Recent CKM and CP violation results from BABAR

On Behalf of the BaBar Collaboration
Marcello Rotondo
(INFN Padova)
CKM Matrix and CP violation

- Leading source of CP violation established: CKM mechanism (BaBar & Belle)

- New Physics search in the flavor sector require precise & redundant measurements of sides and angles of the Unitarity Triangle

Charmless SL Decays:
- Access to $|V_{ub}|$, side opposite to angle β

Charmless Hadronic Decays
- Trees and Penguin contribute and lead to CP violation
- Access the CKM angle α (golden mode $\rho\rho$ and $\pi\pi$) and angle γ
- Open puzzles that need to be solved:
 - Direct CP violation in $K\pi$, polarization in $B \to VV$ (not covered here)

*Search for NP in Cabibbo Favored SL decays $B \to D(\ast)\tau\nu$
\[|V_{ub}| \text{ from SL decays } B \to \pi / X_u \ell \nu \]

\[B \to K\pi\pi^0 \]

\[B \to \phi\phi K \]

\[B \to D(\ast) \tau\nu \]
Semileptonic B decays: $|V_{ub}|$

- Large BF, only one hadronic current:

$$\Gamma(B \rightarrow \pi/X_u \ell \nu) = |V_{ub}|^2 F^2(q^2, M_X, p_\ell)$$

Complementary Measurements

- **Exclusive decays** $B \rightarrow \pi \ell \nu$:
 - QCD predictions of Form Factor required to parameterize hadronic effects
 - Lattice QCD, LCSR...

- **Inclusive decays** $B \rightarrow X_u \ell \nu$:
 - QCD corrections to parton level decay rate
 - Need perturbative and non-perturbative corrections
 - 4 approaches **BLNP, DGE, GGOU, ADFR**
 - Non-pert. parameters (m_b, μ, π) from $B \rightarrow X_c \ell \nu$
 - and $B \rightarrow X_s \gamma$

Complementary Measurements

- Neubert et al PRD72, 073006 (2005)
- Gardi et al JHEP0601, 097 (2006)
- Gambino et al JHEP 0710, 058 (2007)
- Aglietti et al EPJC 59, 831 (2009)
Exclusive $|V_{ub}|$ with $B \to \pi \ell \nu$

- Two analysis recently published by BaBar:
 - Untagged analysis: reconstruct π^+e/μ
 - Neutrino from the rest of the event

6-bin analysis

- Background reduced with a NN
- $S/B = 0.20$
- combined m_{ES}-ΔE fit to $\pi^+/\pi^0/\rho^+/\rho^0$ $\ell \nu$
- 6 bins of q^2

Fitted signal events:
- π^+: 6660 ± 278
- π^0: 606 ± 43

12-bin analysis

- Background reduced with q^2-dependet cuts
- $S/B = 0.09$
- m_{ES}-ΔE fit to $\pi^+\ell \nu$
- 12 bins of q^2

Fitted signal events:
- π^+: 11778 ± 435

Untagged $B \rightarrow \pi^+ \ell \nu$

Small event overlap!
BaBar results compatible

- $q^2 > 16$ GeV2
- $q^2 < 12$ GeV2

<table>
<thead>
<tr>
<th>V_{ub}</th>
<th>HPQCD</th>
<th>12 bins</th>
<th>6 bins</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ub}</td>
<td>3.28 ± 0.20</td>
<td>3.21 ± 0.18</td>
<td>$3.23 \pm 0.16^{+0.57}_{-0.37}$</td>
<td></td>
</tr>
<tr>
<td>V_{ub}</td>
<td>3.14 ± 0.18</td>
<td>3.07 ± 0.16</td>
<td>$3.09 \pm 0.14_{-0.29}^{+0.35}$</td>
<td></td>
</tr>
<tr>
<td>V_{ub}</td>
<td>3.70 ± 0.11</td>
<td>3.78 ± 0.13</td>
<td>$3.72 \pm 0.10_{-0.39}^{+0.54}$</td>
<td></td>
</tr>
</tbody>
</table>

Result compatible with Belle and WA

Fits Provided by Jochen Dingfelder

Theory error reduced: FF shape from data
\[|V_{ub}| \text{ From Inclusive } B \rightarrow X_u \ell \nu \]

- **Large background from** \(B \rightarrow X_c \ell \nu \)
 - Kinematics to extract the signal (lepton endpoint, \(M_X < M_D, \ldots \))

