Strangeness Contributions to the Nucleon Vector Form-Factors: Results from HAPPEX–III

Mark Dalton

for the HAPPEX Collaboration

PANIC Conference, MIT
July 25, 2011
Strange Quarks in the Nucleon

Strange quarks exist in the nucleon at short distance scales.

How do they influence the interactions of the nucleon?

Momentum ~ 4%

\[\int_0^1 x (s + \bar{s}) dx \]

Mass 0-30%

\[\langle N | s \bar{s} | N \rangle, \sum_{\pi} N \]

Spin 0 - -10%

\[\Delta s \]

Magnetic moment, charge radius

\[\rho_s, \mu_s \]

\[G^s_E, G^s_M \]
Extracting the Strange Form Factor with the Neutral Weak Interaction

\[G_{E}^{p} = \frac{2}{3} G_{E}^{u,p} - \frac{1}{3} G_{E}^{d,p} - \frac{1}{3} G_{E}^{s} \]

\[G_{E}^{n} = \frac{2}{3} G_{E}^{u,n} - \frac{1}{3} G_{E}^{d,n} - \frac{1}{3} G_{E}^{s} \]
Extracting the Strange Form Factor with the Neutral Weak Interaction

Two equations and three unknowns

$$G^p_E = \frac{2}{3} G^{u,p}_E - \frac{1}{2} G^{d,p}_E - \frac{1}{3} G^s_E$$

$$G^n_E = \frac{2}{3} G^{u,n}_E - \frac{1}{2} G^{d,n}_E - \frac{1}{3} G^s_E$$
Extracting the Strange Form Factor with the Neutral Weak Interaction

\[G^p_E = \frac{2}{3} G^u_E - \frac{1}{3} G^d_E - \frac{1}{3} G^s_E \]

\[G^n_E = \frac{2}{3} G^d_E - \frac{1}{3} G^u_E - \frac{1}{3} G^s_E \]

Two equations and three unknowns
Extracting the Strange Form Factor with the Neutral Weak Interaction

\[G_P^E = \frac{2}{3} G_u^E - \frac{1}{3} G_d^E - \frac{1}{3} G_s^E \]

Two equations and three unknowns

\[G_n^E = \frac{2}{3} G_d^E - \frac{1}{3} G_u^E - \frac{1}{3} G_s^E \]

Three equations and three unknowns

Measure neutral weak proton form-factor

Measuring all three enables separation of up, down and strange contributions

The weak form factor is accessible via parity violation
Measuring Strange Vector Form Factors

\[A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{\gamma}{2} \sim \frac{10^{-4} Q^2}{\text{GeV}^2} \]

Proton:

\[A = \left[-\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \right] \frac{A_E + A_M + A_A}{\sigma_p} \sim \text{few parts per million} \]

\[A_E = \epsilon G^p_E G^Z_E \]
\[A_M = \tau G^p_M G^Z_M \]
\[A_A = (1 - 4\sin^2\theta_W)\epsilon' G^p_M \tilde{G}_A \]

Forward angle

Backward angle

Neutral weak proton form factor

\[G^Z_{E,M} = (1 - 4\sin^2\theta_W)G^p_{E,M} - G^n_{E,M} - G^s_{E,M} \]

Spin=0, T=0 ^4He: G^s_E only!

Deuterium: Enhanced G_A
Experimental Overview

SAMPLE
open geometry, integrating, back-angle only

HAPPEX
Precision spectrometer, integrating
Forward angle, also 4He at low Q^2

HAPPEX–3: $G_E^s + 0.52 \ G_M^s$ at $Q^2 = 0.62 \ GeV^2$

A4
Open geometry
Fast counting calorimeter for background rejection
Forward and Backward angles

G0
Open geometry
Fast counting with magnetic spectrometer + TOF for background rejection
Forward and Backward angles over a range of Q^2
World data on G^s

- "Form Factor" error: precision of EMFF (including 2γ) and Anapole correction
- Significant systematic uncertainty in higher Q^2 points

\[\eta = \frac{\tau G_M^p}{\epsilon G_E^p} \sim Q^2 \]
World data on G^s

- "Form Factor" error: precision of EMFF (including 2γ) and Anapole correction
- Significant systematic uncertainty in higher Q^2 points

At $Q^2 \sim 0.1 \text{ GeV}^2$, $G^s < \text{few percent of } G^p$
World data on G^s

