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We introduce an analytical model of the influence of paralyzable dead time on registered photon-correlation
functions. Distortions of correlation functions in the case of the Poisson point process, the doubly stochastic
Poisson point process, and the pairwise point process are calculated. The model permits the analysis of
detection systems with constant and random dead times. The results of the analytical model are tested by
computer simulation.
1. INTRODUCTION
One of the main distortion factors in measurements of
photon-correlation functions is event loss, which depends
on whether an event falls into a dead period. In a para-
lyzable system all events that occur within less than the
dead time of another event of the input process are lost.
In most papers that have dealt with distortions as the re-
sult of dead time, dead time has been considered constant
and the input process considered Poisson or associatively
with Poisson (e.g., see Refs. 1 and 2). Previous stud-
ies of correlation functions were not successful because
research on the first-order statistical quantities were
affected by the dead-time effects. Schatzel3,4 obtained
expressions for correlation functions in the case of a par-
alyzable constant and fluctuating dead times, but unfor-
tunately these expressions cannot be applied for random
dead time. Cho and Morris5 considered an expression
for the correlation function of a general renewal process
and derived an equation valid when dead time is greater
than twice the sample time.

The analysis of dead-time distortion in the case of ar-
bitrary processes and random dead time is difficult and
requires a more general mathematical model of point
processes6,7 and systems of measurement. We propose
such a model, which is developed in the framework of ar-
bitrary random point-process transformations.8

2. ANALYTICAL MODEL
A random point process in time and space can be de-
fined as a stochastic process that consists of a collection
of events (points). Each event has a well-defined time
and position. We denote the times when events occur as
z1, z2, . . . . The interval when a point process is regis-
tered is the counting interval G ­ fT1, T2g, T1 < z1 < z2 <

. . . < T2. An important quantity in the study of random
point processes is the probability-generating functional
(PGF). The PGF is defined as

Lfu, Gg ­

*
vY

j­1
f1 1 uszj dg

+
z , v

, (1)

where usz d is a trial function that is used as some formal
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parameter and k. . .lz ,v denotes averaging along the times
of occurrence of events and along the number v of points
in G.

The characteristics of random point processes can
be obtained from symmetric probability densities
pkst1, . . . , tk; Gd, k ­ 0, 1, . . . , which denote the probabil-
ity of the appearance of exactly k events in the counting
interval G at moments t1, . . . , tk. Using averaging along
the times of occurrence and the number of points in G,
we can rewrite Eq. (1) as

Lfu; Gg ­
X̀
k­0

1
k!

Z
G

pkst1, . . . , tk; Gd

3

kY
j­1

f1 1 ustj dgdt1 . . . dtk . (2)

We then use functional differentiation to obtain the
densities from the PGF,9 so

dLfu; Gg
dust1d

­

(
d

dl
Lfus?d 1 lds? 2t1d; Gg

)É
l­0

, (3)

dLifu; Gg
dust1d . . . dustid

­
d

dustid

(
dLi21fu; Gg

ust1d . . . dusti21d

)
, (4)

where dsxd is the Dirac delta function.
Applying Eqs. (3) and (4) to Eq. (2), we have

dLifu; Gg
dust1d . . . dustid

­
X̀
k­i

ksk 2 1d . . . sk 2 i 1 1d
k!

3
Z

G
pkst1, . . . , ti, ti11, . . . , tk; Gd

3

kY
j­i11

f1 1 ustj dgdti11 . . . dtk . (5)

If we then put us?d ­ 21 into Eq. (5), we obtain

pist1, . . . , tid ­
diLfu; Gg

dust1d . . . dustid

É
us?d­21

, i ­ 1, 2, . . . .

We can introduce other systems with probability densi-
ties based on the PGF. One of the most important sys-
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tems can be defined as the ith-order functional derivative
of Lfu; Gg when us?d ­ 0 (Refs. 8 and 9):

fist1, . . . , tid ­
diLfu; Gg

dust1d . . . dustid

É
us?d­0

, i ­ 1, 2, . . . ,

(6)

where the first derivative f1st1d is intensity and the second
derivative f2st1, t2d is the correlation function.

