Combined Measurements of NC and CC DIS Cross-sections at HERA

R. Yoshida (ANL)
On behalf of the
H1 and ZEUS Collaborations

PANIC 2011, Cambridge, MA, 7/25/2011
HERA electron-proton collider

DESY laboratory in Hamburg, Germany

2 collider experiments
→ ZEUS and H1

2 fixed target experiments
→ HERMES and HERA-b

- 920 GeV protons (820 before 1998)
- 27.5 GeV e^\pm
- 300/318 GeV c.o.m. energy
- 220 bunches, 96 ns. crossing time
- 90 mA protons, 40 mA positrons
- Instantaneous luminosity: $1.8 \times 10^{31} \text{cm}^2\text{s}^{-1}$

5.12x$10^{31} \text{cm}^2\text{s}^{-1}$ after upgrade
HERA I: 1992-2000
~180 pb-1/experiment delivered. (mostly e+)
 Upgrade: 2001-2002
HERA II: 2002-2007
~580 pb-1/experiment delivered. (e+ and e−)

For HERA II:
- Luminosity ∼x3 (low-β insertion)
- Long. polarized leptons
- Some running at lower proton energy: 460 and 575 GeV
Neutral Current DIS

27.5 GeV

920 GeV

$Q^2 = 25030 \text{ GeV}^2, \ y = 0.56, \ M = 211 \text{ GeV}$
Charged Current DIS

27.5 GeV

Electron

920 GeV

Neutrino
Two types of information

Protons Structure: Parton Distributions.

Structure of the ElectroWeak Sector.
Parity Violation in Charged Current DIS.

\[
\frac{d^2 \sigma_{pol}^{CC}(e^\pm p)}{dx dQ^2} = (1 \pm P) \frac{d^2 \sigma_{unpol}^{CC}(e^\pm p)}{dx dQ^2}
\]

\[
P = \frac{N_R - N_L}{N_R + N_L}
\]

HERA Charged Current e^+p Scattering

- $e^+p \rightarrow \nu X$
- $e^+p \rightarrow \nu X$

- H1 HERA I
- H1 HERA II (prel.)
- ZEUS 06-07
- ZEUS HERA I
- ZEUS 98-06

$Q^2 > 400 \text{ GeV}^2$

$y < 0.9$
Parity Violation in Neutral Current DIS at High momentum transfer, Q^2

$$A^\pm \equiv \frac{\sigma^\pm (P=+1) - \sigma^\pm (P=-1)}{\sigma^\pm (P=+1) + \sigma^\pm (P=-1)}$$

Proton Structure cancels to a good approximation

$$A^\pm \approx \frac{Q^2}{M_Z^2 + Q^2} \frac{Q}{\sin^2 \theta_W}$$
DIS kinematics & cross-section (no electron polarization)

\[Q^2 = -q^2 = 4\text{-momentum transfer squared} \]

\(x = \) fractional longitudinal momentum carried by the struck parton

\[
\sigma_{r,NC}^{\pm} = \frac{d^2 \sigma_{NC}^{\pm}}{dxdQ^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_+} = \tilde{F}_2 + \frac{Y_-}{Y_+}x\tilde{F}_3 - \frac{y^2}{Y_+}\tilde{F}_L
\]

\[
\sigma_{r,CC}^{\pm} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{d^2 \sigma_{NC}^{\pm}}{dxdQ^2}
\]

\[
\sigma_{r,CC}^{\pm} = \frac{Y_+}{2} W_2^{\pm} + \frac{Y_-}{2} xW_3^{\pm} - \frac{y^2}{2} W_L^{\pm}
\]

Structure Functions \(\rightarrow\) extract parton densities using QCD analysis (i.e. PDF fits)
NC and CC measurements at HERA \rightarrow prediction for parton densities at LHC.

DGLAP equations “evolve” parton distributions in x from on Q^2 to another Q^2.

\rightarrow Cross-section predictions for LHC.
HERA DIS data: source of precise predictions of LHC cross-sections

Knowledge of gluon without HERA data.

Knowledge of gluon with HERA

Cooper-Sarkar et al. : HERA-LHC workshop 2009
An example

Prediction for W^+ cross-section at LHC, with and without HERA data.

Obviously, more precise the data, better the prediction. Combine H1 and ZEUS data.
Published: HERA I H1 and ZEUS data combined [JHEP01(2010)109]: cross-section data are combined point by point with no QCD assumptions.

Uncorrelated systematics cancel between H1 and ZEUS.

χ² / DOF = 637/656

Preliminary: HERA II H1 and ZEUS data (as well as HERA I data) combined.

~1 fb-1 data added: (e polarization corrected to 0)
γZ interference clearly seen
Electron-Proton Charged Current DIS

Mainly sensitive to u_{valence} distribution
Positron-Proton CC DIS: Mainly sensitive to d_{valence}.
Parity violation seen clearly at HERA at high Q^2 in Neutral and Charged current DIS.

HERA provides only measurement in the low-x range where it is essential for predicting LHC cross-sections. Used in all PDF’s (CTEQ, MRST, HERAPDF etc.)

H1 and ZEUS combination dramatically improves the uncertainty, particularly in the region dominated by systematic uncertainties. Combination for HERA I data has been published.

Preliminary H1 and ZEUS combination data using HERA I and HERA II has been released. There is a dramatic improvement particularly at high-x (>0.05).

These have been used in new Parton Distribution Fits. This will be presented by G. Grindhammer later this afternoon in parallel session 2b.