- "Form Factor" error: precision of EMFF (including 2γ) and Anapole correction
- Significant systematic uncertainty in higher Q^2 points

At $Q^2 \sim 0.1$ GeV2, $G^s < \text{few percent of } G^p$

\[\eta = \frac{\tau G^p_M}{\epsilon G^p_E} \sim Q^2 \]
Global fit of all world data

- Data set appears to show consistent preference for positive effect
- Significant contributions at higher Q^2 are not ruled out.
Integrating in the High Resolution Spectrometers

Very clean separation of elastic events by HRS optics

no PID needed; detector sees only elastic events

Entries 2.694749e+07
RMS 3733

Psuedo-random, rapid helicity flip

Lead – Lucite Cerenkov Shower Calorimeter
phototube current integrated over fixed time periods
HAPPEX–III Error Budget

<table>
<thead>
<tr>
<th></th>
<th>δA_{PV} (ppm)</th>
<th>δA_{PV} / A_{PV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>0.20</td>
<td>0.8%</td>
</tr>
<tr>
<td>Q^2</td>
<td>0.18</td>
<td>0.8%</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>0.19</td>
<td>0.8%</td>
</tr>
<tr>
<td>Linearity</td>
<td>0.12</td>
<td>0.5%</td>
</tr>
<tr>
<td>Finite</td>
<td>0.05</td>
<td>0.2%</td>
</tr>
<tr>
<td>False</td>
<td>0.04</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total</td>
<td>0.369</td>
<td>1.51%</td>
</tr>
<tr>
<td>Statistics</td>
<td>0.778</td>
<td>3.27%</td>
</tr>
<tr>
<td>Total</td>
<td>0.857</td>
<td>3.60%</td>
</tr>
</tbody>
</table>

Compton + Moller polarimeters

Spectrometer Calibration

HRS Backgrounds

Systematic uncertainties are well controlled - experiment is statistics dominated
Determining Q^2

Q^2 measured using standard HRS tracking package, with reduced beam current

Goal: $\delta Q^2 < 0.5\%$

Water cell optics target for central angle

δp between elastic and inelastic peaks reduces systematic error from spectrometer calibration

$\delta \theta \sim 0.55$ mrad (0.23%)

$Q^2 = 0.6241 \pm 0.0032$ (0.52%)

Table:

<table>
<thead>
<tr>
<th>Source</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Angle</td>
<td>0.45%</td>
</tr>
<tr>
<td>Beam Energy, HRS momenta</td>
<td>0.11%</td>
</tr>
<tr>
<td>Drifts</td>
<td>0.2%</td>
</tr>
<tr>
<td>ADC weighting</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>0.52%</td>
</tr>
</tbody>
</table>
Backgrounds

• Aluminum from target windows
• Signal from inelastic electrons scattering inside spectrometer

<table>
<thead>
<tr>
<th>background</th>
<th>fraction</th>
<th>Asymmetry</th>
<th>Net Correction</th>
<th>Net Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (target window)</td>
<td>1.15% (30%)</td>
<td>-34.5 ppm (30%)</td>
<td>125 ppb</td>
<td>126 ppb</td>
</tr>
<tr>
<td>Rescattering</td>
<td>0.3% (25%)</td>
<td>-63 ppm (25%)</td>
<td>114 ppb</td>
<td>55 ppb</td>
</tr>
</tbody>
</table>
Compton: $89.41 \pm 0.96\%$
Moller: $89.22 \pm 1.7\%$
Average: $89.36 \pm 0.84\%$

Moller systematic errors

<table>
<thead>
<tr>
<th>Source</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Polarization</td>
<td>1.5%</td>
</tr>
<tr>
<td>Analyzing Power</td>
<td>0.3%</td>
</tr>
<tr>
<td>Levchuk</td>
<td>0.2%</td>
</tr>
<tr>
<td>Background</td>
<td>0.3%</td>
</tr>
<tr>
<td>Deadtime</td>
<td>0.3%</td>
</tr>
<tr>
<td>other</td>
<td>0.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Compton systematic errors

<table>
<thead>
<tr>
<th>Source</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>laser polarization</td>
<td>0.80%</td>
</tr>
<tr>
<td>Analyzing Power</td>
<td>0.33%</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>0.43%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.96%</td>
</tr>
</tbody>
</table>
Beam Asymmetries