Let us consider input photoevents as an arbitrary point
process A with the PGF Lfv; Gg. Bsxd is a dead-time
distribution function of a paralyzable detection system.
Events of input processes A occur at t1, t2, . . . ; events of
recording process C occur at times t1, t2, . . . . Moreover,
we consider process Q, in which the moments x1, x2, . . .
describe the ends of dead-time intervals. The counting
intervals of process A and C are the same and are equal
to G ­ fT1, T2g. The counting interval for process Q is
X ­ fT1, `d.
The PGF of moments st1, t2, . . .d, st1, t2, . . .d, and
sx1, x2, . . .d can be represented as
Lfv; G; u; G; w; Xg ­
X̀
k­0

1
k!

Z
Gk

Z
Xk

pkst1, . . . , tk; Gd
kY

j­1
f1 1 vstj dg f1 1 wsxj dg

3 LC
j2kfu; G j t1, . . . , tk, x1, . . . , xkgdBsx1 2 t1d . . . dBsxk 2 tkddt1 . . . dtk , s7d
where vs?d, us?d, and ws?d are trial functions of processes
A, C, and Q; LC

j2kfu; G j t1, . . . , tk, x1, . . . , xkg is the PGF
of process C, provided that exactly k events appear at
moments t1, . . . , tk, and the corresponding dead-time in-
tervals finish at moments x1, . . . , xk.

The set of events of process C is almost the same as the
set of process A, with the exception of events that appear
in dead-time intervals. Therefore for process C we must
remove from the set of photoevents that occur at t1, . . . , tk

all events that belong to area G 0, where G 0 is defined by

G 0 ­
k[

m­1
stm, xmg . (8)

The set of remaining events will represent process C.
We can remove events by transformating the trial func-

tion to zero in area G 0. Hence we can find

LC
j2kfu; G j t1 , . . . , tk, x1, . . . , xkg

­
kY

j­1

f1 1 ustj dgjustd­0,t[G 0 . (9)

We substitute Eq. (9) into Eq. (7) and assume that vs?td ­
ws?d ­ 0, so the PGF of process C takes the form
LC fu; Gg ­
X̀
k­0

1
k!

Z
Gk

Z
Xk

pkst1, . . . , tk; Gd

3

kY
j­1

8<:1 1 ustj d
kY

m­1
mfij

fustm 2 tj d 1 ustj 2 xmdg

9=;dBsx1 2 t1d . . . dBsxk 2 tkddt1 . . . dtk ,

usxd ­

(
0 x , 0
1 x > 0

. s10d
From Eq. (10) we can obtain the characteristics of a
photoevent process after a detection system with paralyz-
able dead time. The output photoevent intensity is the
first functional derivative of Eq. (10), whereas the correla-
tion function is the second functional derivative of Eq. (10)
when us?d ­ 0.

The first functional derivative of Eq. (10) is given by
Eq. (3):
dLCfu; Gg
dust1d

­
X̀
k­1

k
k!

Z
Gk21

Z
Xk

pkst1, . . . , tk21, t1; Gd

3

k21Y
j­1

8<:1 1 ustj d
k21Y
m­1
mfij

fustm 2 tj d 1 ustj 2 xmdg fust1 2 tj d 1 ustj 2 xkdg

9=;
3

k21Y
m­1

fustm 2 td 1 ust1 2 xmdgdBsx1 2 t1d . . . dBsxk21 2 tk21ddBsxk 2 t1ddt1 . . . dtk21 . s11d

Substituting us?d ­ 0 into Eq. (11), we obtain in accor-
dance with Eq. (5)

fC
1 st1d ­

X̀
k­1

k
k!

Z
Gk21

pkst1, . . . , tk21, t1; Gd

3
Z

Xk

k21Y
m­1

fustm 2 t1d 1 ust1 2 xmdgdBsx1 2 t1d . . . dBsxk21 2 tk21ddBsxk 2 t1ddt1 . . . dtk21

­
X̀
k­1

k
k !

