are
RungKutta, Modified RungeKutta and Liou, and Randomization. The methods are
closely related, yet themdomization method is shown to be superior than the others. An
important trait that these methods exploit is that they preserve thetygpétbe

transition rate matrixt is also important to note that these methcais be applied to
solvethe queudength distributiornof a single Markovian queuws the joint queudength

distribution of a network ofMarkovianqueues.

Despite the fact that numerical methods have very low execution time comparetito
and analytical approximatiamethods, the main problem faced by many authors is the
high dimensioal systemof differentialequationgeing solved. A queueing system with
n queues leads totuple states. There is thén U different states, whene is the
capacity ofqueud. The transition rate matrixill then be ofdimension

B 0 8Evenfor small valueof 0 andn, this number can be very large and very
hard to storéGrassmann, 1977).

Dealing with a network witttarge numbers of queues or large queue capacities have been
found challenging for many of the methods above. One wagduce the dimensions of

the systenof equations being solves by aggregating the quelength state spac&he
aggregation process done by combining some states iattaggregate states.

Aggregation of queue states for stationary Markov chain was introduced by Takahashi
(1975) Takahashi later extended the previous work to propose an exact numerical

16



derivation of anarginalaggrega¢ queudength distribution and a joint aggregate queue
length distribution(Takahashi and Song, 1991).Takahashiand Sogs paper (1991)
theyenhanced the aggregation modehibydeling the joint queukength distribution of
adjacent queues, therefaecounting for any blockings between queddwy showed

an example of approximating the stationary distribution fogaéue tandem network

with blockingby looking atjoints with different number of queuekhey first looked at
individual queuesn thenetworkand calculatethe marginalqueuelength distributiorof
each queue independentlyhey then lookedattwo queues at a time and calculatiee
two-queugoint queuelength distribution.Lastly, they looked at three quewssd higher

at a timeandcalculatedhethreequeue or morgint queuelength distribution. They
showed that the higher timember of queues represented in the joint, the more accurate
the stationary distribution is. The reason is because calculating joint distributions with
morequeues means accounting for more betweggue activities including blockings
(Takahashi and Song, 1991).

The papers on aggregatidisaggregation from Takahashi tackled two of the challenges

of estimating the stationary quelsngth distribution: the ge of the system and the

dependencies between quethest lead to blockingThe work done by Takahashias

then extended bgchweitze(1984)to introduce the samaggregatiordisaggregation

techniques fothetransientanalysis oMarkovc h a i n s pplination toquéusinga

networks Schweitzed s approach tackles the same transi

ensureghe convergence to stationary distribution.
Most of the work in thishesiscombines ideas from both exact and analytical

approximation rodels surveyed above, as well as aggregatisaggregation techniques

from Takahashi and Schweitzer.

17



1.2 Model background

To introducethe mode| weintroducethe followingnotation

@ 0 number of customers in tligieueat timet;
K gueue capacity
state space of thidarkovianqueue;
0 transition rate matrix for a single queue
n transition rate from stateto stats;
customer arrival rate to the queue
service rate of the queue
N O probabilityof being in state at timet;
N 0 row vector representing the transient qgingth distribution of a queue;

n initial queuelength distribution.

Let 0 O T represent a finitstatecontinuoustime Markovian queueingsystem
with state space andstatespacedimensionK+1, where the states represent the number
of customers in the systerRor a single queuehe transition rate matrix is given by

O 1 ,withvaluesnh _hn * . The diagonal elementse given by,

(1)

and all other terms being null.

Letn O be the probabilityhat the queue hasustomerst timet, then the row vector
N O represents the transient qudeargth distributiorof all statesThe behavior of the
finite Markovian queuean be described by the Kolmogommystem odifferential

equatiors (Muppala andrrivedi, 1992)

18
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Here,n) represents the initial quedength distribution of thdlarkovian queue
The solution of this system of first order linear differential equations yields the transient
gueuelength distribution of the queue at timy&) 0 . Several methods for solving the
differential equations are available. For instance, differeatjaationsolver like Rung-
Kutta or Randomizatio(Grassmann, 197 €an solve this numerically. However, we are

interested in solving this equation analytically.

We can write the general solution of equation (2) as:

no nNmQ n Qs

3)
We canrewrite equation(3) differently, by shiftingthe origin of the time axis t0
instead of Gince the process is tinlmogeneoufGrassman, 1977)
n o no Q 8
(4)

For a single queysdt is convenient to solve the transient quérgthdistribution using
equatiors (3) or (4). However, thdimensions of) increases exponentially as the number
of queues in the network or capacities of the queues get larger. In addrgonh, d
evaluation of the matrix exponentin run into high accumulan of round-off errors
since the Q matrix contains both positive and negative enimiése next chapter we will

present a model that accounts for these challenges.

1.3 Overview

The remainder of this thesis is structured as follows.

In chapter 2, wavill formulate the model. We wilbresenthe aggregain-
disaggregation framework, and thapply the aggregation on a single queu2gaeue

tandem network, and an-fueuetandemnetwork We will present thanalytical

19



approximatiormodel of the transient quedength distribution of a M-queuetandem

network in the last section of the chapter.

In chapter 3, we will validate the model by comparing the transient joint distribution
obtained from our model against those estimated &mraxact model for one queue and

adiscrete event simulation model for a network of queues.

In chapter 4, we will apply the transient model to a traditional signal control problem on a
network to measure the added vadi@ccounting for the transiehehavior. We will

evaluate multiple scenarios that consider the same road network and different travel
demandsOur interest is to see how our model performs with different demand scenarios

compared to a stationary joint model

Finally, in chapter 5, we Wipresentasummary of the modeindof the results from the

case studyand show the added valfgr accounting for the transient joint distribution

20



Chapter 2. Model formulation

2.1 Aggregation-disaggregation framework

For us to overcome thdimensionality problermentioned in the first chaptewe apply

S ¢ h we i (29&4mggiegation technique ftnansientMarkovian queueing systems

The technique assumedimite-state Markovian queueing systevith aperiodic and

communicative propertieghe urban transportatioretworkt hat we 6to e

analyzemeets all the assumpti@adressetly Schweitzer.

To presenthe framework, wdirst introducethe following notation

m
5

m

C:

-0 O 3¢ 02 Ck

[o

state space dhe Markovian queueing system
size ofy

aggregatetate spacef the Markovian queueing system

| ooki ng

state space representing all disaggregate states that are in aggregate

statea;

size ofy

disaggregate stgte

aggregate state

probability of being irdisaggregatstaten at timed
probability of being iraggregatestatea at timed

row vector representing the disaggregate transient geagth
distribution of a queue;

row vector representing the aggregate transient gieeggh
distributionof a queue;

transition rate from aggregate statergto aggregate statenbny
transition rate from aggregate statergto disaggregatstate
@ g

aggregate arrival rat timeg;

aggregate service rad timeos

21



Assume ouMarkovian queueing systefmas a state spaogof dimensionM, the
probability of being in any statesnmat time t isdenoted by) 0 , andthe transition
rate from going fronstate’® mto stat€Q mis denoted by] . To aggregate the state
space, we cluster states together to get an aggregated statasplagsieed 0 . For
an aggregate state'am, the setr) represents all disaggregate states thaineae

Hence the probaility of beingin an aggregatstatea denotel 1) 0, is definedasa

function of the disaggregapeobabilities
n 0 n 08
®)

The transition ratq from aggregatstatea® mto aggregate stateNomas defined by
Schweitzel(1985)is:

(6)
Additionally, the transition rat§ from aggregate state anto disaggregate stal@ m
as defined by Schweitzétr985)is:

Ao 3

(")

In this paper, w use the san@ecomposition odggregatstates as in Osorio and Wang
(2012).Figure 21 shows the state transition diagram, before and after aggregating the
state spacd=ach circle in the diagram represents a state, and each arrow represents
possible tansitions between the states with their rates. Arrivals in the figure are

determined by the arrival rate 1, and departures by the service rate 1t .
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M ! T T

Single Queue
N hh,nﬁ;_h,
) .2~ ()
W] S L - H
Single aggregate queue
A A
0 ] 1) .2
H H

Simplified single aggregate queue
Figure 2-1: Aggregating the state space of a single queue to three aggregate states
(Osorio and Wang, 2012)

Initially, we haveM= + p stateswhere K is the queue capacit¥/e aggregate to get

- 3 aggregate state®ur system now has only 3 aggregate states: aggregate state O
representing an empty queue, aggregate state 2 representing a full queue, and aggregate
state 1 representing a nempty and notfull queue.For a network of queuet)is means

that the numberfeequations for the network is linear in the number of queues instead of

exponential.