Charge asymmetry (with feedback) averages to 200 parts per billion

Implies energy asymmetry at 3 ppb

Individual detector response measured to be at the level of 5 ppb/nm

Total Correction: -0.016 ppm (0.07%)

Trajectory at target averages to $<3\text{nm}, <0.5\text{nrad}$
HAPPEX-III Measurement of A_{PV}

$A_{RAW} = -21.591 \pm 0.688 \text{ (stat) ppm}$

This includes
- beam asymmetry correction (-0.01 ppm)
- charge normalization (0.20 ppm)

OUT / IN from “slow” spin reversals to cancel systematics

Trajectory at target averaged to <3nm, <0.5nrad

Corrections are then applied:
- backgrounds (1.0%)
- acceptance averaging (0.5%)
- beam polarization (11%)

3.27% (stat)± 1.5% (syst)
total correction ~2.5% + polarization

Analysis Blinded ± 2.5 ppm
HAPPEX–III Result

\[A_{PV} = -23.803 \pm 0.778 \text{ (stat)} \pm 0.359 \text{ (syst)} \text{ ppm} \]

\[Q^2 = 0.6241 \pm 0.0032 \text{ (GeV/c)}^2 \]
HAPPEX–III Result

\[A_{PV} = -23.803 \pm 0.778 \text{ (stat)} \pm 0.359 \text{ (syst) ppm} \]

\[Q^2 = 0.6241 \pm 0.0032 \text{ (GeV/c)^2} \]

\[A(G^s=0) = -24.062 \text{ ppm} \pm 0.734 \text{ ppm} \]

\[G^s_E + 0.52 \, G^s_M = 0.003 \pm 0.010_{\text{(stat)}} \pm 0.004_{\text{(syst)}} \pm 0.009_{\text{(FF)}} \]

arXiv: 1107.0913v1
$Q^2 = 0.62 \text{ GeV}^2$ in combination

Combined fit includes form-factor uncertainties, experimental bands do not.

Zhu constraint is used for axial form-factor.
Considering only the 4 HAPPEX measurements

- High precision
- Small systematic error
- Clean theoretical interpretation
Strange Vector Form Factors Are Small

- HAPPEX–III provides a clean, precise measure of A_{PV} at $Q^2=0.62$ GeV2, and finds that it is consistent with no strangeness contribution to the long-range electromagnetic interaction of the nucleon.

- Recent lattice results indicate values smaller than these FF uncertainties.

- Further improvements in precision would require additional theoretical and empirical input for interpretation.
Backup
Detector Linearity

Studied *in situ* and on bench with LED system optimized to linearity for *differential rates of similar pulses*.

Measurements taken in short deviations from high rate, to maintain consistent thermal properties.

Phototube and readout non-linearity bounded at the 0.5% level.
Hall A Compton Polarimeter

Resonant cavity “photon target”, up to 2kW intensity

\[A_{\text{exp}} = \frac{n^+ - n^-}{n^+ + n^-} = P_\gamma \times P_e \times < A_{th} > \]

Calibration of the analyzing power is usually the leading uncertainty

measure asymmetry independently in:
- momentum analyzed electrons
- photons in calorimeter

Electron detector achieved 1% accuracy for HAPPEX-2, but system was broken for HAPPEX-3
Compton Polarimetry

Electron detector achieved 1% accuracy for HAPPEX-2, but e-det system was not functioning for HAPPEX-3

Photon self-triggered analysis has been limited in accuracy, and required electron coincidence measurements for calibration

Integrating photon detection:
immune to calibration, pile-up, deadtime, response function

New DAQ, with SIS 2230 Flash ADC read out in two modes:

Triggered mode: triggered “snap shot” of fixed time interval (for calibration)

Accumulator readout: all FADC samples are summed on board for entire helicity window
Compton Integrating Analysis, online

Online plots from run 20457
Compton Polarimetry

Non-linearity mapped out in with pulsed LED system.

Compton spectrum very well simulated
 • linearity
 • collimator/detector alignment
 • synchrotron light shielding

Analyzing power calculation is not extremely sensitive to these corrections
Parameterizations

$G_E^s = \rho_s \tau$

$G_M^s = \mu_s$

Fit includes all world data $Q^2 < 0.65$ GeV2
G0 Global error allowed to float with unit constraint

$G_E^s = \rho_s \text{galster}$

$G_M^s = \mu_s \text{dipole}$

$G_E^s = \rho_s \tau + a_2 \tau^2$

$G_M^s = \mu_s + m_2 \tau$