Z
Gk21

pkst1, . . . , tk21, t1; Gd
k21Y
m­1

fustm 2 t1d 1 Bst1 2 tmdgdt1 . . . dtk21 . s12d
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Based on Eq. (5), we can rewrite Eq. (12) as

fC
1 st1d ­

dLfv; Gg
dvst1d

É
vs?d­us?2t1d1Bst12?d21

. (13)

The second functional derivative of Eq. (10) is obtained
by differentiation of Eq. (12):
d2LCfu; Gg
dust1ddust2d

­
X̀
k­2

ksk 2 1d
k!

Z
Gk22

Z
Xk

pkst1, . . . , tk22, t1, t2; Gd

3

k22Y
j­1

(
1 1 ustj d

k22Y
m­1
mfij

fustm 2 tj d 1 ustj 2 xmdgfust1 2 tj d 1 ustj 2 xk21dgfust2 2 tj d 1 ustj 2 xkdg

)

3

k22Y
m­1

fustm 2 t1d 1 ust1 2 xmdgfust2 2 t1d 1 ust1 2 xkdg
k22Y
m­1

fustm 2 t2d 1 ust2 2 xmdg

3 fust1 2 t2d 1 ust2 2 xk21dgdBsx1 2 t1d . . . dBsxk22 2 tk22ddBsxk21 2 t1ddBsxk 2 t2ddt1 . . . dtk22 . s14d
Substituting us?d ­ 0 into Eq. (14) yields

f C
2 st1, t2d ­

d2LCfu; Gg
dust1ddust2d

É
us?d­0

­
X̀
k­2

ksk 2 1d
k!

Z
Gk22

pkst1, . . . , tk22, t1, t2; Gd

3

k22Y
m­1

(Z
X

fustm 2 t1d 1 ust1 2 xmdg

3 fustm 2 t2d 1 ust2 2 xmdgdBsxm 2 tmd

)
3 fust2 2 t1d 1 Bst1 2 t2dg

3 fust1 2 t2d 1 Bst2 2 t1dgdt1 . . . dtk22 . (15)

If we suppose that t2 > t1, then

fC
2 st1, t2d ­ Bst2 2 t1d

X̀
k­2

ksk 2 1d
k!

3
Z

Gk22
pkst1, . . . , tk22, t1, t2; Gd

3

k22Y
m­1

fustm 2 t2d 1 ustm 2 t1dBst2 2 tmd

1 Bst1 2 xmdgdt1 . . . dtk22 . (16)

Then, using Eq. (5), we can rewrite Eq. (16) as

f C
2 st1, t2d ­ Bst2 2 t1d

d2Lfv; Gg
dvst1ddvst2d

É
us?d

­ us? 2 t2d 1 us? 2 t1dBst2 2 ?d 1 Bst1 2 ?d 2 1 .

(17)

Equation (17) is our main result in the analysis of the
influence of paralyzable dead-time on PCF’s. It should
be noted that Eq. (17) can be applied to any input process
and to any distribution function of dead time.
3. APPLICATIONS
We evaluated our result in Eq. (17) by analyzing three dif-
ferent types of point process: the Poisson point process,
the doubly stochastic Poisson point process (DSPP), and
the pairwise point process.

The DSPP can be used as a mathematical model of
photoevents in the case of registration of laser radiation.
The PGF of the DSPP is10
Lfv, Gg ­

*
exp

Z
G

jstdvstddt

+
j

, (18)

where k. . .lj is the averaging along the realization of the
stochastic process jstd; jstd > 0 for t [ G.

