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We introduce an analytical model of the influence of paralyzable dead time on registered photon-correlation
functions. Distortions of correlation functions in the case of the Poisson point process, the doubly stochastic
Poisson point process, and the pairwise point process are calculated. The model permits the analysis of

detection systems with constant and random dead times.

computer simulation.

1. INTRODUCTION

One of the main distortion factors in measurements of
photon-correlation functions is event loss, which depends
on whether an event falls into a dead period. In a para-
lyzable system all events that occur within less than the
dead time of another event of the input process are lost.
In most papers that have dealt with distortions as the re-
sult of dead time, dead time has been considered constant
and the input process considered Poisson or associatively
with Poisson (e.g., see Refs. 1 and 2). Previous stud-
ies of correlation functions were not successful because
research on the first-order statistical quantities were
affected by the dead-time effects. Schatzel>* obtained
expressions for correlation functions in the case of a par-
alyzable constant and fluctuating dead times, but unfor-
tunately these expressions cannot be applied for random
dead time. Cho and Morris® considered an expression
for the correlation function of a general renewal process
and derived an equation valid when dead time is greater
than twice the sample time.

The analysis of dead-time distortion in the case of ar-
bitrary processes and random dead time is difficult and
requires a more general mathematical model of point
processes®’ and systems of measurement. We propose
such a model, which is developed in the framework of ar-
bitrary random point-process transformations.®

2. ANALYTICAL MODEL

A random point process in time and space can be de-
fined as a stochastic process that consists of a collection
of events (points). Each event has a well-defined time
and position. We denote the times when events occur as
{1, {2, .... The interval when a point process is regis-
tered is the counting interval G = [Ty, Te], Th < &1 < L <

.<T,. An important quantity in the study of random
point processes is the probability-generating functional
(PGF). The PGF is defined as

Jj=1

Liw, G]= < [0+ u<zj>]> : )
{,v

where u({) is a trial function that is used as some formal
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The results of the analytical model are tested by

parameter and (...);, denotes averaging along the times
of occurrence of events and along the number v of points
in G.

The characteristics of random point processes can
be obtained from symmetric probability densities
mr(t1, ..., te; G), k=0, 1, ..., which denote the probabil-
ity of the appearance of exactly % events in the counting
interval G at moments ¢4, ..., ;. Using averaging along
the times of occurrence and the number of points in G,
we can rewrite Eq. (1) as

. |
He G- 3 g [ om0 6)
k
X [T0L + wpldt, ... de. 2)
j=1

We then use functional differentiation to obtain the
densities from the PGF,° so

0L[u;G] _ | 6 ;0 C ) :
Toult) { 5 Liu(-) + A8( t1),G]] - 3)
8L u; G] 8 SLi u; G] ) @
Sulty)...ou(t;) Suty)| u(ti)...ou(ti—1)

where 6(x) is the Dirac delta function.
Applying Egs. (3) and (4) to Eq. (2), we have

SLu; Gl i Rk —1)...(k—i+1)
dult))...dult;y) & k!

X f 7Tk(t1a cees bis b1y oeny R G)
G
k
X [T [0+ u)ldtivr...dtx.  (5)
j=i+1

If we then put u(-) = —1 into Eq. (5), we obtain

it ) = — O Gl

" Sulty)...oult) i=52....

u(*)=-1

We can introduce other systems with probability densi-
ties based on the PGF. One of the most important sys-
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tems can be defined as the ith-order functional derivative
of L[u; G] when u(:) = 0 (Refs. 8 and 9):

&'Llu; G]

—Su(tl) Sut) i=12,...,

filty, ..., t;) =

6)

where the first derivative f1(¢1) is intensity and the second
derivative f5(t, t2) is the correlation function.

Let us consider input photoevents as an arbitrary point
process A with the PGF L[v; G]. B(x) is a dead-time
distribution function of a paralyzable detection system.
Events of input processes A occur at #1, ¢, ...; events of
recording process C occur at times 71, 72, .... Moreover,
we consider process Q, in which the moments x1, xs, ...
describe the ends of dead-time intervals. The counting
intervals of process A and C are the same and are equal
to G = [T1, Ts]. The counting interval for process Q is
X = [Tl, 90).

