ATLAS Measurements of Electroweak Boson Production Cross Sections

Christian Göringer for the ATLAS collaboration

Cross section measurements:
• Inclusive W/Z
• W/Z+jets
• Diboson
Introduction

Cross section measurements:

• **Inclusive W/Z**
 – 2010 Dataset 33-36 pb\(^{-1}\)
 – Sensitive to Parton Density Functions (PDFs), W lepton universality

• **W/Z+jets**
 – 2010 Dataset 33-36 pb\(^{-1}\)
 – Test of QCD calculations and MC generators

• **Diboson**
 – 2011 Dataset (till June) 1 fb\(^{-1}\)
 – Sensitive to Triple Gauge Couplings (TGCs)

• **Measurements done with high p\(_T\) electrons and muons**
 – Precise understanding of lepton reconstruction, identification, calibration and resolution in W/Z events required
The ATLAS detector

- Tracking system ($|\eta| < 2.5$)
- Calorimeters (central $|\eta|< 2.5$, forward $|\eta| < 4.9$
- Muon systems ($|\eta| < 2.7$)
Inclusive W and Z

Selection
• High p_T lepton(s) $l=e, \mu$
 – Electrons: $E_T > 20$GeV, Muons: $p_T > 20$GeV, isolated
• Z candidate:
 – Mass in range [66,116] GeV, opposite charge
• W candidate:
 – High missing E_T and M_T
• Very clean signal

Detailed background estimation
• Multi-jet (“QCD”) by data driven methods
 – Template fit (cut inversion)
 – Matrix method
• Electroweak from MC
Inclusive W and Z

Fiducial cross section
\[\sigma_{Fid} = \frac{N_{Obs} - N_{Bkg}}{C \cdot L_{int}} \]

Total cross section
\[\sigma_{Tot} = \frac{N_{Obs} - N_{Bkg}}{A \cdot C \cdot L_{int}} \]

Uncertainties:
- Luminosity
- Acceptance
- Experimental ~1%
 - W: MET scale and resolution uncertainty
 - W,Z: electron/muon reconstruction and ID efficiency

Individual channel cross sections consistent

<table>
<thead>
<tr>
<th>(\sigma_{tot} [\text{nb}])</th>
<th>(\sigma_{tot})</th>
<th>(\Delta \sigma_{\text{stat}})</th>
<th>(\Delta \sigma_{\text{syst}})</th>
<th>(\Delta \sigma_{\text{lum}})</th>
<th>(\Delta \sigma_{\text{acc}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W^+) combined</td>
<td>6.041</td>
<td>0.016</td>
<td>0.077</td>
<td>0.205</td>
<td>0.096</td>
</tr>
<tr>
<td>(W^-) combined</td>
<td>4.156</td>
<td>0.014</td>
<td>0.058</td>
<td>0.141</td>
<td>0.083</td>
</tr>
<tr>
<td>(W) combined</td>
<td>10.197</td>
<td>0.021</td>
<td>0.127</td>
<td>0.347</td>
<td>0.165</td>
</tr>
<tr>
<td>(Z/\gamma^*) combined</td>
<td>0.937</td>
<td>0.006</td>
<td>0.009</td>
<td>0.032</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Experimental precision of ~1%!
Limited by luminosity uncertainty!

Reference: paper to be published (soon)
Inclusive W and Z: y/η - differential

- Differential measurement includes forward electrons for the first time!

Can be used to improve PDFs

Reference: paper to be published (soon)
W lepton universality

- W lepton universality measurement competitive with PDG world average: 2.4% w.r.t. 1.9%

Precise test of SM
W/Z+jets

Motivation
- Test of QCD and MC generators
- Important background for SM processes and BSM searches

V/jets
- **Selection**
 - 2 high p_T leptons
 - Z mass window, exactly 2 leptons of opposite charge
 - High p_T Jet
 - anti-k_T, $R=0.4$, $p_T > 30$ GeV, $|\eta| < 2.8$
- **Differential cross sections**
 - $N_{\text{jet}}, N_{\text{jet}}/N_{\text{jet}}^{-1}, p_T, p_T, \text{leading jet}$