The third image ifFigure 21 showsthat the rates for leaving aggregate state 1 have
changedThe other transition rateemain the sameecause@ggregate state 0 and
disaggregate state 0 are equivalent. Additionally, aggregate state 2 and disaggregate state
K are equivalentThe aggregate system is now fully described by a set of four rates

_ft ALIA T ‘A The first two are known and the last tdenoted aggregagerival rate and

23



aggregate service rate respectiyeign be defineddm Equationg(6), (7) (Osorio and
Wang , 2012and( Schweitzer, 1984as

n 0 .
o _ o N s 0 h
)
‘ n o .
o ‘3 0 h
f LI
€)
wheren i  are the probabilitiethat the queue is in disaggetg states KL, 1

respectively, Wiler) is the probability that the queue is in aggregate state 1.
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2.2 Aggregate transient model for a single and a

network of tandem gueues

In this setion, we will apply the aggregain-disaggregation technique®fn 2.1 to

derive the model focalculatingthe transient quedlength distribution ot single

M/M/1/K queue and th&ansienfoint queuelength distribution for aetwork of

M/M/1/K queuesn tandemWe propose taalculate the jointransientdistribution ofa
networkof queues in tandetny decomposing the system into overlapsngnetworks

of three queueBelow we present this formulation at three different network size levels:

a single queue, a network of 3 queues in tandem a network of M queues in tandem
2.2.1 Aggregate transient model for a single queue

For a single finitecapacity Markoviamueue, lhe state space is given by

riphedht+ , where K Ttis the queue capacitylo derive theaggregate moddor a
single queudengh distribution over time, we willse the samgameworkintroduced in
2.1,whereour system now has only 3 aggregate stakbss results ira 3x3aggregate

transitionratematrix, 0 .

The model is implemented in discrete time, and within each time interval, we assume
aggregate transition rates to be constant. To present the medetoduce the

following notation

gqueue arrival rate;

queue service rate

gqueue traffic intensity;

K gueue capacity
n initial disaggregate quetlength distribution of the queue
n o aggregate transient quelengthdistribution at continuous time

within time intervalQ

25



disaggregate transient queleagth distribution at continuous time
owithin time intervalQ

aggregate transitioratematrix during time intervaly
approximatedjueue arrival rate during time intenkal
approximatedjueue service rate during time interial
approximatedjueue traffic intensity during time interval k;
aggregate arrival rate during time inter@l

aggregate service rate during time intefGal

probability of being in disaggregate statat stationarity
time step length;

duration of entire time horizon

continuous time within tha interval.

For a queue witlarrival rate_, service rate, capacity K and initiatlisaggregatgueue

lengthdistributionn) , the traffic intensity is defined as the ratio of the arrival rate to

service raté

is defined as

-8Thediscrete form of thaggregatejueuelength distribubn over time

=
_a
o
¢
o
P4
3.
=
=
=
=
_a
¢

(10q)

(100

where the initial ggregate queukength distribution and initisdervice and arrival rates

are defined as:
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(10c)

To calculate the aggregatensition rates [ f [fwe refe to equations (8) and (9n |

discrete time, we get:

- =Th « 1N
(119
T : h o, 18
(11b
Equations (11a) and (11bgquirecalculatiors of the disaggregatgueuelength
distributiors (i.e.,y 1 handn 1 . Since these amot availablewe applythe

closed form expression of the qudeagth distribution from Morsdes exact met hod
(1958, p65-67) to approximatehe disaggregateistributiors. The transient quedlength
distribution as derived by Morg&958)in continuougimeis given by:

~

n 'Y B n Q "Yh
PG p
In discrete timeat time interval kthe transient quedength distribution is defined as:
A6 B f 1 Q" oRlov mh A
P ¢
wheren is the initial probabilityof being in disaggregattatem, 1 T is the

probability of being in disaggregate statérom the previous time stepn continuous

time, Q “Y is defined as:
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¢ p . .ila* — dia p* e "
: — OBE+— " OEH OEH
O p W O p O p 0 p
— ., A.£ “
" O B+ P Q h
0
(12b-1)
and indiscrete timeduringtime interval kwith continuous time, 'Q " & is defined as:
Qo V]
" A N —Jd.a R O -
C! BOE.—I— " O B4 P OEH
O p W 0 p O p 0 p
A& p" .
"OBE+—10Q h
v p
(12b-2)
r . c _‘A I 'l ]
O o~ = - B h
(12c)

where,0 is the stationary distribution @nM/M/1/K queudA T &~

Tiph8 &0 .Both& and™Q p are exponents in the stationanydistribution equation.

To approximate the disaggregat®babilitiesry | handn 1 ,we solve a
nonlinear systerof equationgor*  h_ . The nonlinear system consists obtw
equations: The firsdtatesthaff |1 andry | areequal and the seconstates that
N 1 andrp | areequalWe end up solving two nonlinear equations for two
unknowns.The nonlinear system is defshbelowin Equations(13) and (4) and in more

details inEquations (1band (6).
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(13
N A1 o 1 B
(14
We plugEquation(12) into (13) and @4) and get
n
o1 0
< YU
v p : ‘ [~ v p
_ ¢ Al o—
_ ,i,\d pll - ,,l’ 1] —_— .
" OB— 727 OE+— Q
v p v p
mh
(19
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(16)

where_ H hare thequeue arrival rate and service rate during time inté&valp

that we want to solve for, arid —, whereQ p represents the time interval
index.
Once we solve for and* , we plug them intohe discrete fornof Equation (12)

with the initial disaggregate distribution | to get the disaggregate probatids
n 1 PATIR 1 8The dis@gregate probabilities will theme plugged into
Equatons (11a) and (11kd calculate the disaggregate transition rafés[8

Thefull algorithm for solving the trasient distribution of a single queue can be described

in the following steps:

Input:
Arrival rate to the queue:
Service rate of the queue:
Queue capacityy
Initial disaggregate quetlength distribution of the queun:

Duration of entirdime horizon’Y
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Output :
Assuming that is an integer, the output is an approximation ofatgregate

gueuelength distribution of a queue at tifi€in discrete time at time interval

Q -:n o,wheredcan be any value betweenf) 8

Algorithm:

1 can be initiated as any small number

For'Q miplthB h-
If Q m
1) Calculate the initial aggregate distributiGp from the initial

disaggregate distributiom}  usingthe following equation:

2) Calculate the initial aggregate transition ratéfs [
b _n‘ h T L
n n

Else

1) The aggregate quedength distribution for time step k ebntinuous

time t is defined as:

wherefy T n 1 hv
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2) Solve the following nonlinear systenf equationgo obtain_ H

whereQ " 1 isgiven byEquation (12k2) :
N Ao QM mh
Ao oot g 8

into Equation (12) to get the disaggregate probabiliies

3) Plug_ H
being indisaggregatstatephy  p:
oo A1t 1k
Ao o1 My o8

4) Calculate I H [ for the next time step from the following

equations
ro 1y

- LU

n |
L L - 8

] n

End
End

2.2.2 Aggregate transient model for a three-queue

tandem network
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In this section, w considerthree M/M/1/K queues in tandeffor this type of network,

we want to approximate tteggregate joinjueuelengthdistributionr)  z 0 which

is defined as the probability thidte first, second and third quewee in aggregate state

"B@irespectiely atcontinuougime 6~ 1 within time intervalQ The aggregate state

space is defined as the triplets with 27 unique statese @@ N Tiply . Therefore

the dimensiorof the transition rate matrix is independent of the individual queue

capacitiesandis always 27x27.

We introduce the following notation:

5
5
[

0«
0«

5¢
5¢

disaggregate state of quetie

aggregate state of queye

external arrival rate to quetie

service rate of queue

capacity of queug

capacity of the queue corresponding to blocking scefario
approximated queue arrival rate for blocking scenario
during time intervak;

approximated queue service rate for blocking scemario
during time intervak;

approximated queue traffic intensity for blocking scenprio
during time interval k;

aggregate joint quetlength distribution at continuous time
owithin time intervalQ

disaggregate joint quetdength distribution at continuous
time d within time intervalQ

the marginal probability that queueés in aggregate state

at continuous timéwithin time intervak;

the marginal probability that queues in disaggregate state

n at continuous timéwithin time interval k
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initial disaggregate quedength distributiorfor queusd;
initial aggregate quedlength distribution for queue
initial aggregate joint quedength distribution

initial disaggregate joint quedength distribution;

cr o O O -
¢ =0¢
¢ =0¢

aggregag joint transition rate matri¢AJis a shorthand for
aggregate joint) within time intervkj
emptyaggregate transition rate probalyilibr blocking

scenarig during time intervalQ

full aggregate transition rate probalyilfor blocking

scenarig during time interval(n
1 time stepength
Y duration of entire time horizon;

o) continuous time within that interval

Each of the three queues in the networkdreexternalarrival ratg hservice rate |

queue capacity andinitial disaggregatgueuelength distributiomy , wherei N

{1,2,3}. Wecalculate the initiatlisaggregatgint distributionny  x by assumin@g
productform joint queudength distribution, i.e., the initial joint can be decomposed as
product of its marginal Unfortunately finite-capacity queeing systers, in generaldo

not have a produdbrm joint queuelength distribuibn. The reason for that is because
finite-capacity queueing systegive rise to blockingvhich might cause incate
dependency between queues, wisanwice and arrival rated queues might increase of

decrease depending on any blocking that might occur in the system.

