Inclusive b-jet Production at ATLAS

Patrick Jussel for the ATLAS Collaboration

Institute of Astro- and Particle Physics at the University of Innsbruck, Austria

PANIC 11, July 24th – 29th 2011
Content

• Motivation
• ATLAS Detector – Overview
• SV0 b-tagging + calibration
• Inclusive cross section of b-jets$^{(*)}$
• Di-jet cross section of b-jets

$^{(*)}$ Definition:

b-jet $[bi:-dʒɛt]$, jet containing a hadron with a b or an anti-b quark
Heavy flavor production

• New energy frontier as excellent testing ground

 • Heavy flavor production ...

 ▪ ... measurements allow tests of theoretical QCD prediction at NLO
 ▪ ... has large theoretical uncertainties
 ▪ ... is an important background in many searches
 ▪ ... measurement constrains heavy flavor component of proton PDF

• Heavy flavor results from ATLAS:

 • Inclusive and di-jet cross section of b-jets

 • J/ψ and $\Upsilon(1S)$ production (see talk by K. Reeves)

 • Top quark (see talks by R. Calkins & D.B.Ta)

 • B and D production (see talk by E. Rossi)
ATLAS Detector

Muon Detectors

Tile Calorimeter

Liquid Argon Calorimeter

Toroid Magnets

Solenoid Magnet

SCT Tracker

Pixel Detector

TRT Tracker
ATLAS Detector

- Inner Detector
 - excellent tracking
 - \(b\)-tagging
 - vertexing
- Calorimeter
 - triggering jets
- Muon Spectrometer
 - calibration of \(b\)-tagging
 - muon tracks
Data Taking and Trigger

• Data taking: Mar – Aug 2010
 • Proton-proton collisions at $\sqrt{s} = 7$ TeV
 • Integrated Luminosity: 3.0 ± 0.1 pb$^{-1}$
• Trigger
 • Searching for b-jets in the range $20 \text{ GeV} < p_T < 260 \text{ GeV}, |y| < 2.1$
 • Level-1 jet trigger + MinBias trigger for low p_T jets
 • Triggers thresholds chosen, to have fully efficient triggers
 • Trigger efficiency > 98
• Reconstruction
 • Reconstruct PV, reconstruct jet from topological clusters
 • Anti-k_t algorithm with radius $R = 0.4$
 • Reconstruction and selection efficiency for b-jets > 99
b-tagging: SV0 b-tagging

- Reconstruction of secondary vertex using tracks associated to calorimeter jet
- Merge two-track vertices (each not compatible with the PV) into common vertex
- Remove tracks with large χ^2 contribution...
- ... until several criteria (*) are fulfilled
- Signed decay length (in 3D) significance $L/\sigma(L)$ is the b-tagging weight

(*) Criteria:
- vertex mass < 6 GeV
- each track $\chi^2 < 7$
b-tagging: SV0 b-tagging

- Reconstruction of secondary vertex using tracks associated to calorimeter jet
- Merge two-track vertices (each not compatible with the PV) into common vertex
- Remove tracks with large χ^2 contribution...
- ... until several criteria (*) are fulfilled
- Signed decay length (in 3D) significance $L/\sigma(L)$ is the b-tagging weight

![Tracks from b decays](tracks_from_b_decays.png)

![Prompt tracks](prompt_tracks.png)

(ATLAS-CONF-2010-099)
b-tagging: example

- Top pair e-mu di lepton candidate, two b-jet cones
b-tagging: example

- Top pair e-\(\mu\) di lepton candidate, two \(b\)-jet cones
b-tagging calibration

(ATLAS-CONF-2010-099)

- Select events with muon, calculate p_T^{rel}, transverse momentum relative to jet
- Harder spectrum for b-jets
- Idea: create template spectra, fit to data to obtain b-tagging efficiency
b-tagging calibration

(ATLAS-CONF-2010-099)

- Select events with muon, calculate p_T^{rel}, transverse momentum relative to jet
- Harder spectrum for b-jets
- Idea: create template spectra, fit to data to obtain b-tagging efficiency

- template for light flavors and c-jets and b-jets
- templates of jets before some cut on b-tagging weight

ATLAS Preliminary
b-tagging calibration

(ATLAS-CONF-2010-099)