W+jets
- **Selection**
 - 1 high p_T lepton
 - Isolated, second lepton veto
 - High p_T Jet
 - anti-k_T, $R=0.4$, $p_T > 20$ GeV, $|\eta| < 2.8$
 - High missing E_T
 - Missing $E_T > 25$ GeV
- **Differential cross sections**
 - $N_{\text{jet}}, N_{\text{jet}}/N_{\text{jet}}^{-1}, H_T, p_T$ (leading jet, 2nd, 3rd and 4th leading jet)

Unfolding used to correct results back to parton level

Cross section ratio of W+jets/Z+jets

Reference: **paper to be published**

Reference: ATLAS-CONF-2011-042

Precision limited by jet energy scale uncertainty

Reference: ATLAS-CONF-2011-060

Reference: ATLAS-CONF-2011-060
Z+jets

Good agreement with MC predictions
Limited by systematics

Ratio W+1jet/Z+1jet

New analysis optimized for minimum uncertainty on ratio
Already reached systematic uncertainty below 5%
• Important background for both SM and BSM measurements
 – Higgs, SUSY etc.
• Non-abelian structure of the weak section of SM
 ➢ Triple Gauge Couplings (TGC)
• Sensitive to new physics via anomalous TGCs

• Cross section measurements done:
 – WW
 – WZ (aTGC limits!)
 – ZZ (aTGC limits!)
 – W+gamma/Z+gamma
• **Channels:**
 - ee, $\mu\mu$ or $e\mu$ + missing E_T

• **Selection:**
 - 2 high p_T leptons
 - Opposite charge, isolated
 - μ: $p_T > 20$ GeV
 - e: $E_T > 25$ (20) GeV leading(subleading)
 - Outside of Z mass window
 - $|m_{ll} - m_Z| > 15$ GeV
 - High missing E_T
 - $M_{T,\text{Rel}} > (40, 45, 25)$ GeV ($ee, \mu\mu, e\mu$)
 - Jet veto
 - $p_T > 30$ GeV, $|\eta| < 4.5$

• **Background estimation**
 - Top (data driven)
 - DY and Z+jets (MC+data driven)
 - W+jets (data driven)
 - Diboson (MC)

• **Cross section extracted via log likelihood method**

1 $M_{T,\text{Rel}}$ is using topological information to improve rejection power

Cross section consistent with theory prediction
Limited by systematic uncertainties

Reference: ATLAS-CONF-2011-110
WZ

Channels measured:
• eee, eεμ, εμμ or μμμ + ME_T

Event selection:
• 3 (or more) high pT leptons
 – isolated
 – W electron or trigger lepton: p_T > 20 GeV
 – Other leptons: p_T > 15 GeV
• Z candidate
 – |M_l-M_Z|<10GeV
• W candidate
 – Missing E_T>25GeV
 – M_T>20GeV

Background estimation
• W/Z+jets (data driven)
• ZZ (MC)
• Top (MC)
• W+γ (MC)

Cross section extracted via log likelihood method

Cross section consistent with theory prediction
Limited by statistics uncertainty

<table>
<thead>
<tr>
<th>Cross section</th>
<th>σ</th>
<th>Δσ_{stat}</th>
<th>Δσ_{syst}</th>
<th>Δσ_{lum}</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^{tot}_{WZ}</td>
<td>pb</td>
<td>21.1</td>
<td>-3.1</td>
<td>1.2</td>
</tr>
<tr>
<td>SM prediction</td>
<td>pb</td>
<td>17.2</td>
<td>-2.8</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

Reference: ATLAS-CONF-2011-099
ZZ

- First ATLAS ZZ measurement!
- Channels:
 - $eeee$, $ee\mu\mu$, $\mu\mu\mu\mu$
- Selection:
 - 4 high p_T leptons
 - Exactly 4 isolated leptons, 2 pairs of same flavour and opposite charge
 - Leading e (μ): $p_T > 25$ (20) GeV
 - Subleading lepton: $p_T > 15$ GeV
 - Z mass window
 - $66 < M(l_1l_2 & l_3l_4) < 116$ GeV
- Very clean signal, low background
 - $Z+X$ (misidentified jets)

