Searches for physics beyond the standard model at the Tevatron and the LHC

Peter Wittich
Cornell University
For the ATLAS, D0, CMS and CDF collaborations

PANIC '11
Particle Physics in one slide: Standard Model

- All matter is made up of spin $\frac{1}{2}$ fermions: quarks and leptons
- Four forces
 - (Gravity)
 - Electromagnetic
 - Weak
 - Strong
- Forces from spin 1 gauge bosons
 - γ, Z, W, g

Standard model tested to high precision
Particle Physics in one slide: Standard Model

- All matter is made up of spin ½ fermions: quarks and leptons
- Four forces:
 - (Gravity)
 - Electromagnetic
 - Weak
 - Strong
- Forces from spin 1 gauge bosons: \(\gamma, Z, W, g \)

Over the last 20 years, we have developed an orderly and elegant view of the universe: the "Standard Model of Elementary Particle Physics”

Extensively tests at current collider experiments: no experimental evidence contradicts it! (***)

Standard model tested to high precision
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Fit</th>
<th>O_{meas}</th>
<th>O_{fit}</th>
<th>I/O_{meas}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \alpha_{\text{had}}^{(5)}(m_Z)$</td>
<td>0.02758 ± 0.00035</td>
<td>0.02768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>91.1874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{had}^0 [nb]</td>
<td>41.540 ± 0.037</td>
<td>41.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_l</td>
<td>20.767 ± 0.025</td>
<td>20.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,l}$</td>
<td>0.01714 ± 0.00095</td>
<td>0.01645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{l}}(P_{\tau})$</td>
<td>0.1465 ± 0.0032</td>
<td>0.1481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066</td>
<td>0.21579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030</td>
<td>0.1723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,b}$</td>
<td>0.0992 ± 0.0016</td>
<td>0.1038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,c}$</td>
<td>0.0707 ± 0.0035</td>
<td>0.0742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{b}</td>
<td>0.923 ± 0.020</td>
<td>0.935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{c}</td>
<td>0.670 ± 0.027</td>
<td>0.668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{l}}(\text{SLD})$</td>
<td>0.1513 ± 0.0021</td>
<td>0.1481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sin^2\theta_{\text{eff}}^{\text{lept}}(Q_{\text{fb}})$</td>
<td>0.2324 ± 0.0012</td>
<td>0.2314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.399 ± 0.023</td>
<td>80.379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.085 ± 0.042</td>
<td>2.092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.3 ± 1.1</td>
<td>173.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

July 2010
Measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \alpha^{(5)}_{\text{had}}(m_Z)$</td>
<td>0.0275</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.187</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.495</td>
</tr>
<tr>
<td>σ^0_{had} [nb]</td>
<td>41.54</td>
</tr>
<tr>
<td>R_l</td>
<td>20.76</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,l}$</td>
<td>0.0171</td>
</tr>
<tr>
<td>$A_{\text{fb}}^l(P_\tau)$</td>
<td>0.146</td>
</tr>
<tr>
<td>R_b</td>
<td>0.2162</td>
</tr>
<tr>
<td>R_c</td>
<td>0.172</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,b}$</td>
<td>0.099</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,c}$</td>
<td>0.070</td>
</tr>
<tr>
<td>A_b</td>
<td>0.92</td>
</tr>
<tr>
<td>A_c</td>
<td>0.67</td>
</tr>
<tr>
<td>$A_{\text{fb}}^l(SLD)$</td>
<td>0.151</td>
</tr>
<tr>
<td>$\sin^2 \theta_{\text{eff}}^{\text{lept}}(Q_{\text{fb}})$</td>
<td>0.232</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.39</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.08</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.00</td>
</tr>
</tbody>
</table>

