Universal Spin Transport in Strongly Interacting Fermi Gases

Ariel Sommer
Zwierlein Group, MIT

PANIC, MIT
July 25, 2011
Spin Transport

• Net relative motion of atoms with different spin

• Damped due to collisions

Earlier experiments:
DeMarco & Jin, PRL 88, 040405 (2002)
Du et al, PRL 101, 150401 (2008)

Some theory:
Parish & Huse. PRA 80, 063605 (2009)
Bruun. NJP 13, 035005 (2011)
Unitary Fermi Gas

• Ultracold (~100nK) fermionic atoms
• Interactions tunable by an applied magnetic field (Feshbach resonance)
 – Strongest interactions at s-wave resonance (unitarity)
• Superfluid transition
• Nearly zero (quantum-scale) viscosity
Connection to Other Systems

• Spintronics
 – Magnetic data storage, information processing

• Quark-gluon plasma
 – Strongly interacting Fermions
 – Nearly zero viscosity:
 Elliptic flow in heavy ion collisions at RHIC1 and ALICE at LHC2
Spin transport parameters

• Spin drag coefficient Γ_{sd}

$$F_{sd} = \frac{1}{2} M \Gamma_{sd} v_{rel}$$

• Spin diffusivity D_s

$$J_s = -D_s \frac{\partial (n_\uparrow - n_\downarrow)}{\partial z}$$

 - Parish & Huse. PRA 80, 063605 (2009)
 - Bruun. NJP 13, 035005 (2011)
Experiment

• 6Li trapped in a magnetic / optical dipole trap
• 50/50 mixture of two spin states
• Separate the spin states via magnetic gradient pulses
• Rapidly set the magnetic field to the Feshbach resonance
• Apply cooling or heating
• Observe the evolution
Collision of Two Fermi Gases
Measuring Spin Drag

Overdamped, use an exponential fit to get Γ_{sd}

\[\ddot{d} + \Gamma_{sd} \dot{d} + \omega^2 d = 0 \]
Spin Drag vs Interaction Strength

- Maximum drag on resonance

\[\frac{T}{T_F} = 0.32, 0.16 \]
Results for Spin Drag: Unitarity

- Maximum drag near T_F

Nature 472, 201 (2011)
Measuring Spin Diffusivity

• D_s from spin density gradient and equilibration time

Gradient decays at the same rate as d
Spin Diffusion at Unitarity

- Minimum $D_s = 6.3(3) \, \hbar/m$ for $T < 0.5 \, T_F$
- $T^{3/2}$ scaling for $T > 2 \, T_F$
 - unconstrained fit: $T^{1.4(1)}$

Nature 472, 201 (2011)
Highly Polarized Gas

- Same procedure, but with a 90/10 mixture
- More Pauli blocking than in 50/50 case

Solid line: Bruun et al., PRL 100, 240406 (2008)
Spin Transport in SF

- 60/40 mixture
- Below T_C: superfluid core

- Still overdamped.
- Collisions at SF-Normal interface or inside the SF?
Conclusions

• Spin drag is strong at unitarity
• Measured spin drag and spin diffusivity vs temperature
• Maximum spin drag near T_F
• Minimum spin diffusion below T_F
• Stronger Pauli blocking in highly-polarized gas
• Sping drag also observed in a superfluid
Acknowledgements

• Thanks to co-workers:
 Mark Ku (MIT)
 Giacomo Roati (Florence)
• Advisor: Martin Zwielrein
• Support from:
 NSF, AFOSR, ARO, ONR, DARPA, Alfred P. Sloan Foundation, and David and Lucile Packard Foundation
Spin Diffusion vs Interaction Strength

- Minimum diffusivity on resonance
Varying Interactions

![Graph showing varying interactions with different $k_F a$ values](image)

- $k_F a = 0$
- $k_F a = 0.08$
- $k_F a = 0.13$
• More Pauli blocking in the polaron case

Drag reduction from peak down to $0.15 \, T_F$:

- **Polaron**:
 51(6)% reduction

- **Balanced Gas**:
 26(4)% reduction
Spin Susceptibility

- Spin conductivity: \(\sigma_s = n/(m\Gamma_{sd}) \)

- Einstein relation: \(\chi_s = \sigma_s/D_s \)

- Derivation – Magnetization in a spin-dependent potential:

 \(spin-diffusion \leftrightarrow spin-conduction \)

 \[
 0 = -D_s \nabla (n_1 - n_2) + \sigma_s \nabla (\mu_1 - \mu_2)
 \]
Spin Susceptibility

Susceptibility $<\text{Compressibility}$ for $T<T_F$

Nature 472, 201 (2011)
Getting the gradient
Expectations

- Known power laws at high temperature
- For $T \approx T_F$, expect $D_s \approx \hbar/m$
- For $T \ll T_F$, correlations may influence transport

See:
Riedl et al., PRA 78, 053609 (2008)
Bruun and Smith PRA 72, 043605 (2005)
Comparison

• No enhanced spin drag at low T

Riedl et al., PRA 78, 053609 (2008)

Sommer et al, Nature 472, 201 (2011)
Relation to Homogeneous Values

• Non-uniform density and average velocity
• Trap average: \[\langle G \rangle = \frac{1}{N} \int d^3 \mathbf{r} \ G(\mathbf{r}) \ n(\mathbf{r}) \]
• Measured values:

\[\Gamma_{sd} = \frac{\langle \tilde{\Gamma}_{sd} u_z,\text{rel} \rangle}{\langle u_z,\text{rel} \rangle} \]

\[D_s = \tilde{D}_s(0) \frac{\langle u_z,\text{rel} \rangle}{u_{z,\text{rel}}(0)} \]

\[\chi_s = \frac{\tilde{\Gamma}_{sd}(0) u_{z,\text{rel}}(0)}{\omega_z^2 d} \tilde{\chi}_s(0) \]
Center of Mass Difference

- Bouncing at early times
- Exponential relaxation at late times