- Select events with muon, calculate p_T^{rel}, transverse momentum relative to jet
- Harder spectrum for b-jets
- Idea: create template spectra, fit to data to obtain b-tagging efficiency

![Graph Image](image.png)

- template for light flavors and c-jets and b-jets
- templates of jets before some cut on b-tagging weight

... and after
b-tagging calibration

(ATLAS-CONF-2010-099)

- Fitting templates by adjusting templates to data in a binned maximum likelihood fit
- Data vs. fit before any cut
b-tagging calibration

(ATHLAS-CONF-2010-099)

- Fitting templates by adjusting templates to data in a binned maximum likelihood fit
- Data vs. fit before and after cut on $L/\sigma(L) > 5.72$

- Cut $L/\sigma(L) > 5.72$: 50% b-tagging efficiency in simulated tt events
Measurement: Inclusive b-jet cross section at $\sqrt{s} = 7$ TeV

(ATLAS-CONF-2011-056)

- b jet cross section ($20 \,\text{GeV} < p_T < 260 \,\text{GeV}, \,|y| < 2.1$)

\[
\frac{d^2\sigma_b}{dp_Tdy} = \frac{1}{\Delta p_T \Delta y} \frac{N_b \cdot \text{frac}_b}{\varepsilon_{\text{trig}} \cdot \varepsilon_{\text{sel}} \cdot \varepsilon_{\text{btag}} \cdot \mathcal{L}} \times C
\]

- bb di-jet cross section ($\text{di-jet mass} \, M < 670 \,\text{GeV}, \,|y| < 2.1$)

\[
\frac{d\sigma_{b\bar{b}}}{dM} = \frac{1}{\Delta M} \frac{N_{b\bar{b}} \cdot \text{frac}_{b\bar{b}}}{\varepsilon_{\text{trig}} \cdot \varepsilon_{\text{sel}} \cdot \varepsilon_{\text{btag},2} \cdot \mathcal{L}} \times C
\]

- Trigger: level 1 jet trigger, MBTS trigger (for low jet p_T)
Measurement: Inclusive b-jet cross section at \(\sqrt{s} = 7 \) TeV

\[
\frac{d^2\sigma_b}{dp_T dy} = \frac{1}{\Delta p_T \Delta y} \frac{N_b \cdot \frac{b}{\epsilon}\epsilon_{\text{trig}} \cdot \epsilon_{\text{sel}} \cdot \epsilon_{b\text{tag}} \cdot \mathcal{L}}{\cdot C}
\]

Number of events tagged by SV0 b-tagging algorithm...

... and fraction of those events, which are b-jets

Efficiencies: trigger (> 98%), jet reconstruction and selection, b-tagging

Integrated luminosity for triggers: \(3.0 \pm 0.1 \) pb\(^{-1}\)

bin-by-bin unfolding correction applied, to compare to “truth b jets”, true b-hadron within R=0.3
Measurement: Inclusive b-jet cross section at $\sqrt{s} = 7$ TeV

\[
\frac{d^2\sigma_b}{dp_T dy} = \frac{1}{\Delta p_T \Delta y} \frac{N_b \cdot frac_b}{\varepsilon_{trig} \cdot \varepsilon_{sel} \cdot \varepsilon_{btag} \cdot \mathcal{L}} \times C
\]

Number of events tagged by SV0 b-tagging algorithm...

... and fraction of those events, which are b-jets

Efficiencies: trigger ($> 98\%$), jet reconstruction and selection, b-tagging

Integrated luminosity for triggers: 3.0 ± 0.1 pb$^{-1}$

bin-by-bin unfolding correction applied, to compare to “truth b jets”, true b-hadron within $R=0.3$
Number of b-tagged events...

- Weight of SV0 b-tagger: signed decay length significance $L/\sigma(L)$

- Excess in data: tracking performance difference between data and MC.

- But: affects light jets with small SV0 weight.

- Next: what is the fraction of b-jets in data?