July 2010
One missing piece:
Standard model does not predict masses for the bosons and fermions.
The Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism provides a solution
→ W and Z bosons acquire mass
→ photons does not
→ fermions can be made massive.
Predicts a spin-0 boson (Higgs) with unknown mass.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta\alpha^{(5)}_{\text{had}}(m_Z)$</td>
<td>0.0275</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.187</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.495</td>
</tr>
<tr>
<td>σ^0_{had} [nb]</td>
<td></td>
</tr>
<tr>
<td>R_i</td>
<td></td>
</tr>
<tr>
<td>$A^{0,l}_{\text{fb}}$</td>
<td></td>
</tr>
<tr>
<td>$A_l(P_{\tau})$</td>
<td></td>
</tr>
<tr>
<td>R_b</td>
<td></td>
</tr>
<tr>
<td>R_c</td>
<td></td>
</tr>
<tr>
<td>$A^{0,b}_{\text{fb}}$</td>
<td></td>
</tr>
<tr>
<td>$A^{0,c}_{\text{fb}}$</td>
<td></td>
</tr>
<tr>
<td>A_b</td>
<td></td>
</tr>
<tr>
<td>A_c</td>
<td></td>
</tr>
<tr>
<td>$A_l(SLD)$</td>
<td></td>
</tr>
<tr>
<td>$\sin^2\theta_{\text{eff}}^{\text{lept}}$ (CDF)</td>
<td>0.2324 ± 0.0012</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.39</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.08</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>173.</td>
</tr>
</tbody>
</table>

July 2010
The Dark Side

We know _almost everything_ about _almost nothing_

- Astrophysics observation (WMAP, Supernovae…) indicates that SM can only account for 4% of the composition of the Universe

- 96%
 - Dark Matter
 - Dark Energy

What’s going on?
New physics motivation from an exp. POV

Two Major Drivers:

• Dark Matter from Cosmology
 • heavy, long-lived neutral particle

• Hierarchy Problem
 • scale for new physics around 1 TeV
New physics motivation from an exp. POV

Two Major Drivers:

- Dark Matter from Cosmology
 - heavy, long-lived neutral particle

- Hierarchy Problem
 - scale for new physics around 1 TeV
New physics motivation from an exp. POV

Two Major Drivers:

- Dark Matter from Cosmology
 - heavy, long-lived neutral particle
- Hierarchy Problem
 - scale for new physics around 1 TeV

→ Large Hadron Collider (and Tevatron) fits the bill to explore particles with properties and mass scale
→ We’re in the right place at the right time.
Direct searches vs indirect searches

- Two complementary methods to search for new physics
- Direct searches: look for decays of non-virtual particles decaying
- Indirect searches: look for evidence in interference with SM processes
 - Probe mass scales much higher than you can directly produce
- Precision test of SM physics looking for discrepancies between SM prediction and data via off-mass-shell weakly produces particles
 - Intensity frontier at FNAL, B factories, **LHCb at LHC**, ...
- Main focus in this talk: Direct searches.
Supersymmetry: Grand Dame of NP models

- Based on fundamental symmetries
- Hierarchy Problem solved
- How: double particle spectrum
 - Worked before: postulate positron for quantum mechanics
- Introduce “super-partners” of diff spin
 - Makes theory self-consistent
 - Also provides dark matter candidate
- But: where are they?
 - Mass of positron = Mass electron
 - But not so for missing selectron
 - SUSY is a broken symmetry

- SUSY partners should be visible at Tevatron/LHC

\[
\begin{array}{|c|c|}
\hline
\text{Particle} & \text{Super-partner} \\
\hline
e,\nu,u,d & \tilde{e},\tilde{\nu},\tilde{u},\tilde{d} \\
\hline
\gamma,W,Z,h & \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}, \tilde{\chi}_1^0 \ldots \tilde{\chi}_4^0 \\
\hline
\end{array}
\]

Dark Matter Candidate
Many other models exist too...

• Large Extra Dimensions:
 • Another formulation of the Hierarchy problem: why is Gravity so weak?
• Universal Extra Dimensions:
 • Models of many extra dimensions can mimic SUSY in some of the phenomenology
• Hidden Valley:
 • How to explain the apparent lack of new physics in the Tevatron and LEP data? They’re in a hidden sector
• Technicolor models of EWK symmetry breaking...

• No questioning the fertile imagination of today’s theory community!
Many other models exist too...

- Large Extra Dimensions:
 - Another formulation of the Hierarchy problem: why is Gravity so weak?
- Universal Extra Dimensions:
 - Models of many extra dimensions can mimic SUSY in some of the phenomenology
- Hidden Valley:
 - How to explain the apparent lack of new physics in the Tevatron and LEP data? They’re in a hidden sector
- Technicolor models of EWK symmetry breaking...