- **Use hadronic tag** \(B_{\text{tag}} \rightarrow D(*) Y \) \((Y=n\pi, m\pi^0, pK_s, qK)\), to reduce combinatorial and reconstruct \(M_X, q^2 \) and \(P_+ = E_X - p_X \) with good resolution

- **Veto** \(B \rightarrow D(*) \ell \nu \) with Kaons, soft pions, and missing mass

- Most precise \((\sigma_{\text{exp}} \oplus \sigma_{\text{theory}})\) result from a 2-D fit in \(q^2-M_X \) \((P_\ell > 1 \text{ GeV})\)

| QCD Calculation | \[|V_{ub}|(10^{-3}) \] |
|------------------|--------------------------|
| BLNP | \(4.27 \pm 0.15 \pm 0.18^{0.23}_{-0.20} \) |
| DGE | \(4.34 \pm 0.16 \pm 0.18^{0.22}_{-0.15} \) |
| GGOU | \(4.29 \pm 0.15 \pm 0.18^{0.11}_{-0.14} \) |
| ADFR | \(4.35 \pm 0.19 \pm 0.20^{0.15}_{-0.15} \) |

- Arithm. Average \(4.31 \pm 0.25 \) \(_{\text{exp.}}\) \pm 0.16 \(_{\text{th.}}\)

- Compatible fitting other kinematic variables. Good consistency with WA and Belle

2\sigma Discrepancy with Exclusive

Final BaBar result, to be submitted to PRD
$|V_{ub}|$ from SL decays $B \rightarrow \pi / X_u \ell \nu$

$B \rightarrow K \pi \pi^0$

$B \rightarrow \phi \phi K$

$B \rightarrow D(*) \tau \nu$
\[B^0 \rightarrow K\pi\pi \text{ and } \gamma \text{ measurement} \]

- **Rich resonance structure, many observables:**
 - Direct CP asymmetry
 - Branching Ratios
 - Relative phases between components

\[A_{CP} = \frac{N(B^-) - N(B^+)}{N(B^-) + N(B^+)} \]

- **Direct CP violation in the \(K^*\pi \) decays: „\(K\pi \) puzzle in \(K^*\pi \) decays?**

- **Access UT angle \(\gamma \) from phases related to the \(K^*\pi \) intermediate states in**
 \(B^0 \rightarrow K^+\pi^-\pi^0 \) and \(B^0 \rightarrow K_s\pi^+\pi^- \)
 - Combination free of QCD penguins

- **Same argument can be extended to** \(B^0 \rightarrow \rho K^+ \)

\[A_{3/2}(\rho K) = \frac{1}{\sqrt{2}}A(\rho^{-}K^+) + A(\rho^0K^0) \]

\[3A^0_{3/2}(K^*) = A(K^{*+}\pi^-) + \sqrt{2}A(K^0\pi^0) \]

\[3\bar{A}^0_{3/2}(K^*) = A(K^{*-}\pi^+) + \sqrt{2}A(K^0\pi^0) \]

\[\Phi_{3/2} = -0.5\text{Arg}(\bar{A}_{3/2}/A_{3/2}) \approx \gamma \]

From \(B^0 \rightarrow K^+\pi^-\pi^0 \) DP \(\rightarrow \) **Interference with \(K^*\pi \)** \(\rightarrow \) From \(B^0 \rightarrow K_s\pi^+\pi^- \) DP
B^0 → K^+ π^- π^0 Dalitz Plot

- Resonances populate the borders of the Dalitz Plot (DP)
 - Overlap region of resonances is small
 - Crucial understanding of backgrounds and efficiency in the corners

- ML fit with \(m_{ES}, \Delta E, NN_{out} \) and DP
 - Maximize the signal-background separation
 - Signal category includes signal from misreconstructed events

- Charmless signal yield:
 - \(N(K^+ π^- π^0) = 3670 \pm 96_{stat} \pm 94_{syst} \)
 - \(B^0 → D^0 π^0 \) and \(B^0 → D^- K^+ \) consistent with expectations

\[B^0 \rightarrow K^+\pi^-\pi^0 \] Results

- BF\((B^0 \rightarrow K^+\pi^-\pi^0) = (38.5 \pm 1.0 \pm 3.9)x10^{-6}\)