Cross section

<table>
<thead>
<tr>
<th>σ</th>
<th>$\Delta \sigma_{\text{stat}}$</th>
<th>$\Delta \sigma_{\text{syst}}$</th>
<th>$\Delta \sigma_{\text{lum}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{ZZ}^{tot} (pb)</td>
<td>8.4</td>
<td>$+2.7$</td>
<td>$+0.4$</td>
</tr>
<tr>
<td>SM pred. (NLO) (pb)</td>
<td>6.5</td>
<td>-2.3</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

Reference: ATLAS-CONF-2011-107

Cross section consistent with theory prediction

Limited by statistics
W/Z+gamma

Selection:
• High p_T lepton(s)
• Z candidate
 – Exactly two oppositely charged leptons
• W candidate
 – Exactly one lepton, $E_{T,\text{Miss}}>25\text{GeV}$, $m_T>40\text{ GeV}$
• High p_T photon
 – $E_{T,\gamma}>15\text{ GeV}$, γ isolation $<5\text{ GeV}$
 – $\Delta R(l,\gamma)>0.7$
 – Includes FSR and quark/gluon fragmentation contributions

Cross section
• Dominated by γ efficiency uncertainty
• Cancels in ratio $\sigma_{W\gamma}/\sigma_{Z\gamma}$

Backgrounds
• $W(Z)+jets (\pi^0\rightarrow\gamma\gamma)$

<table>
<thead>
<tr>
<th>Cross section</th>
<th>σ</th>
<th>$\Delta\sigma_{\text{stat}}$</th>
<th>$\Delta\sigma_{\text{syst}}$</th>
<th>$\Delta\sigma_{\text{lum.}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{W\gamma}$</td>
<td>pb</td>
<td>42.5</td>
<td>4.2</td>
<td>7.2</td>
</tr>
<tr>
<td>SM pred.</td>
<td>pb</td>
<td>42.1</td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>$\sigma_{Z\gamma}$</td>
<td>pb</td>
<td>6.4</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>SM pred.</td>
<td>pb</td>
<td>6.9</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Cross section consistent with theory prediction
First analysis limited by syst, but can be improved
Triple Gauge Couplings

- Sensitivity to new physics!
- Possible vertices using a generalised Lagrangian
 - WWZ (couplings: $\alpha_0 = g_1^Z$, κ^Z, λ) $\text{SM} = (1,1,0)$
 - ZZZ, $ZZ\gamma$ (couplings: $\alpha_0 = f_4^Z$, f_4^γ, f_5^Z, f_5^γ) $\text{SM} = (0,0,0,0)$
- Scale dependent formfactor with cutoff scale $\Lambda \sim O(2\text{TeV})$:
- ATLAS: cross sections as TGC limit input
- Tevatron: differential distributions as TGC limit input

\[
\alpha(\hat{s}) = \frac{\alpha(0)}{(1 - \frac{\hat{s}}{\Lambda^2})^2}
\]

ATLAS limits consistent and competitive

Use of differential distributions: will increase sensitivity
Summary

- Precise measurements of production cross sections of electroweak gauge bosons with data up to 1 fb^{-1}@ 7 TeV
- Results consistent with SM expectations
- Event properties well described by MC
- Analysis presented:
 - W/Z inclusive
 - Sensitive to PDFs,
 - Sensitive to W lepton flavour universality
 - W/Z+jets
 - Test of QCD/MC
 - Diboson
 - Sensitive to TGCs
- Many more analysis available but not shown

More Details on W/Z inclusive measurements and PDF sensitivity: In session 5A talk by S. Chouridou:
W and Z Production Measured Using the ATLAS Detector, and Impact on Partons Densities of the Proton
List of available measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/Z inclusive cross sections</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>Differential Z distributions</td>
<td>arXiv:1107.2381v1</td>
</tr>
<tr>
<td>Differential W distributions</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>Z->tautau cross section</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>W->taunu cross section</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>W+b cross section</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>Z+b cross section</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>W+jets</td>
<td>ATLAS-CONF-2011-060</td>
</tr>
<tr>
<td>Z+jets</td>
<td>ATLAS-CONF-2011-042</td>
</tr>
<tr>
<td>Ratio of the W+1jet to Z+1jet cross sections</td>
<td>Paper to be published</td>
</tr>
<tr>
<td>Wγ/Zγ cross section</td>
<td>arXiv:1104.5225</td>
</tr>
<tr>
<td>WW cross section</td>
<td>ATLAS-CONF-2011-110</td>
</tr>
<tr>
<td>WZ cross section</td>
<td>ATLAS-CONF-2011-099</td>
</tr>
<tr>
<td>ZZ cross section</td>
<td>ATLAS-CONF-2011-107</td>
</tr>
</tbody>
</table>
Event display