= 1
Lu; G]=kZ=0 7 ka ka (71, ..., Ty G)

k k
X l_[ {1 + u(r;) l_[ [6(rm — 7)) + 0(1; — xm)]} dB(x1 — 71)...dB(x, — 7)d7...d7s,

Jj=1
m#j

0 x<0'
1 x=0

0(x) ={

The PGF of moments (71, 79, ...), (¢1, to, ..
(x1, X2, ...) can be represented as

), and
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set of process A, with the exception of events that appear
in dead-time intervals. Therefore for process C we must
remove from the set of photoevents that occur at 74, ..., 7
all events that belong to area G', where G’ is defined by

k
= U (Tms Xm]. (8)
m=1

The set of remaining events will represent process C.
We can remove events by transformating the trial func-

tion to zero in area G'. Hence we can find

Lf’;k[u; Gl ...

,Tk,.?Cl,...,Xk]

%
= l_[ [1 + w(r)lun=0recr - (9)
j-1

We substitute Eq. (9) into Eq. (7) and assume that v(-¢) =
w(-) = 0, so the PGF of process C takes the form

(10)

From Eq. (10) we can obtain the characteristics of a
photoevent process after a detection system with paralyz-

E3 1 k
1o G5 Grus X1 = 5o [ f e m @) [T+ o+ wtey)

C
X L|2k[u;G|71,

s Thy X1, v vy

xk]dB(xl - 7'1) ..

.dB(xkak)dn...di, (7)

where v(-), u(-), and w(-) are trial functions of processes
A, C, and Q; Li[u; G| 11, ..., Thy X1, -.., %] is the PGF
of process C, provided that exactly 2 events appear at
moments 71, ..., 7z, and the corresponding dead-time in-

able dead time. The output photoevent intensity is the
first functional derivative of Eq. (10), whereas the correla-
tion function is the second functional derivative of Eq. (10)
when u(-) = 0.

The first functional derivative of Eq. (10) is given by
Eq. 3):

tervals finish at moments xq, ..., x.
The set of events of process C is almost the same as the
S8LC 8L u; G] _

6u(t1)
- k-1

X ]‘[ {1 +u(ry) []16(r,
Jj=1 nl

k-1
x [0 —t) + 6(ta
m=1

k
o kU Jare

fL(t) =

Mz

(71, ...
1

— xm)]dB(x1 — 11)...

y Th-1, t1; G)

Z k' ka 1[ k(le-'-ka 1, l1; G)

—7;)+ 0(r; — x,)1[0(1 — 1) + 0(7; — xk)]}

dB(xk_1 - Tk_l)dB(xk - tl)dTl .. .d’Tk_l . (11)

Substituting u(-) = 0 into Eq. (11), we obtain in accor-
dance with Eq. (5)

k—1
X ka l_[ [0(7’," tl) + 6(t1 - xm)]dB(x1 - Tl). ..dB(xk,l - kal)dB(xk - tl)dTl ...d’kal

m=1

(71, ...

- k
=Z_'
k=1

S

>~

Gh-1

k-1
, o1, 113 G) [ [6(r —
m=1

t1) + Bty — m)ld7y .. d7pq. 12)
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Based on Eq. (5), we can rewrite Eq. (12) as

8L[v; G]

u(ty) (13)

i) =

v()=0(-—t1)+B(t1—)-1

The second functional derivative of Eq. (10) is obtained
by differentiation of Eq. (12):
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3. APPLICATIONS

We evaluated our result in Eq. (17) by analyzing three dif-
ferent types of point process: the Poisson point process,
the doubly stochastic Poisson point process (DSPP), and
the pairwise point process.

The DSPP can be used as a mathematical model of
photoevents in the case of registration of laser radiation.
The PGF of the DSPP is!®

Sult)oults)

82L°Mu; G] & h(k—1) .
TS kzé T [G’”Z ka Th(T1, ooy Thog, By, B2; G)
R-2

k-2
X l_[{l + u(r;) l_[ [6(7m, —
j=1 mel

m#j

k=2

7i) + 0(1; — x) [0 — 75) + 0(7; — xp-)|[0(t2 — 75) + 6(7; — xk)]}

k—2
X [110Gn —t1) + 0t — x)][0(t2 — t1) + 6(t — 2)] [ | [0(rm — t2) + 6(t2 — 2]
m=1 m=1

X [G(tl - tz) + G(tz - xkfl)]dB(xl - 7'1). . .dB(xkfz - kag)dB(xkfl - tl)dB(xk - tz)dTl .. .di72 . (14)

Substituting u(-) = 0 into Eq. (14) yields

82L u; G
Clt, tg) = ——2——=
Faln )= Suaneute) |,
— k(k—1
= Z kG — 1) 7! ) f Tr(T1, - ooy Th-2, t1, t2; G)
k=2 : Gh-2

k-2
x ,,1:[11 fx[e(m — )+ 0t — 2]

X ['9(7-m - tZ) + 0(t2 - xm)]dB(-xm - Tm)

X [0(ty — t1) + B(ty — t2)]
X [ﬁ(tl - tz) + B(tz — tl)]dTl .. .d’Tk_z . (15)

If we suppose that ¢, = ¢, then

St ta) = Blts — 1) > %
k=2 !