- \(A_{CP}\) combined with published results with \(B^0 \rightarrow K_s\pi^-\pi^+\)
 - \(A_{CP}(K^+\pi^-) = -0.24 \pm 0.07 \pm 0.02\)
 - Evidence of direct CPV in \(B^0 \rightarrow K^{*+}\pi^-\) (3.1 \(\sigma\))

Destructive interference of the neutral and charged \(K^*\pi\) amplitude:
 - \(\overline{\Phi}_{3/2}\) \((K^*\pi)\) close to 0 \(\rightarrow\) no sensitivity to \(\Phi_{3/2}\)

Better possibilities from \(\rho K\):
 - \(\Phi_{3/2}(\rho K) = (-10^{+10}_{-20} + 7^{+7}_{-22})^\circ\)

<table>
<thead>
<tr>
<th>Isobar</th>
<th>(B \times 10^{-6})</th>
<th>(\overline{\Phi} \ [^\circ])</th>
<th>(\Phi \ [^\circ])</th>
<th>(A_{CP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(770)^-)K^+</td>
<td>6.6 \pm 0.5 \pm 0.8</td>
<td>0 (fixed)</td>
<td>0 (fixed)</td>
<td>0.20 \pm 0.09 \pm 0.08</td>
</tr>
<tr>
<td>(\rho(1450)^-)K^+</td>
<td>2.4 \pm 1.0 \pm 0.6</td>
<td>75 \pm 19 \pm 9</td>
<td>126 \pm 25 \pm 26</td>
<td>-0.10 \pm 0.32 \pm 0.09</td>
</tr>
<tr>
<td>(\rho(1700)^-)K^+</td>
<td>0.6 \pm 0.6 \pm 0.4</td>
<td>18 \pm 36 \pm 16</td>
<td>50 \pm 38 \pm 20</td>
<td>-0.36 \pm 0.57 \pm 0.23</td>
</tr>
<tr>
<td>(K^*(892)^+)π^-</td>
<td>8.0 \pm 1.1 \pm 0.8</td>
<td>33 \pm 22 \pm 20</td>
<td>39 \pm 25 \pm 20</td>
<td>-0.29 \pm 0.11 \pm 0.02</td>
</tr>
<tr>
<td>(K^*(892)^0)π^0</td>
<td>3.3 \pm 0.5 \pm 0.4</td>
<td>29 \pm 18 \pm 6</td>
<td>17 \pm 20 \pm 8</td>
<td>-0.15 \pm 0.12 \pm 0.04</td>
</tr>
<tr>
<td>((K\pi)^+_0)π^-</td>
<td>34.2 \pm 2.4 \pm 4.1</td>
<td>-167 \pm 16 \pm 37</td>
<td>-130 \pm 22 \pm 22</td>
<td>0.07 \pm 0.14 \pm 0.01</td>
</tr>
<tr>
<td>((K\pi)^-_0)π^-</td>
<td>8.6 \pm 1.1 \pm 1.3</td>
<td>13 \pm 17 \pm 12</td>
<td>10 \pm 17 \pm 16</td>
<td>-0.15 \pm 0.10 \pm 0.04</td>
</tr>
<tr>
<td>NR</td>
<td>2.8 \pm 0.5 \pm 0.4</td>
<td>48 \pm 14 \pm 6</td>
<td>90 \pm 21 \pm 15</td>
<td>0.10 \pm 0.16 \pm 0.08</td>
</tr>
</tbody>
</table>

BaBar, PRD80,112001

- \(\rho(770)K^+\)
$|V_{ub}|$ from SL decays $B \rightarrow \pi / X_u \ell \nu$

$B \rightarrow K\pi\pi^0$

$B \rightarrow \phi\phi K$

$B \rightarrow D(\ast) \tau\nu$
$B \rightarrow \phi\phi K$

- *Interference between tree and penguin amplitudes under the η_c peak*

\[
\begin{align*}
\text{Tree } B &\rightarrow \eta_c K, \\
\eta_c &\rightarrow \phi\phi
\end{align*}
\]

\[
\text{New CP-violating phase}
\]

\[
\text{Penguin } B \rightarrow \phi\phi K
\]

- *In the SM, T and P have same weak phase: expect no direct CP-Violation*

- *Any observation of direct CP asymmetry would indicate NP phase in P process*

 - *Could be at the $\sim 40\%$ level (Hazumi, Phys. Lett B 583, 285 (2004))*
$B^+ \rightarrow \phi\phi K$