- No questioning the fertile imagination of today’s theory community!
Many other models exist too...

- Large Extra Dimensions:
 - Another formulation of the Hierarchy problem: why is Gravity so weak?
- Universal Extra Dimensions:
 - Models of many extra dimensions can mimic SUSY in some of the phenomenology
- Hidden Valley:
 - How to explain the apparent lack of new physics in the Tevatron and LEP data? They're in a hidden sector
- Technicolor models of EWK symmetry breaking...

- No questioning the fertile imagination of today's theory community!
The cast of characters

LHC

ATLAS
The cast of characters

CMS
Tevatron: CDF and D0

- Run 2 experiments very similar
 - strong central tracking in solenoidal field ($\eta \sim 1-2$), Si innermost
 - good hermetic calorimetry (em & had, $\eta \sim 2-2.5$)
 - extensive muon coverage ($\eta \sim 1-2$)
 - sophisticated trigger and DAQ systems to collect interesting events
- Very similar performance as measured by physics results
LHC: ATLAS and CMS

- Next generation - learn from previous hadron collider experiments
- Higher performance detectors
 - Better coverage:
 - Central tracking coverage out to $|\eta|<2.5$ (incl muons)
 - Calorimeter coverage to $|\eta|<5$
 - Finer segmentation in all areas
 - Handle more demanding conditions of LHC (7x higher energy, 10^2 x inst. lumi, ≥ 5x pileup, 5x shorter beam crossing time)
- Beautiful devices for physics measurement
Tevatron Performance

- The machine is performing very well
 - Delivering record inst. luminosities (>440E30)
 - Integrating lots of data with high efficiency (>1./fb accumulated in FY11 already)
- Today: 9/fb, results, have >11/fb in the can
- On track for another great year
- Will have more than 12/fb in can by end of Run 2 (9/30/2011)
- Tevatron will retire with an impressive list of achievements
 - Thanks to FNAL AD for their tireless works during all of Run 2!
LHC Performance

→ Accumulating >45/pb/day - more than 2010 data set!
→ Already achieved 2011 goal (1/fb); crush it by 5x
→ Possibly reach inst. design lumi this year
→ Thanks to LHC teams for their great work
The challenge - pile-up at LHC

Reach 25 soft collisions in 2011?
Many new developments

- Ever-increasing Tevatron data samples: 9/fb results today
- Fundamental change: probe of new energy scale with LHC
 - results today with \textbf{30 times} larger LHC data samples than we had six months ago
- All avenues being explored
 - direct searches
 - … in hadronic final states
 - … in leptonic final
 - … in mixed final states
 - indirect searches
 - … subtle deviations from SM
 - with many tools
 - … counting experiments
 - … sophisticated jet tools
 - … multivariate discriminators
Many new developments

• Ever-increasing Tevatron data samples: 9/fb results today
• Fundamental change: probe of new energy scale with LHC
 • results today with \textbf{30 times} larger LHC data samples than we had six months ago
• All avenues being explored
 • direct searches
 • ... in hadronic final states
 • ... in leptonic final states
 • ... in mixed final states
 • indirect searches
 • ... subtle deviations from SM
• with many tools
 • ... counting experiments
 • ... sophisticated jet tools
 • ... multivariate discriminators

Some hints - but no smoking guns yet.
Many new developments

- Ever-increasing Tevatron data samples: 9/fb results today
- Fundamental change: probe of new energy scale with LHC
 - results today with **30 times** larger LHC data samples than we had six months ago
- All avenues being explored
 - direct searches
 - ... in hadronic final states
 - ... in leptonic final states
 - ... in mixed final states
 - indirect searches
 - ... subtle deviations from SM
 - with many tools
 - ... counting experiments
 - ... sophisticated jet tools
 - ... multivariate discriminators

Shown is a sampling of all the results now available. Many more not covered!
Much more to be seen, esp from ATLAS & CMS

