DIRECT PHOTON PRODUCTION AT RHIC

Yoki Aramaki
for the PHENIX Collaboration
RIKEN
PANIC11@MIT, USA
July 24-29th, 2011
Direct photon

- Direct $\gamma = \text{Inclusive } \gamma - \text{hadron decay } \gamma$
- Passes through the medium without the strong interaction
 - High $p_T (>5 \text{ GeV}/c)$: hard scattering ($R_{AA} \sim 1: N_{\text{coll}}$ scaling works)
 - Low $p_T (p_T < 3 \text{ GeV}/c)$: Thermal radiation from hadron and QGP phases (Include fruitful information from QGP)
- Difficulty of measurement
 - Most of measured photons are from hadron decay products.
 - Photons from all stages after collisions are detected.

\[R_{AA} = \frac{dN_{\text{AA}}}{d^4p_{\text{dy}}} \Bigg/ \left(\langle N_{\text{coll}} \rangle \frac{dN_{\text{pp}}}{d^4p_{\text{dy}}} \right) \]

Direct photon spectra
Centrality dependence of direct photon yield

- **p+p**
 - Consistent with NLO pQCD
- **Au+Au**
 - Excess at \(p_T < 3 \text{ GeV/c} \)
 - Exponential shape (consistent with thermal)
 - Centrality dependence of inverse slope is small.

Inverse slope

\[
A \exp\left(-\frac{p_T}{T}\right) + T_{AA} \times A_{pp} (1 + \frac{p_T^2}{b})^{-n}
\]

<table>
<thead>
<tr>
<th>Centrality</th>
<th>(dN/dy (p_T > 1 \text{ GeV/c}))</th>
<th>(T) (MeV)</th>
<th>(\chi^2/\text{DOF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–20%</td>
<td>1.50 ± 0.23 ± 0.35</td>
<td>221 ± 19 ± 19</td>
<td>4.7/4</td>
</tr>
<tr>
<td>20–40%</td>
<td>0.65 ± 0.08 ± 0.15</td>
<td>217 ± 18 ± 16</td>
<td>5.0/3</td>
</tr>
<tr>
<td>Min. Bias</td>
<td>0.49 ± 0.05 ± 0.11</td>
<td>233 ± 14 ± 19</td>
<td>3.2/4</td>
</tr>
</tbody>
</table>

Direct photon spectra at $d+$Au and $p+p$

- Excess in $d+$Au?
 - No exponential excess
- High-p_T direct photon results from PHENIX and STAR
 - $d+$Au
 - Agree with T_{AB} scaled pQCD
 - consistent with PHENIX and STAR
 - $p+p$
 - Agree with pQCD and PHENIX
- Low-p_T direct photon
 - No publication data at STAR
System size dependence of γ fraction

- γ fraction = $\text{Yield}_{\text{direct}} / \text{Yield}_{\text{inclusive}}$
- Largest excess above pQCD is seen at Au+Au.
Initial temperature at Au+Au

- Initial temperature T_i
 - $300 \sim 600$ MeV (different assumptions)
 - Depends on thermalization time τ_0

$T_c \sim 170$ MeV from lattice QCD

Theory calculations:
d’Enterria, Peressounko, EPJ46, 451
Huovinen, Ruuskanen, Rasanen, PLB535, 109
Srivastava, Sinha, PRC 64, 034902
Turbide, Rapp, Gale, PRC69, 014903
Liu et al., PRC79, 014905
Alam et al., PRC63, 021901(R)
Direct photon v_2
Expectation of direct photon v_2

- Thermal photon in quark matter
 - $v_2 > 0$ at low p_T
 - $v_2 \sim 0$ at high p_T
- Thermalization time τ_0
 - Early (smaller v_2)
 - Late (larger v_2)
- Constrain τ_0
 - Measure v_2 at low p_T

Chatterjee, Srivastava, PRC79, 021901 (2009)
Inclusive photon v_2

Calculation of direct photon v_2

$=\text{inclusive photon } v_2$
- background photon $v_2(\pi^0, \eta, \ldots)$

$\gamma = R \cdot v_2^{inc.} - v_2^{BG}$

$V_2^{dir.} = \frac{R \cdot v_2^{inc.} - v_2^{BG}}{R - 1}$
Check for hadron contamination