X f 7Tk(7-17 cees TR—2, t17 t2§ G)
Gk—2

k-2
X [116(rn = t2) + 6(r, — t1)B(ts — 7,0)
m=1

+ B(tl - xm)]dTl...di_Q. (16)
Then, using Eq. (5), we can rewrite Eq. (16) as

8%2L[v; G]

Su(t1)du(ts) |,
=0(—ty) +6(—t1)B(tg — )+ B(¢; —-) — 1.
amn

fzc(tl, ts) = Btz — t1)

Equation (17) is our main result in the analysis of the
influence of paralyzable dead-time on PCF’s. It should
be noted that Eq. (17) can be applied to any input process
and to any distribution function of dead time.

Liv,G]= <exp/ §(T)v(7')d7'> ’ (18)
G
3
where (...)¢ is the averaging along the realization of the
stochastic process £(t); £(¢) = 0 for t € G.
By application of Egs. (3) and (4) to Eq. (18) we have

8%L[v; G] .
So)o0ts) <§(t1)§(t2)exp fG §("r)v(”r)d7>§ 19

From Eq. (17) one can obtain
fs (t1, ta) = Blts — t1)<§(t1)§(tz)eXp fG EN[B(t — 7)

+ Bty — 7)0(1 — t1) + 0(1 — tg) — 1]d7’> - (20)
I3

When T; = —« for a stationary process, Eq. (20) can be
rewritten as

0
£ = B(r)<§(0)§(r>exp| -[ et - B-az

- [0 Tf(t)[lB(Tt)]dtD : 1)

&

In particular, the Poisson point process is a DSPP
with deterministic function £(¢), which coincides with the
point-process intensity f1(¢). The Poisson point process
serves as the representation of photocount time sequences
when laser radiation of constant intensity is detected.
It is known that for the Poisson point process the cor-
relation function is f3(¢1, t2) = f1(¢1)f1(¢2), but, according
to Eq. (20), the correlation function of the Poisson point
process after a detection system with paralyzable dead
time can be expressed as

fS(t, ta) = f1(t)f1(t2)B(tz — t1)

x exp{ - le £1(0[1 - Bty — T)]dt]

X exp{ —f 2fl(r)[l — B(ty — T)]dt] - (22)
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A DSPP can also represent the photoevents in the case
of registration of laser radiation that is generated when
a laser is running above threshold.!! For this random
point process £(¢) is a Gaussian stochastic process with
mean [(¢) and covariance function gy(¢1, ¢2). This point
process is called a pairwise correlated point process, and
its PGF is given by'?

Liv, G] = exp{ fG fi(m)v(r)dr

1
w5 [[ e Tz)v(ﬁ)v(rz)dﬁdfz}, @3)

where g2(71, 72) = fa(71, 72) — f1(71)f1(72).

To obtain the correlation function of the registered
process we take a second functional derivative of the PGF
[Eq. (23)], which can be represented as

8%L[v; G] r
Suleoue) ~ | [ Aitmtar
+ % [fGZ g2(7'1; Tz)U(Tl)U(Tz)dTldTZ:|

fi(t) + fG ga(t1, T)U(T)dTi|

X

—_—

x [fm) " fG ga(ts, w)v(r’)dr'}

+ galty, tz)} : (24)

E(r) =1z - Tm)exp{ —-2CT,, + 2Y—)§ [exp(=YT,,) + YT,, — 1] —
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Equation (25) allows us to calculate the influence of the
detection system with arbitrary paralyzable dead time on
the correlation function of the pairwise point process.