By application of Eqs. (3) and (4) to Eq. (18) we have

d2Lfv; Gg
dvst1ddvst2d

­

*
jst1djst2dexp

Z
G

jstdvstddt

+
j

. (19)

From Eq. (17) one can obtain

f C
2 st1, t2d ­ Bst2 2 t1d

*
jst1djst2dexp

Z
G

jstdfBst1 2 td

1 Bst2 2 tdust 2 t1d 1 ust 2 t2d 2 1gdt

+
j

. (20)

When T1 ­ 2` for a stationary process, Eq. (20) can be
rewritten as

f C
2 std ­ Bstd

*
js0djstdexp

(
2

Z 0

2`

jstdf1 2 Bs2tdgdt

2
Z t

0
jstdf1 2 Bst 2 tdgdt

)+
j

. (21)

In particular, the Poisson point process is a DSPP
with deterministic function jstd, which coincides with the
point-process intensity f1std. The Poisson point process
serves as the representation of photocount time sequences
when laser radiation of constant intensity is detected.
It is known that for the Poisson point process the cor-
relation function is f2st1, t2d ­ f1st1df1st2d, but, according
to Eq. (20), the correlation function of the Poisson point
process after a detection system with paralyzable dead
time can be expressed as

fC
2 st1, t2d ­ f1st1df1st2dBst2 2 t1d

3 exp

(
2

Z t1

T1

f1stdf1 2 Bst1 2 tdgdt

)

3 exp

(
2

Z t2

t1

f1stdf1 2 Bst2 2 tdgdt

)
. (22)
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A DSPP can also represent the photoevents in the case
of registration of laser radiation that is generated when
a laser is running above threshold.11 For this random
point process jstd is a Gaussian stochastic process with
mean f1std and covariance function g2st1, t2d. This point
process is called a pairwise correlated point process, and
its PGF is given by12

Lfv, Gg ­ exp

"Z
G

f1stdvstddt

1
1
2

ZZ
G2

g2st1, t2dvst1dvst2ddt1dt2

#
, (23)

where g2st1, t2d ­ f2st1, t2d 2 f1st1df1st2d.
To obtain the correlation function of the registered

process we take a second functional derivative of the PGF
[Eq. (23)], which can be represented as

d2Lfv; Gg
dvst1ddvst2d

­ exp

"Z
G

f1stdvstddt

1
1
2

ZZ
G2

g2st1, t2dvst1dvst2ddt1dt2

#

3

("
f1st1d 1

Z
G

g2st1, tdvstddt

#

3

"
f1st2d 1

Z
G

g2st2, t0 dvst0 ddt0

#

1 g2st1, t2d

)
. (24)
Then we use the substitution from vstd to Bst1 2 td 1

Bst2 2 td1st 2 t1d 1 1st 2 t2d 2 1 and take into account
that for t [ fT1, t1g the function ust 2 t1d equals zero and
for t [ st1, t2g the distribution functions Bst1 2 td ­ 0 and
Bst2 2 tdust 2 t1d ­ Bst2 2 td. We obtain
fC
2 st1, t2d ­ Bst2 2 t1dexp

(Z t1

T1

f1stdfBst1 2 td 2 1gdt 1
Z t2

t1

f1stdfBst2 2 td 2 1gdt 1
Z t1

T1

Z t1

t1

g2st1, t2d

3 fBst1 2 t1d 2 1g fBst1 2 t2d 2 1gdt1dt2 1
Z t1

T1

Z t2

t1

g2st1, t2dfBst1 2 t1d 2 1g fBst2 2 t2d 2 1gdt1dt2

1
Z t2

t1

Z t2

t1

g2st1, t2dfBst2 2 t1d 2 1g fBst2 2 t2d 2 1gdt1dt2

) 0B@
0B@
0B@(

f1st1d 1
Z t1

T1

g2st1, tdfBst1 2 td 2 1gdt

1
Z t2

t1

g2st1, tdfBst2 2 td 2 1gdt

) (
f1st2d 1

Z t1

T1

g2st2, tdfBst1 2 td 2 1gdt

1
Z t2

t1

g2st2, tdfBst2 2 td 2 1gdt

)
1 g2st1, t2d

1CA
1CA
1CA . s25d
Equation (25) allows us to calculate the influence of the
detection system with arbitrary paralyzable dead time on
the correlation function of the pairwise point process.