<table>
<thead>
<tr>
<th>Additional NEW CMS RESULTS</th>
<th>Additional New ATLAS Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXO-11-015 dijet bump hunt</td>
<td>ATLAS-CONF-2011-097 $W+2$jet bumps 1/fb</td>
</tr>
<tr>
<td>EXO-11-002 Heavy v, right-handed W'</td>
<td>ATLAS-CONF-2011-087 $ttbar$ resonances $l +$ jets 200/pb</td>
</tr>
<tr>
<td>EXO-11-071 black holes</td>
<td>ATLAS-CONF-2011-095 dijet bump hunt 0.81/fb</td>
</tr>
<tr>
<td>EXO-11-037 RS Gravitons</td>
<td>ATLAS-CONF-2011-096 monojet + met 1/fb</td>
</tr>
<tr>
<td>EXO-11-051 t pairs in lepton + jets</td>
<td>ATLAS-CONF-2011-098 $bjets +$ met 0.83/fb</td>
</tr>
<tr>
<td>EXO-11-022 HSCP</td>
<td>EPS dilepton resonances 1.2/fb</td>
</tr>
<tr>
<td>EXO-11-020 stopped HSCP</td>
<td>ATLAS-CONF-2011-091 Same-sign dileptons 35/pb</td>
</tr>
<tr>
<td>SUS-11-010 LSDIL + MET + jets(e, μ, τ)</td>
<td>ATLAS-CONF-2011-109 $e\mu$ resonances 0.87/fb</td>
</tr>
<tr>
<td>SUS-11-017 Z+met</td>
<td>EPS $W'\rightarrow \ell \nu$ 1/fb</td>
</tr>
<tr>
<td>SUS-11-011 OS DIL + MET</td>
<td>arXiv:1107.0561 $\gamma + \gamma +$ MET 35/pb</td>
</tr>
</tbody>
</table>

Complete list of results is available at the following URL's:
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic
Strongly produced particles: Probes with jet pairs

- Strong production is among the most sensitive probes at hadron colliders
- LHC is now probing new regimes
- Look for resonant production of new particles
 - excited quarks, contact interaction, …
- Sensitive to substructure of the quarks
 - Eg, excitations due to composite nature of quarks
 - Modern equivalent of classic Rutherford scattering experiment

\[\sqrt{s} = 7 \text{ TeV}, \int L dt = 0.81 \text{ fb}^{-1} \]

- Data
- Fit
- \(q^*(1000) \)
- \(q^*(1700) \)
- \(q^*(2750) \)

ATLAS Preliminary
Strongly produced particles:

Probes with jet pairs

- Strong production is among the most sensitive probes at hadron colliders
- LHC is now probing new regimes
- Look for resonant production of new particles
 - excited quarks, contact interaction, …
- Sensitive to substructure of the quarks
 - Eg, excitations due to composite nature of quarks
 - Modern equivalent of classic Rutherford scattering experiment

$E_T = 4\text{ TeV}$
Strongly produced particles:
Probes with jet pairs

- Strong production is among the most sensitive probes at hadron colliders
- LHC is now probing new regimes
- Look for resonant production of new particles
 - excited quarks, contact interaction, ...
- Sensitive to substructure of the quarks
 - Eg, excitations due to composite nature of quarks
 - Modern equivalent of classic Rutherford scattering experiment

![Graph showing 95% C.L. Limit on σA [pb] vs. Mass [GeV] with legend for σ_{Gaussian}/mean with $\sqrt{s} = 7$ TeV, $\int L dt = 0.81$ fb$^{-1}$]
Strongly produced particles:

Probes with jet pairs

- Strong production is among the most sensitive probes at hadron colliders
- LHC is now probing new regimes
- Look for resonant production of new particles
 - excited quarks, contact interaction, …
- Sensitive to substructure of the quarks
 - Eg, excitations due to composite nature of quarks
 - Modern equivalent of classic Rutherford scattering experiment
Strongly produced particles:

Probes with jet pairs

- Strong production is among the most sensitive probes at hadron colliders
- LHC is now probing new regimes
- Look for resonant production of new particles
 - excited quarks, contact interaction, …
- Sensitive to substructure of the quarks
 - Eg, excitations due to composite nature of quarks
 - Modern equivalent of classic Rutherford scattering experiment