Whena queue is causirtgockingon upstream queues, thervice ratesf upstream
gueues mighget decreasedoecause of the blockingdditionally, when the queue
causing the blogkg has a service completiogervice rates acsomeblocked upstream

gueues might increae. Hence, calculatinghe jointis a challengén thatblocking should
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becaptured in all its scenariandaccounting fothesedependencies between queises

necessary

In athreequeugtandem networkwheren is the most upstream) canbeeither benot

blocked omlockedby eitherry orny , andry caneither be noblockedor blocked by ,

andn is alwaysnotblocked This gives us a total & blocking scenariosThe

probability of a job being blocked for each of thesensirios has beapproximatedn

Osorio and Wang2012) Table 21 shows althesescenarios witlan approximatiomf

thar probabilitiesof occurrence

Blocking Joint State Blocking Probability Aggregate
scenario transition rate
probabilities
1 notblocked {(0,1,2), (0,1),(0,1,2)} 0 | B
f blocked by {(0,1,2),2,(0,1)} 5 | R
n
r blocked by {(0,1,2),2,2} | h
n
A notblocked {(0,1,2), (0,1,2) ,(0,1)} 0 | A
n blocked by {(0,1,2), 1,2} 6 | h
n
{0,2,2}
11 notblocked All states 0 | h

Table 2-1: All blocking scenarios with joint states, blocking probabilities, and

aggregate transition rate probabilities

To calculate the transiejdint queuelength distribution, we refer toduation (10) from

the single queue model and modify itaeplyfor the 3queue joint modelThe joint

model is also implemented in discrete time, and within each time interval, we assume



aggregate transitioratesfor all blocking scenario® be constantThe main equations

for the joint transienmodels is presented below iguations (17) and (18):

N s 0 N w1 Q@ hiovmMh 7 zm N gl oh

17
where0 O Hh R isa27x27 sparse matrix with nonzero elemegivsnin
appendix A. The parameters for the matrixdre: [ fF B h* * H K h
6 OmMMM h . h A H A A h Al h h R h

| . Theinitial aggregatgoint queuelength distributiom)  ; , is calculated

assuming independent initial marginal aggregate glength distributions ofhe three
quetes To calculate it, we performaoss producof the three initial aggregate queue

length distributions, whele v 1 N N

We define theaggregate transition rapeobabilities as follows:

| n s s s | f:] z :]|
n s s s 1 ﬂn : «IQI
n s R s s R 1 ] 2 1 1
s h 1
n s R s s Q 1 r]r] ; hh ‘11
n s R s s R 1 ! : i (]
s h 1
n s h s s h 1 r]r] : hh ‘11
N s s s 1 f:] z 1
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nsss]r]%j
L sjnnssjj
nsjhﬁwj

(18

For each of the Blockingscenarios in Table-2, at time stefk, we define 2 aggregate
transition rate probabilitieshe full aggregate transition rgieobability,denoted

and the empty aggregate transition rate probapidyoted .| represents thetio

of theprobability of being in disaggregate state 1 gilasatkingscenarig to the
probability of being in aggregate state 1 given blockiognarig at time intervak-1.

While| represents the ratio of the probability of being in disaggregateistatgiven

blocking scenarig to the probability of being in aggregate state 1 given blocking

scenarig at time intervak-1.

Calculating the full and empty aggregate transition rate probabilities for &lldblking
scenarios, defined indaation (18), is somewhat of a challenge given ttiat
disaggregate probabilities in the numeratme unknownTo approximate the
disaggregateprobabilities,we follow the same approach as in the one queagel That
is by assuming the disaggregate probabilities of the blocking scenarios follow the
functional form giverby Morse (1958) irequation (12)We solve 6 different nonlinear

systens for all blocking scenariasNVe solvethe nonlinear systems Equations (19)
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through (24Yo obtain six different pairs of AT ‘A, wherej represents the

blockingscenariandex

To approximateéhe disaggregate probabilitiém blocking scenario:1n s 1,

n s @ ), during time intervalQ p, we solve the following nonlinear system
for _  AT‘A
n S 1 n S 1 Q h 1 T[F\
o IS B o JL 8
(19)

To approxinate the disaggregate probabilitfes blocking scenario 2:
h s h 1, ﬂ s

following nonlinear system for AT ‘A

1 during time intervalQ p, we solve the

¢

s & ] s w1 QM mh
Ao k] S B o B 8
(20)

To approxmate the disaggregate probabilitfes blocking scenario 3:
N s h 1.0 s h 1 during time intervalQ p, we solve the

following nonlinear system for AT ‘A
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Ao R ] R N o AL TR 1S

(21)

To approxinate the disaggregate probabilitfes blocking scenario 4) s 1,

n s 1 during time intervalQ p, we solve théollowing nonlinear system
for_  ATA
Ao oo 1 QM Tt
Ao nooe 1M i
(22
To approximate the disaggregate probabilitfes blocking scenario §) s 1,
n s 1 during time intervalQ p, we solve the following nonlinear system
for _  AT'A
Ao nooe 1 e i
oo A P B o S 8
(23
To approximate the disaggregate probability for blocking adei ) 1
n 1 hduring time intervalQ p, we solve thdollowing nonlinear system for
_ AT
Ao i 1 Qh mh
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(24)
For Equations (19) through (24), & calculateQ h 1 h 1 from equation

N N e

(12b2).0Once_ AT ‘A for'Q phllottivlp are obtained from the nonlinear solver,

we plug then intothe discrete form of §uation (12) to get theisaggregate probabilities
neededThese steps are describadnore details in the algorithm description below

Thefull algorithm for solving the transiefdint distribution of athreequeuenetworkcan

be described in the following steps:

Input:
External arrival rates to each of the three quepes : f K 8
Service rate for each of the three quetes: * H H 8
Queue capacity for each of the three queéues 0 O ) 8
Initial disaggregateistribution for each of the three queugs:iy M 8
Duration of entire time horizofiY

Output :

Assuming that is an integer, the output is an approximation of the aggregate

gueuelength distribution of a queue at tifi€in discrete time at time interval:

n ir  0) whereocan be any value betweer) 83

5¢

Algorithm:

1 can be initiated as any small number

Fortime stepQ Ttiplth8 h-
If Q m
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1) Calculate the initial aggregate distributian ( from the initial

2)

3)

Else
1)

disaggregate distribution)  for ‘Qfplglo usingthe following

equation:

Calculate the initial joint quediength distribution from the following
equation

N % N N N
Calculate the initial aggregate transition rdteseach of the blocking

scenarios h  /EI'® plloftvkp fromthe initial joint 1

N g n
| — f ‘ :
n s n s
h s h FI I‘] S h
h S h n S h
r‘]‘ s A i n ‘ s h
n ] h n s h
n g N
| ——* __f ‘ :
N N
n g n
—— 10 ‘ :
n s n s
n . n
| - h
n n

The aggregatmint queuelength distribution for time stepdf

continuous time is defined as
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where0 "OrHh R isa27x27 sparse matrix with nonzero
elements described in appendix A. The parameters for the matrix are:
' rH A ht *H R giveninitally as input

6 O6MMM gveninTable2-1, and

. 1 h B B B A A AL A A R R

approximated in thprevious time step

2) Solvesix nonlinear system of equatiofes the six blocking scenarios

to obtain_ i wherej is the blocking scenario index

Nonlinear system 1: Solwe obtain_ H

42



3) Plugeach pair_ i and the disaggregate distribution for each

blocking scenario from time sté@ p as the initial distributiointo
the discrete form dEquation (12) to get the disaggregate probabilities

of being in disaggregate states)l, p.