- Like before, MC derived templates fitting to data

\[L/\sigma(L) > 5.72 \]
... and fraction of b-jets

- SV0 vertex mass
- Templates of light, charm and b-jets (single jets)
 - Log-likelihood fit to data, stat. uncertainty in data and MC templates
 - two example fits...
- Sum of SV0 vertex mass
- Templates of b and non-b jets (di-jets)

Figure:
- **Single b-jet:**
 - SV0 mass for weight > 5.72 [GeV]
 - $40 \text{ GeV} \leq p_T < 60 \text{ GeV}, 0.0 \leq |y| < 0.3$
 - ATLAS Preliminary
 - $n_l = 270^{+53}_{-49}$
 - $n_c = 519^{+105}_{-96}$
 - $n_b = 1197^{+96}_{-88}$
 - $\chi^2/\text{DoF} = 19.7/23$
 - Fit prob. = 0.66

- **Di-jets:**
 - Sum vertex mass [GeV]
 - $\chi^2/\text{DoF}: 65.0/23$
 - b-frac: 0.75 ± 0.02
 - Data10, b-template, not b-template
b-tagging efficiencies

- Efficiency estimated using p_T^{rel} method using sample with muons

![Graph showing b-tagging efficiencies vs. Jet p_T and bb dijet mass](ATLAS-CONF-2011-056)
Inclusive b-jet cross section

- Main uncertainties: jet energy scale and b-tagging efficiency and purity
- POWHEG (NLO): broad agreement, but drop steeper in MC
- Pythia (LO): normalization scaled by 0.52 (note expected to get norm. correct), shape well described

(Atlas-CONF-2011-056)
Ratio of b- to any jet cross section

- Main uncertainties: b-tagging efficiency and purity
- POWHEG (NLO): underestimates fraction of b-jets by approx. 30% ($\approx 1\sigma$)
- Pythia (LO) is closer

Inclusive bb di-jet cross section

- Analysis dominated by statistics
- Pythia 6 (LO): shape well described
- POWHEG (NLO): somehow higher bb cross section predicted
Conclusions

• Inclusive b-jet cross section measured as a function of jet transverse momentum and rapidity, based on secondary vertex method
• Inclusive $b\bar{b}$ di-jet cross section measured as a function of the invariant di-jet mass
• Measurements dominated by uncertainties of...
 • b-jet energy scale, b-tagging
• Unfolding corrections to compare with Pythia (LO) and POWHEG (NLO)
 • Shape of differential distribution rather well described
 • POWHEG underestimates ratio of b-jets to inclusive jets by 30%

 • more details:
Outlook

• Coming soon, same analysis with all 2010 data

• 2011 data
 • improved b-tagging, e.g. identify two b’s in one jet
 • improvement in handling close-by pixel hits
 • improvement in reconstructing high-p_T b-jets

• more details:
Backup

- Track & vertex reconstruction:
 - $p_T > 400$ MeV, 6 silicon cluster requirements
 - 10 tracks in the primary vertex
 - Iterative secondary vertex reconstruction
- Jet reconstruction:
 - Starting with topological clusters
 - Anti-kT algorithm with R=0.4
- Muon reconstruction
 - Combined muon reconstruction, starting from stand-alone muons
 - Combination of muon tracks and Inner Detector tracks
Backup

• Fractional systematic uncertainties in single b-jet cross section
Backup

- Systematics in b-tagging

<table>
<thead>
<tr>
<th>Source</th>
<th>Relative Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$25 < p_T^{jet} < 40$ GeV</td>
</tr>
<tr>
<td>Modelling of the b-hadron direction</td>
<td>6%</td>
</tr>
<tr>
<td>Non-b-jet templates</td>
<td>6%</td>
</tr>
<tr>
<td>Jet p_T spectrum</td>
<td>6%</td>
</tr>
<tr>
<td>Scale factor for inclusive b-jets</td>
<td>5%</td>
</tr>
<tr>
<td>p_T^{rel} template statistics</td>
<td>2%</td>
</tr>
<tr>
<td>Modelling of b-decays</td>
<td>1.3%</td>
</tr>
<tr>
<td>Fake muons in b-jets</td>
<td>0.7%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>0.2%</td>
</tr>
<tr>
<td>Modelling of b-production</td>
<td>0.2%</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>12%</td>
</tr>
</tbody>
</table>
Backup

• Mistag rate in b-tagging
Backup

- Discrepancy between Data and MC, closer look at vertex mass...