![Mass vs. 95% C.L. Limit on σxA [pb]](image)

CMS EXO-11-015: 1.1/fb

ATL-CONF-2011-095
Events with one jet (Monojet)

- Most basic new physics signature: single high-pt jet with large missing energy
 - Example: LED signature
 - EWK vs Planck scales
 - qg→Gq, gg→Gg, qq→Gg
 - Graviton G escapes into ED, giving MET
- Main background:
 - Z(→νν) + jets
 - data-driven estimate
- Interpret null result in terms of ADD:
 - number of extra dimensions
 - MD (mass of higher-dim scale)

1/fb!
Events with one jet (Monojet)

- Most basic new physics signature: single high-\(p_T\) jet with large missing energy
 - Example: LED signature
 - EWK vs Planck scales
 - \(qg \rightarrow Gq, \; gg \rightarrow Gg, \; qq \rightarrow Gg\)
 - Graviton \(G\) escapes into ED, giving MET
- Main background:
 - \(Z(\rightarrow \nu \nu) + \) jets
 - data-driven estimate
- Interpret null result in terms of ADD:
 - number of extra dimensions
 - MD (mass of higher-dim scale)

\[1/\text{fb}\]
Events with one jet (Monojet)

- Most basic new physics signature: single high-pt jet with large missing energy
 - Example: LED signature
 - EWK vs Planck scales
 - $qg \rightarrow Gq$, $gg \rightarrow Gg$, $qq \rightarrow Gg$
 - Graviton G escapes into ED, giving MET
- Main background:
 - $Z(\rightarrow \nu\nu) + \text{jets}$
 - data-driven estimate
- Interpret null result in terms of ADD:
 - number of extra dimensions
 - MD (mass of higher-dim scale)

$1/fb!$
SUSY golden channel: jets + met

- Search for generic squarks and gluinos (1st two families)
 - jets + LSP in final state
- ATLAS new results: 1/fb
- Split signal region into 2, 3, ≥ 4 jets to target different decay modes
- Bkgnds: $Z(\rightarrow \nu\nu)+jets + W(\rightarrow \ell\nu)$ dominant
 - Estimates from data+MC combination

Signal Region

<table>
<thead>
<tr>
<th>E_T^{miss}</th>
<th>≥ 2 jets</th>
<th>≥ 3 jets</th>
<th>≥ 4 jets</th>
<th>High mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading jet p_T</td>
<td>> 130</td>
<td>> 130</td>
<td>> 130</td>
<td>> 130</td>
</tr>
<tr>
<td>Second jet p_T</td>
<td>> 40</td>
<td>> 40</td>
<td>> 40</td>
<td>> 80</td>
</tr>
<tr>
<td>Third jet p_T</td>
<td>−</td>
<td>> 40</td>
<td>> 40</td>
<td>> 80</td>
</tr>
<tr>
<td>Fourth jet p_T</td>
<td>−</td>
<td>−</td>
<td>> 40</td>
<td>> 80</td>
</tr>
<tr>
<td>$\Delta\phi$ (jet, E_T^{miss})$_{min}$</td>
<td>> 0.4</td>
<td>> 0.4</td>
<td>> 0.4</td>
<td>> 0.4</td>
</tr>
<tr>
<td>E_T^{miss}/m_{eff}</td>
<td>> 0.3</td>
<td>> 0.25</td>
<td>> 0.25</td>
<td>> 0.2</td>
</tr>
<tr>
<td>m_{eff} [GeV]</td>
<td>> 1000</td>
<td>> 1000</td>
<td>> 500/1000</td>
<td>> 1100</td>
</tr>
</tbody>
</table>

Diagrams

- Squark-squark
- Gluino-squark
- Gluino-gluino

ATLAS-CONF-2011-086 (165/pb, paper in preparation)
ATLAS jets + met: Consistent with SM

- Extract final counts with likelihood fit, no BSM signal observed
- Sensitive to cross sections $O(20 \text{ fb})$
- Set limits in a simplified low-mass model (assume $m_{n1}=0 \text{ GeV}$)
ATLAS jets + met: Consistent with SM