Plug_ H and the disaggregate distribution for this blocking scenario
from time stepQ p as the initial distributioninto Equation(12) to

get
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Plug_ H

Plug_ H

Plug_ H

f

Plug_ H

n s | n
s 1 n
into equation (12) to get
s h | n
s | n
into equation (12) to get
S h (] rl
s h | n
into equation {2) to get
n s | n
s i
into equation (12) to get
n s | n
s 1 n
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Plug_ H into equation (12) to get

N A1 h
f 1 y 1efh 18
4) Calculatg h , Whergj is theblocking scenaridor time step

"Q pfrom the following equations

n 1 |
s " ”‘ s
s | n s |
n S h 1 Fh I’]‘ S h 1
S h (.l n S h 1
n S h 1 ﬁ ﬂ‘ S h 1
] h | n S h 1
n 1T . |
s A n‘ s
n s 1 n s 1
n | . 1
s s ﬂ‘ $
S 6| r] S 1
n 1 n 1
h :
1 n 1
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End
End

2.2.3 Aggregate transient model for an M-queue tandem

network

We generalize the methaaf computingthetransient queuength distributios for M

gueuesn tandenby decomposing the netwonkto overlapping 3jueue sulmetworks

illustrated in Figur&-2. The method that we will apply for each of the-sigworks is

based on the one developed in the previous section. This approach not only maintains the
same level of linear computational complexity that we mentioned in the pseséation,

but alscallows usto validatetheaccuracy of marginatansientdistributionsfor

individual queuesThe ptal number osubnetworks that we need to evaluatdis2.

System i-2 System i-1 System i

---- Queue i-2 Queue i-1 m Queue i+1 Queue i+2 |-~

Figure 2-2: Decomposing the network to overlapping sub-networks of three tandem

gueues (Osorio and Wang, 2012)

To present the model, we introduce tbibowing notation:

n queus;

0 disaggregate state of quetie
0 aggregate state of queye

i external arrival rate to quete

exogenous service rate of quepe
0 capacity of queug
0 capacity of the queue corresponding to blocking scefiario

total arrival rate to queueduring time intervak;
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- O -

S5¢

¢
¢

0%«
0%«

¢
¢

5¢
5¢

effective service rate of queuduring time intervak;
unblocking rate of queueduring time intervak;

blocking probability of queueduring time intervak;
approximated queue arrival rate for sudtworks and blocking
scenarig during time intervak;

approximated queue arrival rate for sudtworks and blocking
scenarig duringtime intervalk;

approximated queue traffic intensity for sabtworks and

blocking scenarip during time intervak;

empty aggregate transition rate probapilor sub-networks and

blocking scenarid during time intervalQ

full aggregate transition rate probalyilior subnetworks and
blocking scenarid during time intervalQ

aggregate joint transition rate matrix for sugtworks during time
interval Q

initial disaggregate quetlength distribution for queuie

initial aggregate quedength distribution for queuie

the marginal probability that queu@ subnetworksis in
aggregate stagat continuous timéwithin timeinterval k;

the marginal probability that queue subnetworksis in
disaggregate stateat continuous timéwithin time interval k.
initial aggregate joint quedength distributiorfor subnetworks;
initial disaggregate joint quetength distributiorfor subnetwork
S,

aggregate joint quetlength distribution of suimetworks at
continuous timeé within time intervalQ

disaggregate joint quetdength distribution of sulmetworks at

continuous timé within time intervalQ
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] time stepength;
Y duration of entire time horizoof which the joint queuéength
distribution of the Mgueue network is evaluated;

o) continuous time within tha interval

For any suknetworki, with queue indicesiQ p HQ ¢ , to calculate an accurajeint
gueuelengthdistribution we need to understatige dependencies between adjacent
gueues to the suretworks and theffects of both upstream and downstream queues. The
adjacenupstream queuiel gives us information on the arrival ratbqueud, and the
adjacendownstream queue3 gives us information on the service rafequeue+2.

Hence, for each subetworki, thetotal arrival rate tdhe first queue_ , and the effective

service rate of ththird queué , during time intervak, is calculated by using
information from adjacent queues. The total arrival ratee@anost upstream queue in
systemi, queus, is obtained by solving the flow conseriat equation derivetly

Osorio and Bierlaire2009a)and given by

(25)
Theeffective service rate' , for the most downstream queue in syst, queue+2,
accounts for service and for potential blocking from ddve@sn queues. It is also

derived by Osorio and Bierlaire@09a) andgiven by:

(26)
where' is the exogenous service ratg, is the blocking probability during time
interval Q and* s the unblocking rate during time interkadf r] . The approximation

for* for a single queuss derivedby Osorio and Bierlairé2009h, andis given by:

r‘]T[p
oo R

- p
i 8
p
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(27)
Additionally, ) is approximatedy:
n n nm —38
(28)
We substitute guations (27) and (28) in (2énd get

(29

The other important aspetct considerfor this methods the consistencyf marginal
gueuelength distributios of samequeues in different subetworks Our methoddoes

not ensureonsistency among same queue marginal distributions in diffeuent
network. Hbwever, we Bsure consistency among the aggretyatesition rate
probabilities for the same queues in differemb-networks through system of Equations
(30).

(30a)
S S
(30b)
| A n & T n N & T 1 &
(30¢)
' N K T 1 v N & T
(30d)
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n s T 1 " N & T N g T 1
n T 1 K
(30e)
l'n N & T 1 v N & T 1 3
n s T 1 5 N & T N g T 1 &
N nr 1 1 M
(30f)

If we have two overlapping sutetworks,i andi+1, thenr]  is the second queue of
subnetworki and the first queue @ubnetworki+1. In subnetworki,;  has two
blocking scenariog] is not blockechndry  is blocked by . The aggregate
transition rate probabilitier these scenariagel 1 h h i .The same queue
n  of the subnetworki+1 has instead three blocking scenarips: not blocked,

N blocked by ,andfy blocked byr) . The aggregate transition rate

probabilitiesfor these scenariosdre sh :h zh h A ;8Equation

(30a) shows that ; and|  j are equal and equation (3) shows that » and|

are equal, sinctheyarethe probabilities for thescenaridhatry is not blocked by

Additionally,| h  are the probabilitiefor the scenarithat }  is blocked by

whereas h  h zh ; are theprobabilities for the scenario thgt is

blocked byry  butconditioned upoinformation onr] . Statistically|  is defined
as a weighted averagé|  h hwith weights

n 1T m j 1 respectivelyas defined in equatioB@c). Similarly,

~

| i is defined as a weighted average of - i hwith weights

n Mmoo 1 respectively, adefined in equatior30d).
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If we look atsubnetworksi,i+1, andi+2, thenr} s thethird queue of suimetworki,
thesecondjueue osubnetworki+1, and the first queue slubnetworki+2. In sub
networki, 1 hasoneblocking scenariog] is not blockedThe aggreagte transition
rate probabilities for these scenariosjageh . The same queug  of subnetwork

i+1 has insteadwo blocking scenariog] not blocked andy blocked by} . The

aggregate transition rate probabilities for these scenarios aggh  h  zh .
Additionally,r}  of subnetworki+2 has instead three blocking scenarips: not
blocked,j blocked byry ,andfy blocked byry . The aggregate transition rate
probabilities for these scenarios are h  h zh h A ;8Equation
(30e) shows thastatistically] § is the weighted sum of jand  ; with weights

n 1 andn 1 8This can be explained using the sdowic as in the

previous paragraptEquation (30 defines the same relations as in€B30ut for the full
aggregate transition probability instead of émeptyaggregate transition probability.

The full algorithm for solving the transient joint distribution of argieue tandem

network can be described in the following steps:

Input:
External arrival rates to each of thequeues [ h B R
Service rate for each of tihé queues*  * H Fedt
Queue capacity for each of tNequeues) 0 h D
Initial disaggregate distribution for each of Mequeuesr) ) e
Duration of entire time horizon of which the joint qudergth distribution of the
M-queue network is evaluater

Output :

Assuming that is an integer, the output are multi@eueugoint queuelength

distribution at timeT (in discrete time at time interval : r‘]_ﬁ i 0, foreach
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of the M3 overlapping suimetworks in theM-queue networkwhereo can be any
value betweenth 8

Algorithm:

1 can be initiated as any small number.