- Use 5 regions in the m_ϕ-m_ϕ plane to distinguish final states with 5-Kaons
 - Fit in different regions

446×10^6 BB

- Maximum likelihood fit to m_{ES}, ΔE, Fisher (to suppress continuum $e^+e^- \rightarrow q\bar{q}$), m_{ϕ_1}, m_{ϕ_2}

$B^+ \rightarrow \phi\phi K^+$ $N_{sig} = 178 \pm 15$

$B^0 \rightarrow \phi\phi K_S$ $N_{sig} = 40 \pm 7$

- First Observation of K_s mode
B^+ → φφK: BR and A_{CP}

Partial BF (m_{φφ} < 2.84 GeV)

\[
\text{BF(} B^+ \rightarrow φφK^+ \text{)} = (5.6 \pm 0.5 \pm 0.3) \cdot 10^{-6}
\]

\[
\text{BF(} B^0 \rightarrow φφK_s \text{)} = (4.5 \pm 0.8 \pm 0.3) \cdot 10^{-6}
\]

First measurement!

- \(A_{CP}(\phiφK^+) \) below and within the \(η_c \) region:
 - \(M(φφ) < 2.85 \text{ GeV} \): \(-0.10 \pm 0.08 \pm 0.02\)
 - \(M(φφ): 2.94-2.98 \text{ GeV} \): \(-0.10 \pm 0.15 \pm 0.02\)
 - \(M(φφ): 2.98-3.02 \text{ GeV} \): \(-0.08 \pm 0.14 \pm 0.02\)

- \textit{consistent with 0 and SM}

Result submitted to PRD
ArXiv: 1105.5159
$|V_{ub}|$ from SL decays $B \rightarrow \pi / X_u \ell \nu$

$B \rightarrow K\pi\pi^0$

$B \rightarrow \phi\phi K$

$B \rightarrow D(\ast)\tau\nu$
B → D(*)\tau\nu: motivation

- Similar to B → \tau\nu, but:
 - From annihilation to exchange
 - From V_{ub} to V_{cb}: not a rare decay!
 - (tau mass no negligible): 2 form factor for tl
 D, 4 for the D*, but HQET relates the extra to the well measured FF in light leptons

- Look only at $\tau \rightarrow \ell\nu\nu$ (\ell → e or \mu) 3\nu i
 the final state → **signal signature: large missing mass**

Extract directly the ratio \(R \)

\[
R(D^{(*)}) = \frac{\mathcal{B}(B \rightarrow D^{(*)}\tau\nu_\tau)}{\mathcal{B}(B \rightarrow D^{(*)}\ell\nu_\tau)}
\]

Reduce theoretical and experimental errors

Use the hadronic tag \(B_{tag} \rightarrow D^{(*)}Y \)

- \(Y \) is a combination of \(\pi, \pi^0 \) and \(K \)
- Reduce combinatoric

Reconstruct 4 signal decay channels (fitted together):

- \(D^0, D^{*0}, D^+, D^{*+} \)
$B \to D(\ast)\tau\nu$: fit

- Simultaneous 2D un-binned ML-fit of missing mass m_{miss}^2 and P_ℓ to 4 signal samples and the D^{**} control samples.

- $B \to D^{**}\ell\nu$ poorly known
 Select $D(\ast)\pi^0$ candidates and fitted together with the signal sample.
B → D(*)τν: preliminary results

- **Systematics are preliminary**: expected to improve for the publication
- **Results compatible with Belle latest results and previous BaBar one**
- **5σ in all channels**
- **1.8 σ from SM**
- **Results favors large tanβ**

- More details: Manuel F Sevilla talk at EPS11
Conclusions

- New results from Inclusive and Exclusive $|V_{ub}|$
 - Inclusive-Exclusive discrepancy still present: theoretical error in the inclusive?

- Improvements on $B \rightarrow D(*) \tau\nu$
 - Search for NP in CKM favored SL decays
 - All D channels observed

- Charmless B decays still source of many interesting results
 - News from $B \rightarrow K\pi\pi^0$, but weak limit on γ
 - $B \rightarrow \phi K_s K$: first observation of the K_s mode
 - Most of these results agree with SM prediction, but some puzzles remain (Polarization & $K\pi$ puzzle)

- More statistics is crucial to fully understand the tensions and puzzles
 - LHCb: present!
 - SuperB and Belle-II: next future!