- Extract final counts with likelihood fit, no BSM signal observed
- Sensitive to cross sections $O(20 \text{ fb})$
- Set limits in a simplified low-mass model (assume $m_{n1}=0 \text{ GeV}$)

Signal Region

<table>
<thead>
<tr>
<th>Process</th>
<th>≥ 2-jet</th>
<th>≥ 3-jet</th>
<th>≥ 4-jet, $m_{\text{eff}} > 500 \text{ GeV}$</th>
<th>≥ 4-jet, $m_{\text{eff}} > 1000 \text{ GeV}$</th>
<th>High mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/\gamma + \text{jets}$</td>
<td>$32.5 \pm 2.6 \pm 6.8$</td>
<td>$25.8 \pm 2.6 \pm 4.9$</td>
<td>$208 \pm 9 \pm 37$</td>
<td>$16.2 \pm 2.1 \pm 3.6$</td>
<td>$3.3 \pm 1.0 \pm 1.3$</td>
</tr>
<tr>
<td>$W + \text{jets}$</td>
<td>$26.2 \pm 3.9 \pm 6.7$</td>
<td>$22.7 \pm 3.5 \pm 5.8$</td>
<td>$367 \pm 30 \pm 126$</td>
<td>$12.7 \pm 2.1 \pm 4.7$</td>
<td>$2.2 \pm 0.9 \pm 1.2$</td>
</tr>
<tr>
<td>$t\bar{t}$ Single Top</td>
<td>$3.4 \pm 1.5 \pm 1.6$</td>
<td>$5.6 \pm 2.0 \pm 2.2$</td>
<td>$375 \pm 37 \pm 74$</td>
<td>$3.7 \pm 1.2 \pm 2.0$</td>
<td>$5.6 \pm 1.7 \pm 2.1$</td>
</tr>
<tr>
<td>QCD jets</td>
<td>$0.22 \pm 0.06 \pm 0.24$</td>
<td>$0.92 \pm 0.12 \pm 0.46$</td>
<td>$34 \pm 2 \pm 29$</td>
<td>$0.74 \pm 0.14 \pm 0.51$</td>
<td>$2.10 \pm 0.37 \pm 0.83$</td>
</tr>
<tr>
<td>Total</td>
<td>$62.3 \pm 4.3 \pm 9.2$</td>
<td>$55 \pm 3.8 \pm 7.3$</td>
<td>$984 \pm 39 \pm 145$</td>
<td>$33.4 \pm 2.9 \pm 6.3$</td>
<td>$13.2 \pm 1.9 \pm 2.6$</td>
</tr>
<tr>
<td>Data</td>
<td>58</td>
<td>59</td>
<td>1118</td>
<td>40</td>
<td>18</td>
</tr>
</tbody>
</table>
ATLAS jets + met: Consistent with SM

- Extract final counts with likelihood fit, no BSM signal observed
- Sensitive to cross sections $\mathcal{O}(20 \, \text{fb})$
- Set limits in a simplified low-mass model (assume $m_{n1} = 0$ GeV)

$$m_{\tilde{g}} (m_{\tilde{q}}) > 800 \ (850) \ \text{GeV} \ \text{for} \ m_{\tilde{q}} (m_{\tilde{g}}) < 2 \ \text{TeV}$$

$$m_{\tilde{g}} > 1075 \ \text{GeV} \ \text{for} \ m_{\tilde{g}} = m_{\tilde{q}}$$
CMS: attack same problem using α_T

- Look for events with high H_T
 - interaction’s q^2
- Same signature as ATLAS search:
 - but use new discriminating variable
- Main background to preselection: mis-measured $2\rightarrow 2$ QCD dijet production
 - Suppress with α_T variable (orig: Randall & Tucker), $\Delta\Phi^*$
 - $\alpha_T > 0.55$
- Small residual dijet contamination estimated from data
α\textsubscript{T}: New Physics in dijets

- Same backgrounds
- W+jets
 - derive from tagged \(W \rightarrow \mu \nu \)
- Z(→ ν ν)+jets
 - derive from γ + jets
- Evaluate result in bins of \(H_T \) (like \(q^2 \))
- Null result, interpret in mSugra SUSY model

\[
H_T = \sum_i E_T^i
\]

\[
\alpha_T \equiv \frac{E_T^{\text{jet}2}}{M_T^{1,2}}
\]
\(\alpha_T: \) New Physics in dijets