For time stepQ iplgh8 h-
If Q m
1) Calculate the initiainarginalaggregate distributiom)(  from the

initial marginaldisaggregate distributionm}  for

"Qiplgfot8 M) husingthe following equation:
g
n p N n h
g

2) Calculate the initial joint quediength distributiorfor each sub
networki N plglor8 i ¢ , from the following equation
T B n
3) Calculate the initial aggregate transition rates for satis

networki ¥ plglot8 i) ¢ , andblocking scenaridy plt fott fufp h

|« R hfrom the initial joint’) ;  {; and thenitial disaggregate

~

distributiorsy ) m

8
n s 5 n s
| h -
"o "o
n A 5 N A
| R ‘ : h s -
r]s h ng h
n P 3 n P
|k ‘s h & - 2
n h n h
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| g h ‘
"N " i .
f ; f
|v o
"y h i
n g N
| F - h - -
h n h r]

Else
1) For each sulmetworks, calculate theotal arrival rateto its first queue,

and the effective service rate to its third queue from equaisand

(29)
[ N L L
P Nr T
— n n Tt i h
R
wheren j T, N h Tt aresubnetworksi,i p marginal
distributiors of queues, i  p respectively.

2) For each sulmetworks, calculate the aggregate joint quéergth

distribution for time stef

Ng s O Nip sr 1 Q hlov mh 8

where0 AR M isa27x27 sparse matrix with nonzero
elements described in appendix A. The parameters for the matrix are:
I TR he R H ,

6 o6 MMM givenin Table 21,
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>5¢
E(
= xj

3) For each sulmetworks except the lastyheresis the index of the sub
network,solve three nonlinear system of equations for the first three
blocking scenarios to obtain;,‘  wherejv plgho is the blocking
scenario index. For thadt subnetworks=M-2, we solve three
additional nonlinear systenfisr jN Tlfp to obtain_ ;* 8he
reason we do this is because the first queue of eaehetwiork has
the most blocking scenarios than any of the other queues in the sub
network, which means capturing the most information on the

dependencies between the queues in thexstusork.

Nonlinear system 1: Solve to obtair; i, wherei is the index of

the subnetwork with queue indicesff ph )

Nonlinear system 2: Solve to obtain i

Nh s 1

B A - 17 0"y m
Np o s ﬁ )

B A - 11 om

Nonlinear system:3Solve to obtain_ H
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B nj f et n
nr s h 1
B 0 ; it om

Fors=M-2 proceed to solve the followiras well

Nonlinear system:4Solve to obtain_ H

N 1
B 1N 1 Qb1 on
N mn
B N nQ" Tt

Nonlinear system:5Solve to obtain_; F

A5 1 B 05 1T Q"
Tt
i moB N 1 Qh
Tt

Nonlinear system:6Solve to obtain_ H

Ny | Ny Tl Tt

4) For each sulmetworks, plug each pair of i and previous

disaggregate for the blocking scenario as the initial distribution into
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Equation (12) to get the disaggregatelmbilities of being in
disaggregate statés K-1.

Plug_H [ intoequation (12) to get

i 1 i 19" R
g 1 N ma" 18

Plug_ H f intoequation (12) to get

np s R 1

B A " 1M1 h
Np s K 1

B i : 1 QM 18

Plug_ it f into equation (12) to get

Nho s R |

B i - 1 Q%1 h
Nk s A |

B Ay - 1o 18

Fors=M-1, calculate the following as well:

Plug_ H f intoequation (12) to get

i 1 B N 19" R
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If i

N 1
B Ay 1 Q" 18

Plug_ ;i  intoequation (12) to get

i 1 B A 1 Q"1 h
N 1
B Ay 1Qf 18

Plug_H f in equation (12) to get

i 1 f 1 Q"R

i 1 i 1 Q" 18

5) For each sulmetworks except the lastalculate  h p oo for

~

‘Y plgio for the next time stegrori O ¢, calculate

~ v v v

o h oy for’Q pleioftivkp for the next timestep

h h s 1 . h h S 1
R ‘ h i -

ng | Ny 1
Ni o s f T N & s A |
f] B s f 1 " n h S h 1
N g s h | . N ; $ h 1
f] B s R 1 " r] h s h 1
0 ¢, calculate the following:
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h ; ‘
r]h (-l n r]ﬁ s 1
n T n 1
h nﬁ h
oy 1 y 1
N 1T N i 1
‘ h g ‘
" ng 1 " Ny 1

6) We then infer the rest of tlaggregate transition rate probabilities of
the second anthird queue blocking scenaria®im system of
Equations (30)For each sulmetworks except the last, calculate

' n h oy for’Q thfp :

| & | R
| & | i
R n s 11 R n n T 1 5
| h r] h e| | h I'] h (] | h
fi 0 o
| R n s T 1 " N & T 1
| h r] h (] | h n h 1 | h
else
|k N T 1 &
n n TN g T 1 &
n s 11 R
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End

End

End
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Chapter 3. Validation

Just as we developed ttransientmodel in three differedevels ofnetwork size, we

will validate it for different network sizes. We will first look at a single queue and
compare the results we get for thensientgueuelength distribution from our model

with that we get from the exact modaleveloped by Morsgl958) in equation ()2We

will then look at a network of three queurgandemand compare thigansienfoint
gueuelength distribution results we yield from our model with results we get from a
discrete event simulator model. Lastly, we will look at tandem networks with different
sizes and make comparisons betweenrtdresiengoint queuelength distribuibbns

obtained from our model and those obtained from the discrete event simulator model.
Given that our model appr dheseocompasssnsdthe tr ansi
different timesncluding the time ab  pip fo We start with empty queues fot tdsts

in this chapter (i.e., the initial marginal probability of being in aggregate state O is set to
1) . The time step used for all the experiments is et tond38

For the discrete event simulator model, we ran 10,000 simulation replicdtians.
distributionresults that we got froitine event simulator are given for disaggregate states.
wederivetheaggr egat e st faoméhenio wkicas tompabe uhem vaith

results from our model

We calculate @5% confidence intervalbased on theimulation outputsWe do so by
assuming that the sampled probabilities follow a Bernoulli distribution with true yalue
and sampled value gHA %95 confidence interval fay is given fromOsorio and Wang
(2012)by:

L
pmmmp

‘ nHp n
AHU P80 @ S R pao

p mm 8

The confidence interval is displegt as error baris figures 311 through 317.
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3.1 Single queue

We consider 10 experiments for testing ttamsientqueuelength dstribution, displayed
in Table 31. The experiments showcase a wide rangehfesfor _H and traffc
intensities’ . The queue capacity, however, constant with K=1@r all single queue

experiments.

The first three plots ofigures 31 to 310 show the results of our modeladomparison to

results fron the exact modejivenin equation (12 For each experiment, we compare

the results ab plp fu By O v TBO0MeE Ofthe results from our model reach

stationarity. We assume that stationarity is reached whd2therm of the change of
thedistributions for two consecutive iterations is less tham . In the figures below,

the blue circles represent theele-length distributions for each aggregate staim our

model, and the red cross representgjtieielength distributbn obtained from the exact
model.The xaxis in the figures represents the aggregate states (in our case, the aggregate
states are0,1,2), and the-pxis represesthe state probabilitieat the time specified in

the figures.The last pld of each figue represents therror over time untib v The

errorcalculated irtheseexperimentss defined as thdifferencebetween the soluin

from our approximation model, denotgd , and the solution from the exact
mode| denoted) , for each aggregate staféhe erros for aggregate state 0, 1, 2 are
defined as) n N n N n respectively.
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Experiment _ ‘ " K
1 0.1 1 0.1 |10
2 1 10 |01 |10
3 0.3 1 03 |10
4 3 10 (03 |10
5 0.7 1 0.7 |10
6 7 10 | 0.7 |10
7 099 |1 0.99 |10
8 9.9 10 1099 |10
9 1.2 1 1.2 |10
10 12 10 |12 |10

Table 3-1: Experiments to test a single queue
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Figure 3-1: Results of experiment 1 at t =1, 10,50 and the errors for each
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Figure 3-6: Results of experiment 6 at t=1,10, 50 and the errors for each

aggregate state as a function of time
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Figure 3-7: Results of experiment 7 at t =1,10, 50 and the errors for each

aggregate state as a function of time
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Figure 3-8: Results of experiment 8 at t=1,10 and the errors for each aggregate

state as a function of time
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Figure 3-9: Results of experiment 9 at t=1,10,50 and the errors for each
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Experiment 10 - t=1 Experiment 10 - t=10
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Figure 3-10: Results of experiment 10 at t=1,10 and the errors for each

aggregate state as a function of time

The graphs show consistent and accurate approximations of the transient queue-

length distribution from our model for all experiments. The maximum error that we
see is mostly early in the time iterationat 0  p. The error decreases exponentially
for all experiments until it reaches p T for cases when the stationary solution has

been reached.