- Event display of a ZZ→eemumu candidate event (Run Number 182747, Event Number 63217197). One Z candidate has a mass of 85.9 GeV and a pt of 30.8 GeV and it is formed by two muons (in red) with \{pt, \eta, \phi\} of \{44.9 \text{ GeV}, 0.11, 0.69 \text{ rad}\} and \{44.5 \text{ GeV}, 0.53, -1.75 \text{ rad}\}, respectively. The other Z candidate has a mass of 85.5 GeV and a pt of 29.3 GeV, and it is formed by two electrons (in green) with \{pt, \eta, \phi\} of \{39.6 \text{ GeV}, 0.95, 1.19 \text{ rad}\} and \{42.2 \text{ GeV}, 1.85, -2.68 \text{ rad}\}, respectively. The four lepton system has a mass of 209.5 GeV and a pt of 4.6 GeV. Inner detector tracks with a transverse momentum pt larger than 1 GeV are displayed as blue helices.
W,Z inclusive

\[\int L \, dt = 33 \, \text{pb}^{-1} \]

\[\int L \, dt = 36 \, \text{pb}^{-1} \]

ATLAS Preliminary
Z p_T-differential

Reference: arXiv:1107.2381v1
W/Z+jets

HT: Scalar sum of p_T of jets passing the selection.
W/Z+jets

Z+jets

- Background estimation
 - QCD in ee+jet final state data driven (template fit)
 - Other backgrounds estimated via MC
- Unfolding
 - Bin-by-bin using ALPGEN
 - Systematics: use SHERPA instead of ALPGEN, use differences as error

W+jets

- Background estimation
 - QCD data driven (template fit for e and μ)
 - Other backgrounds estimated via MC
- Unfolding
 - Separate unfolding in N_{jet}, p_T, H_T
 - Systematics: use SHERPA instead of ALPGEN, use differences as error
Ratio of W+1jet/Z+1jet
• Definition of relative missing energy:

$$ E_{T, \text{Rel}}^{\text{miss}} = \begin{cases} E_T^{\text{miss}} \times \sin(\Delta \phi_{\ell,j}) & \text{if } \Delta \phi < \pi/2 \\ E_T^{\text{miss}} & \text{if } \Delta \phi \geq \pi/2 \end{cases} $$
WZ background estimation

• Most important contribution: Z+jets (+ minor W+jets)
• Estimated from data besides C_{MET}
• Sample of Z+jet:
 – 2 leptons + 1 lepton-like jet passing all selection criteria "llj"
 • Exception: lepton-like jet fails electron ID / muon isolation:
 \[N_{\text{bkg}} = N(llj) \cdot f(p_T) \cdot C_{\text{MET}} \]
 – Fake factor: probability to fail ID/isolation cut
 • Derived from Z + lepton-like jet sample (no MET, M_T requirements)
 \[f(p_T) = \frac{N(l, \text{MET} < 25\text{GeV})}{N(j, \text{MET} < 25\text{GeV})} \]
 – C_{MET}: Interpolation from low to high missing ET region, done via MC
 • Validated with dijet-events in data and MC
ZZ background estimation

- Estimate background from data
 - Dominant: one jet fakes a lepton
 \[N(\text{bkg}) = N(\text{lllj}) \cdot f - N(\text{lljj}) \cdot f^2 - N(\text{ZZcandidates}) \]

- Fake factor \(f(p_T, \eta) \)
 - Ratio of probability for a jet to pass full lepton criteria over probability to pass lepton-like criteria
 - Derived from data sample in which true leptons are suppressed
 - Derived as single lepton quantity
 - Cross checked with MC

- \(N(\text{lllj}) \) (\(N(\text{lljj}) \)): number of events with 1 (2) lepton-like jets
 - Lepton-like jet: satisfies all criteria besides electron ID/ muon isolation

- To avoid double counting: substract \(N(\text{lljj}) \)