If the dead time is constant and equal to Tm, we can
write the distribution function as

Bstd ­

(
1 t > Tm

0 t , Tm

, (26)

and for stationary pairwise point process with intensity
C we can obtain

fC
2 std ­ 1st 2 Tmdexp

(
22CTm 1 2

Z Tm

0
sTm 2 zdg2szddz

1
Z Tm

0
zfg2sz 1 t 2 Tmd 1 g2sz 1 tdgdz

)

3

("
C 1

Z Tm

0
g2szddz 1

Z Tm

0
g2sz 2 tddz

#

3

"
C 1

Z Tm

0
g2szddz 1

Z Tm

0
g2sz 1 tddz

#

1 g2std

)
. (27)

In photon-correlation experiments it often can be as-
sumed that f1std ­ C and g2std ­ X exps2Y td.13,14 In
this case we can rewrite Eq. (27) as
fC
2 std ­ 1st 2 Tmdexp

(
22CTm 1

2X
Y 2

fexps2YTmd 1 YTm 2 1g 2
XTm

Y
fexps2Ytd 1 exps2Yt 2 YTmdg

1
X
Y2

fexps2Yt 1 YTmd 2 exps2Y t 2 YTmdg

)√√√(
C 1

X
Y

fexps2YTmd 2 1g f1 2 exps2YTmdg

)

3

(
C 1

X
Y

fexps2YTmd 2 1g f1 1 exps2Ytdg

)
1 X exps2Ytd

!!!
.

For a random dead time with the distribution function
Bstd ­ 1 2 exps2Atd, the correlation function of the pair-
wise point process can be expressed as
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fC
2 std ­ f1 2 exps2Atdgexp

(
C
A

fexps2Atd 2 2g 1
X

Y2 2 A2 fexps2Atd 2 exps2Ytdg 1
X

Y 2 A
1

2A
f2 2 exps22Atdg

1
1

Y 1 A
fexps2At 2 Ytd 2 2g

) √√√(
C 2

X
Y 1 A

1
X

Y 2 A
fexps2Ytd 2 exps2Atdg

)

3

(
C 2

X
Y 1 A

f1 1 exps2Ytd 2 exps2At 2 Ytdg

)
1 X exps2Ytd

!!!
.

4. SIMULATION EXPERIMENTS
Previously we developed a simulation system for correla-
tion analysis15 in which we tested our analytical model of
paralyzable dead-time distortions for the correlation func-
tion of a pairwise point process. The experiments were
done when f1std ­ 4 and g2std ­ 6 exps24td. In Fig. 1

Fig. 1. Correlation function f sid ­ f2std distorted by a detection
system with constant paralyzable dead time Tm. The results
of the simulation experiments are marked by asterisks.
The calculated data are represented by solid curves. The
width of channel is h ­ 0.02, f1std ­ 4, g2std ­ 6 exps24td,
f2std ­ 16 1 6 exps24td, and t ­ ih.

Fig. 2. Correlation function f sid ­ f2std distorted by a de-
tection system with random paralyzable dead time. The
distribution function Bstd ­ 1 2 exps2Atd. The results of the
simulation experiments are marked by asterisks. The calcu-
lated data are represented by solid curves. The width of channel
h ­ 0.02, f1std ­ 4, g2std ­ 6 exps24td, f2std ­ 16 1 6 exps24td,
and t ­ ih.
we introduce the results of experiments with a constant
dead time Tm. In Fig. 2 the dead time is random with
a distribution function Bstd ­ 1 2 exps2Atd. For this
Bstd the average dead time is 1yA. The solid curves are
the calculated curves, and the asterisks represent corre-
lation functions that were obtained in simulation experi-
ments. The number of realizations in each case is 103

and the width of the channel is 0.02, with all data in
relative units. The simulated values are in good agree-
ment with the calculated curves. These results support
our conclusion that paralyzable dead-time distortions of
photon-correlation functions can be calculated by use of
the analytical model derived in Section 2.
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