3.2 Three-gueue tandem network

Here, we compare resuft®m our threequeuetransientoint approximation model with
results given by a discrete event simulator. The experiments, displayed in 2alésB
awide rangeof traffic intensities, some with lowaffic intensitie” 1@ and some

with high traffic intensitieg” 180 . With an empty initial state of the networkew
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assume an external arrival only to the first queue thignatef  p&. For each
experiment, we plot the results at tide1,10,50.
Experiment | T ‘ ” K
1 1.8 [2,2,2] | [0.9,0.9,09] |[22.2]
2 1.8 |[2,2,2] | [0.9,0.9,0.9] |[5,5,5]
3 1.8 | [2,2,2] | [0.9,0.9,0.9] |[10,10,10]
4 1.8 | [2,4,6] | [0.9,0.45,0.3] | [2,2,2]
5 1.8 | [2,4,6] | [0.9,0.45,0.3] | [5,5,5]
6 1.8 | [2,4,6] | [0.9,0.45,0.3] | [10,10,10]
7 1.8 | [6,4,2] | [0.3,0.45,0.9] | [2,2,2]
8 1.8 | [6,4,2] | [0.3,0.45,0.9] | [5,5,5]
9 1.8 | [6,4,2] | [0.3,0.45,0.9] | [10,10,10]

Table 3-2: Experiments to test a three -queue network

Each of the figures below displays the aggregate joint glegggh distribution obtained

from our model in comparison to the aggregate joint cenngth distribution obtained

from the discrete event simulator for each of the 27 aggregate joint stagdsuélstars

represent the solution from our model and the red circles with error bars represent the

solution given from the discrete event simulatormost of of the experiments in this

section, the stationarity is reacheddy50. We define distribution reaching stationarity

when the norm of the difference of the distributions between two consecutive time

iterations is less thgm 11 .
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Figure 3-13: Results of experiments 7,8,9 for the 3 joint queue -length

distributions with service rate H, h h andt=1,10,50

Experiments 1,4, and 7 show the joint quérgyth distributions of queues with
capacities 2. If we look at the aggregated gtlength distributions of these experiments,
they are equivalent to the disaggregated quength distributions because the stat
space ighe same for both the aggregadesl disaggregates. The results are, therefore,

very accurate at all times.

Experimentsd, and 6 also give precise approximations that are very similar to the

simulator results.
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Experiments 2,3,8, and 9 starithwery accurate results of the joint qudaergth
distribution similar to those we observe from the discrete even simulator, but because
blocking occurs, the joint quedength distributions become less accuratg the trens

of the distributiorfrom our model and the simulatseems tdoe similar

3.3 M-queue tandem network

In this section, we will run experiments for three different network sizes. We start with a
fairly small network of five queues in tandem, then a network of eight queues in tandem
and conclude with a network of tweriiye queues in tandernthe assumptions

mentioned in the beginning of the chapter still applies here where the time stdp is

1 T, and all initial marginal distributions for queues are set to 1 for the empty state.

3.3.1 Five queue network

We look at a network of five queues in tandem with parameters displayed in Table 4. The
traffic intensity differs for each of the queues. The highest traffic intensity is at the fourth
and fifth queues with value 1@y with blocking most likely to occuBased on the

model we developed in 2.2.3, we get three different overlapping duese sub

networks. The corresponding joint qudaagth distributions for the three suletworks

are shown in figure-34 below. Each row in the figure plots the swdwak solution at

three points in time&=1,10,50.

Queuei r ‘ ” 0
1 3 10 0.3 25
2 0 10 0.3 10
3 3 10 0.6 25
4 3 10 0.9 10
5 0 10 0.9 25

Table 3-3: Experiment to test a 5-queue tandem network
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Figure 3-14: Experiment results for the 5 queue joint distribution

The results for the joint quedength distributions are the most accurate very early on in
the time iteration. As time increases, thstributionreached shows similar distribution
trends, but not an exact matékt t=50, the stationary solution has been reached since the
norm of the difference of all the subsystem distributions between two consecutive time
iterations is less tham 1 .

3.3.2 Eight queue network

We now look at aetwork of 8 queues in tandem with 6 overlapping tijeeue sub
network. The traffic intensity for this network is similar to the five queue network with
blocking most likely to occuat queue$,7, and 8 The parameters for each queue are
displayed in Thle 5. Figures-35 to 317 display the aggregate joint qudaeagth
distribution for each of the 6 subsystems at three points inttifn&0,50.
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Table 3-4: Experiment to test an 8-queue tandem network
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Figure 3-15: Experiment results for the 8 -queue joint distribution at t=1

75




Subsystem 2 0 Subsystem 3

Subsystem 1 0.2

02 i
. Wl 15 w4
oniF
016 016
o
014 o o
_ ot § |} 3 $ i
12 5
5 Hooh gt ! T
Lo = =
& i1
i I Qv i o oo g
o , :
0.06 0.0 0.086
0.04 0.04 0.04
0.02 0.0z 0.02
0 + 5 0 g i # # o ¥ 0 [N ]
Joint States () Joint States (n) Joint States (n)
Subsystem 4 Subsystem €
035 Subsystem £ o 3
04 i 045 *
03
035 04
[
025 s 035
05
5 oz _ o= E g
2 5 2
Iy L s . Lo
i < i
ot 1 a” 0z
o
3 015
0 015
3 . #z o : .
0.05 £ Ed
® 008 =
¥ ® ® ﬁ' ¥ : ¥ %
. Py s
' ¢ T i il 3 o o te ooy E o iy T il
Joint States (n) Jaint States (n) Joint states (n)

Figure 3-16: Experiment results for the 8 -queue joint distribution at t=10
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Figure 3-17: Experiment results for the 8 -queue joint distribution at t=50

The approximations that we sed=at are accurate for the first two sabtworks;

however, they are not as accurate for the rest of thestnorks. As time increases, we
see that the solutions for the sodétworks that were not very accurate in the beginning
become mre accurate then it settles distributions at t=5@vith the same trends as the
simulator.The stationaryistributionis reached at t=50 since the norm of the difference

of the distributions for all subsystems is less tham 8
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3.3.3 Twenty-five queue network

The twentyfive queue netork has alternatingapacity where odd queues have
capacity of25 andeven queuebavea capacity ofl0. The service rate for each queue is
10 and external arral occurs at queues 1,11, a&lwith a rate of 2vith traffic intensity
increasing from 0.2 in the first queue to 0.6 on queues 21 onwidmee histogramef
theerrors betwen the results from our model and results from the simuiatail states
of thesubnetworls at threadifferent times t=1,10,5@redisplayed irfigures 318 to 3

20. For any aggregate joint state probability "6, the error is defined as the
difference between theint distributionobtained from our modendthejoint

distributionobtained from the simulatoError 1 5 N rr - Ourmodel

approximatiorof the distibutionatt=1 is accurate for most states. However, ih@e
accurate at t=10, 50n this experiment, by t=50 stationarity was not reached because the
norm of the difference of the distribution between two consecutive is not legs tiah
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Figure 3-18: Histogram of the errors between the simulated results and the

analytical results for each of the 23*26= 621 states of the 25 -queue network
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Figure 3-19: Histogram of the errors between the simulated results and the

analytical results for each of th e 23*26= 621 states of the 25 -queue network
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Figure 3-20: Histogram of the errors between the simulated results and the

analytical results for each of the 23*26= 621 states of the 25 -queue network
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Chapter 4. Case Study

Now that we validated ounodelagairstan exact model anddiscrete event simulator,

we are interested sing it to addresa traditional urban traffic signal control problem.

Our goal for this chapter is to investigate the added value of accounting for the transient
joint queuelength distributiorfor different network demand scenarige evaluateur
propasedanalyticaly approximatedransient jointmodel by comparing it tora

analyticaly approximatedtationary joinimodelderivedby Osorio andVang(2012).

We model thairban road network as a finitepacity queueing network by follomg the
approach presented in Osorio and Bierla2@0Qb) Each lane in the model is prased
as a queue, and the flow capacities of the lanes correspond to the service rates of the

queus.

A microscopic traffic simulation model implemented in AIMSUN, version 6.1, evaluates
the performance of the signal plans that are measured by both our model and the
stationary joinimodel. We ran 50 simulation replicatigesich for an hour with a warm

up period of fifteen minutes. For each replication, we obtained an average trip travel
time. The cumulative distribution functions obtained from the 50 replications for both our

model and thstationary joinimodel are then compared.