- Direct measurement (black)
 - Identify photons with EMCals
 - Contain hadronic source at low \(p_T \)
- External conversions (blue)
 - Identify electron pair \((\gamma \rightarrow e^+e^-) \) from gamma conversion
- Good agreement at low \(p_T \)
 - No hadronic contamination
Inclusive photon and $\pi^0 \nu_2$

- $\pi^0 \nu_2$
- similar to inclusive photon ν_2
- Two interpretations
 - There are no direct photons
 - Direct photon ν_2 is similar to inclusive photon ν_2
Direct photon v_2

- v_2 at low p_T
 - $\approx 15\%$ at $p_T=2.5\text{GeV/c}$
- v_2 goes to 0 at high p_T
 - Hard scattered photons dominate
Theory Comparison: Direct photon v_2

- Larger v_2 than the prediction
 - Data: ~15% at $p_T=2.5\text{GeV}/c$
 - Model: ~5% at $p_T=2.5\text{ GeV}/c$
- Need help from theorists
 - There are not any models to reproduce the data
 - To constrain τ_0 with the improved models

Model: Chatterjee, Srivastava PRC79, 021901 (2009)
Data: PHENIX, arXiv:1105.4126
Centrality dependence of direct photon v_2

- **High p_T (p_T > 5 GeV/c)**
 - $v_2 \sim 0$ (independent of centrality)
 - Consistent with STAR results within large error.

- **Low p_T (p_T < 3 GeV/c)**
 - Inconclusive centrality dependence

PHENIX, arXiv:1105.4126

STAR, arXiv:1008.4894
Summary

• Direct photon yield
 • Large excess at $p_T<3$ GeV/c (big result at RHIC)
 • Not initial state effects
 • $T_i = 300-600$ MeV from hydro calculation
 • Above critical temperature (170 MeV) from lattice QCD calculation

• Direct photon ν_2
 • Large positive ν_2 at low $p_T(<3$ GeV/c)
 • Model underestimates the data
 • We expect the improvement of model to constrain τ_0
 • $\nu_2 \sim 0$ at high $p_T(>5-6$ GeV/c)
 • Photons from hard scatterings are dominant source
 • Consistent with the interpretation of direct photon $R_{AA} \sim 1$
Backups

Systematic error of direct photon \(v_2 \)

<table>
<thead>
<tr>
<th>Source</th>
<th>1–3(\text{GeV/c})</th>
<th>10–16(\text{GeV/c})</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusive (\gamma) (v_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remaining hadrons</td>
<td>2.2%</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>(v_2) extraction method</td>
<td>0.4%</td>
<td>0.6%</td>
<td>B</td>
</tr>
<tr>
<td>(\pi^0) (v_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>particle ID</td>
<td>3.7%</td>
<td>6.0%</td>
<td>A</td>
</tr>
<tr>
<td>normalization</td>
<td>0.4%</td>
<td>7.2%</td>
<td>A</td>
</tr>
<tr>
<td>shower merging direct (\gamma)</td>
<td>N/A</td>
<td>4.0%</td>
<td>B</td>
</tr>
<tr>
<td>(R_{\gamma})</td>
<td>3.1%</td>
<td>22%</td>
<td>A</td>
</tr>
<tr>
<td>common reaction plane</td>
<td>6.3%</td>
<td>6.3%</td>
<td>C</td>
</tr>
</tbody>
</table>

TABLE I: Representative values of systematic uncertainties contributing to the direct photon \(v_2 \) measurement, shown for various \(p_T \) ranges for minimum bias collisions.

PHENIX, arXiv:1105.4126
Comparison with other models

PHENIX Experiment: arXiv:1105.4126

From Vicki’s slide
@ EPIC meeting, Jul.6-8, 2011

Holopainen, Räsänen, Eskola, arXiv:1104.5371v1

Thanks to J. Nagle