If the dead time is constant and equal to T',,, we can
write the distribution function as

1 r=T,

0 r<T,’ (26)

B(r) ={

and for stationary pairwise point process with intensity
C we can obtain

Tm
fzc(r) =1(r — Tm)expl —-2CT,, + 2[ (T, — 2)ga2(2)dz
0
Tm
+ / z[go(z + 7 —T),) + go(z + T)]dZ]
0

Tm Tm
|:C + fo go(z)dz + fo go(z — T)d2:|

Tm Tm
X |:C + go(2)dz + go(z + T)dz}
0 0

X

+ gz(T)} : 27)

In photon-correlation experiments it often can be as-
sumed that f1(¢) = C and gu(7) = X exp(—-Y7).13% 1In
this case we can rewrite Eq. (27) as

XT,,
Y

[exp(=Y7) + exp(=Y T — YT,)]

+ % [exp(=Y 7+ YT,,) — exp(=Y 1 — YTm)]] (iC + % [exp(=YT,,) — 1][1 — exp(—YT,,)]

X QC + %[exp(—YTm) - 1][1 + exp(—YT)]} + X exp(—YT)) .

Then we use the substitution from v(r) to B(¢; — 7) +
Bty — 7)1(7 — t1) + 1(7 — t3) — 1 and take into account
that for 7 € [T, ¢1] the function 6(7 — #;) equals zero and
for 7 € (¢1, t2] the distribution functions B(¢; — 7) = 0 and
B(to — 7)0(7 — t1) = B(ty — 7). We obtain

For a random dead time with the distribution function
B(7) =1 — exp(—Ar), the correlation function of the pair-
wise point process can be expressed as

£S(tr, ta) = Blts mexpl [Tlflm[B(tl — ) - 1dr 4 f * Bt — 1) — 1dr + le f " ga(r )

X [B(ty — 71) — 1][B(tr — 75) — 1ldrydry + fT [ galr, Bty — 1) — 1][B(ts — 75) — 1dridrs

+ f ’ f " gar1, 7)[Blts — 1) — 1][Blts — 1) — l]dTlde] (| Fulty) + f " golts, Bty — 7) — 1dr
i1 T1 T1

+ [ ater, Bl - ) - 1Jder1<t2) + [ gotes, Bl - ) - Tlar
t1 T

+ f  galta, Bty — 1) - udr} T gty tz)) :

(25)
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Sy =[1- exp(—AT)]expl % [exp(—AT) — 2] + v _ Az

X

YiA[exp( AT —Yr) — 2]] ({

[exp( A7) —exp(—=Y7)] +

X
Y+AYA
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X
Y - A2A

[2 — exp(—2A7)]

[exp(—=Y7) — exp(— AT)]’

X {C YX 1 [1+ exp(=Y7)— exp(—A7 — YT)]] +X exp(—YT)) .

4. SIMULATION EXPERIMENTS

Previously we developed a simulation system for correla-
tion analysis!® in which we tested our analytical model of
paralyzable dead-time distortions for the correlation func-
tion of a pairwise point process. The experiments were

done when f;(¢) = 4 and gy(7) = 6 exp(—47). In Fig. 1
25.0 3
72520.0 4
N -
- ]
g E
5 15.0 3 Tn=0.005
(6] 3
e 3]
= 3
- 3
o 10.0 3 T.=0.05
o ]
= 3
o 3 T=0.1
8 5.0
— ]
Q E
© 3 MWMW@EF&%
0.0 LARRRSEE ST T T y
(o] 10 20 30 40 50

Channel 1|

Fig. 1. Correlation function (i) = f2(r) distorted by a detection
system with constant paralyzable dead time T),. The results
of the simulation experiments are marked by asterisks.
The calculated data are represented by solid curves. The
width of channel is A = 0.02, f1(¢) = 4, ga(7) = 6 exp(—47),
fo(7) = 16 + 6 exp(—47), and 7 = ih.
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Fig. 2. Correlation function f(i) = fo(r) distorted by a de-
tection system with random paralyzable dead time. The
distribution function B(7) = 1 — exp(—A7). The results of the
simulation experiments are marked by asterisks. The calcu-
lated data are represented by solid curves. The width of channel
h=0.02, f1(t) = 4, g2(7) = 6 exp(—47), fa(r) = 16 + 6 exp(—47),
and 7 = ih.

we introduce the results of experiments with a constant
dead time T,,. In Fig. 2 the dead time is random with
a distribution function B(7) = 1 — exp(—Ar). For this
B(7) the average dead time is 1/A. The solid curves are
the calculated curves, and the asterisks represent corre-
lation functions that were obtained in simulation experi-
ments. The number of realizations in each case is 10°
and the width of the channel is 0.02, with all data in
relative units. The simulated values are in good agree-
ment with the calculated curves. These results support
our conclusion that paralyzable dead-time distortions of
photon-correlation functions can be calculated by use of
the analytical model derived in Section 2.
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