4.1 Network

We considethe same tban road network studied dsorioand Wang2012) The
network, displayed in Figure-2, consists o0 singlelanes, with 4 intersections, each
with 2 endogenous phasddl west-bound links of the main artery are modeled jointly,
as are all eadtound links. All cross streets (noftound and soutbound) are modeled

independentlyExternal arrivals and external departures only occur at the boundaries of
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the networkwhere the blue circles ar€ustomergantravel along a single diction

without making any turns in the network.

—

Figure 4-1: Urban road network of single roads for the case study (Osorio and
Wang, 2012)

We considetwo demand scenarios in the network: medium demand and high demand

scenariosForthe mediumdemandscenariotheeastboundand westbound demands are

700 vehicles per houand the demands for cross streets differ. the high demand

scenarigtheeastboundand westbound demands increase to 900 vehicles per. hour

Details on the exact demand fmch scenario adisplayed in Table4.

Demand | West East South South North- North- South
scenario | bound bound bound1 bound?2 bound?2 bound3 | bound4
Medium 700 700 100 600 600 100 100
high 900 900 100 600 600 200 200

Table 4-1: Demand in vehicles per hour for the medium and high demand scenarios
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4.2 Problem formulation

We follow the sgnal control problem formulated in details@sorio and Bierlaire
(2009b).We briefly describe it her&Ve consider dixed-time control strategyor a
specifictime duration”Ywith time interval [0 b "Y and initial queudength
distributionof the each lang , whichareexogenous problem parameteiide strategy
uses information on thieansientqueuelength distributiorthroughout the entireme
interval of interestj(6 I "Y , to derive a fixed signal plaThesignal plans are
calculated offline and signalans for multiple integections are determined jointlihe
normalizedgreen time®f phases ofhe different intersections are the decision variables.
All other traditional control variables like the cytime, offsets and stage structure are

assumed fixed.

We introduce the followingotationfor the problem:
® availablecycle ratio of intersection
i saturation flow rate [veh/h];
@ Q green split of phase
() vector of minimal green splits;
! set of intersection indices
fl set of indices of the signalized lanes
‘Q set of phase indices of intersection
V «a setof phase indices of lahe
o] starting time of the intervalf interest
Y total duration of time interval of interest
n initial marginal queudength distributions of lank
W"Y vectorof time-dependenéndogenous queing variables (e.g.,
disaggregation probabilities)
o] vector ofexogenous queueirgarameters (e.g., extefrarival rate, space
capacities)

1 time step length
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The problem is formulated as follows:

i Ed "Yatw Yo
(31)
subject to
w i Q 'h
Ny
(32)
: oi 1A av flh
Ny
(33
QYW Yhy T
(34)
Y TH ®8
(39

The decision vectox consists of the green times for each phisgiation(32)in the
constraintensures that thavailable cycle time of each intersection are distributed
amongthe phases of the intersectid@yuation(33) in the constraits relates theesvice
rate of signalized quele to the saturation flow (set to 180 vehicles per hour) and to
thegreen spliof its phasesw8Equation (34) represents the equations for the-time
dependent queueing model that if solved yields the transient-tpragtd distribution of
the network. The queueing mod&depends on ime-dependent vector of endogenous
variablesw "Y, and a set of exogenogaeueparameter® as well as the decision vector
x. In Equation (39 of the constraintsthe endogenous quewuariables are subject to
positivity constraints andreensplits whavelower boundsvhich are set to 4 seconds
here (following the transportation norms VSS (19920 e objective function

o "Yaho "YR in Equation (31) represesithe expected trip travel time duritige

period 6 f®  "Y whichdepends o Y, uand the vector of green splits for each

phasen
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If we denotéO 0 as the expected number of vehicles in qugatethe end of time

interval Q andn 1 as the probability of link being full at the end of time

intervalQ thenthe expected travel time durinigscretetime interval’Q denoted

O "Yof'Ymhcan be approxi mated with Littlebs
B “O 0 s

6 u‘l‘{‘l", "YFI,)
Brn 1

(36)
where the summation @ 0 considers all queues in the network (queues are indexed
byi). Additionally 1 can be calculated from the marginal aggregate gueue

length distribution duringhe end otime intervalQfrom the following equation:

N 1T =p N 1

Lastly, he expected travel time during the entire simulation pedidd  “Y can be
approximated as

(37)

where | is the total number of time intervasd is equal te— —, assumingoth —

and— are integers.

The derivation o 0, on the other handk calculatedrom the disaggregatgueue
lengthdistribution of queuéuringend oftime interval’Q The disaggregate distribution
for an indvidually modeled queue is given frosolving the nonlinear systeat
equationsgiven in Ejuatiors (15) and (16}hat yield the rategh , at timeinterval Qand
plugging then ito equation (12) to get all disaggregate state probabilities of queue
during that time intervalAdditionally, themarginaldisaggregatgueuelength
distributionatend oftime intervalk for a jointly modeled queues givenfrom analyzing
the joint aggregate distribution of saktworki duringthe end of timentervalk, which

is done by first calculating thearginalaggregate distribution of queughen
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disaggregating similarly as theindividually modeledqueueapproa@h. To calculate the
expected number of vehicles in all queues of the netatoekd of time intervd{, we use

the following equation:

(38)
wheren 1 is the probability that queuas in disaggregate stateduring end of

time intervalQ

The difference between our formulation of the signal control problentherstiationary

model 6s formul at i on asfthattthe statieshangferraulatioc doest r o | pr
not depend on timfor any of the parameters abarel solves for the signal plans based

on stationary network informatioif he stationary formulation also includegueueing
modelconstrainthat is not timedependentQuP  mithat depends on the endogenous

parametery as well as the exogenous parameteirsor more detailsn the stationary
modelformulationand implementation detaitsf the signal control problem, we refer the

reader to chapter 4 of Osorio and Carter (2012).
4.3 Implementation Notes

The case study network (Figurel®is made up of 20 singlaneroads thaare modeled
as follows: two sets of firgueue networks modeled jointly, ah@ queues, whiclare

modeled individual} (not part of a joint network)

We assumempty initial queues foall queuesn the network. The time at which we
calculate the fixed signal plans istaseventyfive minutes (an hour and fifteen minutes
which, in the simulation models decomposed as a fifteen minute warmperiod and

one houw of further simulation)The time step used when calculating the transient gueue

length distributiorand signal plans settq 1.
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The initial signal planor the 8 phase variables (2 per intersectig®din our modeis

the optimalplanthat weget from a marginal model disssed in Osorio and Wang

(2012), the remaining endogenous variables are obtained by calculating the transient
gueuelength distribution of the jointly modeled queues, as wethasdividually

modeled queues. The set of @les is used as an initial feasible pdantthe signal

control problemwhi ch i s t hen s eslevtedod aulsg ofimgicohhhne ofifa ctthiev

solver of Matlab with constraint and function tolerance af andp 1t , respectively.

The effective serviceates' Hwre calculated fromduation (26) from the exogenous
service rateand the transient joint quedength distribution atimet. Thearrival rates_
are calculated fromdgiation (25) from the external arrival rates and transient joint

gueuelength distribution at time

In the signal control problem, we implement the expected number of vel@ales , for
each queuein the network duringnd oftime interval'Q from the marginal disaggregate

probabilities obtained from the transient models

4.4 Results

4.3.1Medium demand scenario

We present theuwrnulative distribution function () resultsfor the average travel time
displayed in Figure-2, for signalplans solved using ouradel andhe stationary joint
model We can see that the signal plessults from our method perforbetter than the
joint stationary moddbecause the cdf from our model is to the left of that from the

stationanjoint model
We ran a pairedtestat a99% confidence levelo test the hypothesis that the expected

travel time derived from our model is equal to that derived from the stationary joint

modelfor this scenarioThe mean of the paired differencenotediohis appraimately
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0.0768minutes.The standard deviation, denotddls approximately).0243minutes. For
the 50 observations, the pairetdst is given byHogg and Tanis (2006,486):

Hence, theest statistics of this experimentgsg p&8The null hypothesis is rejected
because the critical valueg 1 w ¢& g less than the value of the test statistic for

this experiment.

bedium Demand Scenanio

0.4+

0.6

Ernpirical odf F[z)

04+

0.3t

n.2t

— Transient Joink
— Stationary Jaint

1 1 1 T
DEI.EI 0.95 1 1.05 1.1 1.15
waverage bip trawel tirne [rmin]

Figure4-2:# $&6 0 1T £ OEA AOAOA CA melioE dmaddtésO A |
4.3.2High demand scenario

As wedid with the medium demand scenario, we present the adfges the average
travel time displayed in figure 2, for signal plansolved using our wdeland the
stationary joinimodel.Similarly, we can see that the signal plan results from our method

perform better thn the joint stationary model.
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We ran the same pairedést as the medium scenar a9 confidence levelto test
the hypothesis that the expected travel time derived from our model is equal to that
derived from the stationafgint model. The mean of the paired differemce
approximately0.0771minutes. The standadkviationis approximately0286minutes.
For the 50 observations, the test statistics of this experiméd8t0564 The null
hypothesis is rejected because thtoal value,0 3 T w ¢& Tig less than the value

of the test statistic for this experiment.

High Demand Scenario

n.st

07+

05t
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H.EIE 0.94 0.96 0.9% 1 1.02 1.04 1.06 1.08 1.1
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Chapter 5. Conclusions

In this research work, we derivaghalytical approximatiomodels forthetransient
gueuelength distributiorof a single M/M/1/K queuas wellas thetransienfoint queue
length distributiorfor atandemnetwork of three/M/1/K queuesn tandem Both
approximations were used to derive transienfoint queuelengthdistribution of ay
tandemnetwork sizeby decomposing theetworkinto overlapping-queue sub
networks The model desnotensure consistendyetween the marginal quetength
distributionsof overlapping queuesioweverthe model ensurensistency between the
aggregate transition rate probabilities of the same queues in differem¢sutrk. The
results in most caseshow accuracy between ouodeland results obtaingddom a
discrete evergimulabr. For cases when blocking occurs, we observe simil@ue
lengthdistribution trends betwearsults fromour model andesults fronthediscrete
eventsimulator In addition,accounting fothe transiengueuelength distribution of a
networkinstead of thetationaryqueuelengthdistributionof the same networgkhowed
better average travéip times wheraddressing signal control probleror both

medium andigh demandetworkscenaris.
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Appendix A: Transitionrate matrixfor the
threequeue tandemetwork

Matrix index From state To state Transition rate
(1,2) {0,0,0} {0,0,1} i
(1,4) {0,0,0} {0,1,0} i
(1,10) {0,0,0} {1,0,0} r
(2,1) {0,0,1} {0,0,0} “
(2,3) {0,0,1} {0,0,2} P
(2,5) {0,0,1} {0,1,1} r
(2,112) {0,0,1} {1,0,1} r
(3,2) {0,0,2} {0,0,1} ‘
(3,6) {0,0,2} {0,1,2} r
(3,12) {0,0,2} {1,0,2} r
(4,2) {0,1,0} {0,0,1} ‘O
(4,5) {0,1,0} {0,1,1} P
4,7 {0,1,0} {0,2,0} P
(4,13) {0,1,0} {1,1,0} i
(5,2) {0,1,1} {0,0,1} ‘1 op |
(5,3) {0,1,1} {0,0,2} o
(5,4) {0,1,1} {0,1,0} ‘O
(5,6) {0,1,1} {0,1,2} Cp |
(5,8) {0,1,1} {0,2,1} P
(5,14) {0,1,1} {1,1,1} r
(6,3) {0,1,2} {0,0,2} “p | O
(6,5) {0,1,2} {0,1,1} ‘'p O
(6,9) {0,1,2} {0,2,2} P
(6,15) {0,1,2} {1,1,2} i
(7,5) {0,2,0} {0,1,1} ‘
(7,8) {0,2,0} {0,2,1} i
(7,16) {0,2,0} {1,2,0} r
(8,5) {0,2,1} {0,1,1} ‘o
(8,6) {0,2,1} {0,1,2} |
(8,7) {0,2,1} {0,2,0} <
(8,9) {0,2,1} {0,2,2} P
(8,17) {0,2,1} {1,2,1} r
(9,6) {0,2,2} {0,1,2} ‘' p O
(9,8) {0,2,2} {0,2,1} ‘
(9,18) {0,2,2} {1,2,2} i
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(10,4) {1,0,0} {0,1,0} ‘|
(10,11) {1,0,0} {1,0,1} r
(10,13) {1,0,0} {1,1,0} p
(10,19) {1,0,0} {2,0,0} P
(11,5) {1,0,1} {0,1,1} <
(11,10) {1,0,1} {1,0,0} <
(11,12) {1,0,1} {1,0,2} P
(11,14) {1,0,1} {1,1,1} p
(11,20) {1,0,1} {2,0,1} P
(12,6) {1,0,2} {0,1,2} <
(12,11) {1,0,2} {1,0,1} *
(12,15) {1,0,2} {1,1,2} p
(12,21) {1,0,2} {2,0,2} P
(13,4) {1,1,0} {0,1,0} 0
(13,7) {1,1,0} {0,2,0} ||
(13,11) {1,1,0} {1,0,1} O
(13,14) {1,1,0} {1,1,1} p
(13,16) {1,1,0} {1,2,0} 0
(13,22) {1,1,0 {2,1,0 [
(14,5) {1,1,1} {0,1,1} 0
(14,8) {1,1,1} {0,2,1} N
(14,11) {1,1,1} {1,0,1} o
(14,12) {1,1,1} {1,0,2} N
(14,13) {1,1,1} {1,1,0} C
(14,15) {1,1,1} {1,1,2} o |
(14,17) {1,1,1} {1,2,1} 0
(14,23) {1,1,1} {2,1,1} P
(15,6) {1,1,2} {0,1,2} 0
(15,9) {1,1,2} {0.2,2} ||
(15,12) {1,1,2} {1,0,2} O |
(15,14) {1,1,2} {1,1,1} p
(15,18) {1,1,2} {1,2,2} 0
(15,24) {1,1,2} {2,1,2} [
(16,8) {1,2,0} {0,2,1} Y
(16,14) {1,2,0} {1,1,1} p
(16,17) {1,2,0} {1,2,1} 0 p
(16,25) {1,2,0} {2,2,0} P
(17.8) {1,2,1} {0,2,1} 0
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(17,9) {1,2,1} {0,2,2} |
(17,14) {1,2,1} {1,1,1} |
(17,15) {1,2,1} {1,1,2} 0
(17,16) {1,2,1} {1,2,0} C
(17,18) {1,2,1} {1,2,2} o
(17,26) {1,2,1} {2,2,1} P
(18,9) {1,2,2} {0,2,2} EY
(18,15) {1,2,2} {1,1,2} e
(18,17) {1,2,2} {1,2,1} p
(18,27) {1,2,2} {2,2,2} P
(19,13) {2,0,0} {1,1,0} ‘
(19,20) {2,0,0} {2,0,1} r
(19,22) {2,0,0} {2,1,0} r
(20,14) {2,0,1} {1,1,1} *
(20,19) {2,0,1} {2,0,0} "
(20,21) {2,0,1} {2,0,2} P
(20,23) {2,0,1} {2,1,1} 3
(21,15) {2,0,2} {1,1,2} *
(21,20) {2,0,2} {2,0,1} ‘
(21, 24) {2,0,2} {2,1,2} 2
(22,13) {2,1,0} {1,1,1} o
(22,16) {2,1,0} {1,2,0} ‘
(22,20) {2,1,0} {2,0,1} <
(22,23) {2,1,0} {2,1,1} p
(22,25) {2,1,0} {2,2,0} P
(23,14) {2,1,1} {1,1,1} o
(23,17) {2,1,1} {1,2,1} N
(23,20) {2,1,1} {2,0,1} p |
(23,21) {2,1,1} {2,0,2} O
(23,22) {2,1,1} {2,1,0} ]
(23,24) {2,1,1} {2,1,2} o |
(23,26) {2,1,1} {2,2,1} o
(24,15) {2,1,2} {1,1,2} 0
(24,18) {2,1,2} {1,2,2} ‘)
(24,21) {2,1,2} {2,0,2} 5 |
(24,23) {2,1,2} {2,1,1} p
(24,27) {2,1,2} {2,2,2} b
(25,19) {2,2,0} {2,0,0} e
(25,23) {2,2,0} {2,1,1} p
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(25,26) {2,2,0} {2,2,1} [
(26,17) {2,2,1} {1,2,1} ‘6 p |
(26,18) {2,2,1} {1,2,2} ‘0 |
(26,23) {2,2,1} {2,1,1} ‘' p 8 p |
(26,24) {2,2,1} {2,1,2} “p 8
(26,25) {2,2,1} {2,2,0} ‘]
(26,27) {2,2,1} {2,2,2} P
(27,18) {2,2,2} {1,2,2} e
(27,24) {2,2,2} {2,1,2} e
(27,26) {2,2,2} {2,2,1} ‘' p 6

The diagonaélements where not includes in the table above. The value of the diagonal
element is the negative sum of all elements in thatexxsept the diagonal
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