- Same backgrounds
- \(W + \text{jets} \)
 - derive from tagged \(W \rightarrow \mu \nu \)
- \(Z(\rightarrow \nu \nu) + \text{jets} \)
 - derive from \(\gamma + \text{jets} \)
- Evaluate result in bins of \(H_T \) (like \(q^2 \))
- Null result, interpret in mSugra SUSY model

\[
H_T = \sum_i E_T^{i}\]

\[
\alpha_T \equiv \frac{E^{\text{jet}_2}_T}{M_T^{1,2}}
\]
\(\alpha_T \): New Physics in dijets

- Same backgrounds
- \(W+\text{jets} \)
 - derive from tagged \(W \to \mu \nu \)
- \(Z(\to \nu \nu)+\text{jets} \)
 - derive from \(\gamma + \text{jets} \)
- Evaluate result in bins of \(H_T \) (like \(q^2 \))

- Null result, interpret in mSugra SUSY model

\[
1.1/\text{fb} \quad \text{CMS SUS-11-003}
\]

\[
H_T = \sum_i E_T^{\text{jet}_i}
\]

\[
\alpha_T \equiv E_T^{\text{jet}_2^2}/M_T^{1,2}
\]

CMS preliminary \(\alpha_T \) \(L = 1.08 \text{ fb}^{-1} \) \(\sqrt{s} = 7 \text{ TeV} \)

- 95\% C.L. Limits:
 - Observed Limit (NLO), PL
 - Median Expected Limit
 - Expected Limit \pm 1\sigma

- 50\% C.L. Limits:
 - CDF \(\tilde{g}, \tilde{g}, \tan\beta=5, \mu<0 \)
 - D0 \(\tilde{g}, \tilde{g}, \tan\beta=3, \mu<0 \)
 - LEP2 \(\tilde{\chi}_1^\pm \)
 - LEP2 \(\tilde{\tau} \)

- \(\tan\beta = 10, A_0 = 0, \mu > 0 \)

- \(\tilde{g} \) (1250 GeV)
 - \(\tilde{q} \) (1000 GeV)
 - \(\tilde{g} \) (750 GeV)
 - \(\tilde{q} \) (500 GeV)

- \(m_{1/2} \) (GeV)

- \(m_0 \) (GeV)

\[\text{1J-3, Matthias SCHROEDER} \]

\[\text{PANIC 2011} \]

- **Strong limits on SUSY model**
Third Generation is special

- Another search for squarks, this time with b quarks
 - Third family is special in many super-symmetric theories

\[pp \rightarrow \tilde{g}\tilde{g} \rightarrow \tilde{b}\tilde{b}\tilde{b}\tilde{b} \]

\[pp \rightarrow \tilde{b}\tilde{b} \]

\[\tilde{b} \rightarrow b\tilde{\chi}^0_1 \]

- Enrich b content with tagging
- Look for exactly one, and more than one b jet, lepton veto
- Test background with top-enriched control regions, lepton selection
Third Generation is special

• Another search for squarks, this time with b quarks
 • Third family is special in many super-symmetric theories

\[pp \rightarrow \tilde{g}\tilde{g} \rightarrow \tilde{b}\tilde{b}\tilde{b}\tilde{b} \]

\[pp \rightarrow \tilde{b}\tilde{b} \]

\[\tilde{b} \rightarrow b\tilde{\chi}_1^0 \]

• Enrich b content with tagging
• Look for exactly one, and more than one b jet, lepton veto
• Test background with top-enriched control regions, lepton selection
Third Generation is special

- Another search for squarks, this time with b quarks
 - Third family is special in many super-symmetric theories

\[pp \rightarrow \tilde{g}\tilde{g} \rightarrow \tilde{b}\tilde{b}\tilde{b}\tilde{b} \]

\[pp \rightarrow \tilde{b}\tilde{b} \]

\[\tilde{b} \rightarrow b\tilde{\chi}_1^0 \]

- Enrich b content with tagging
- Look for exactly one, and more than one b jet, lepton veto
- Test background with top-enriched control regions, lepton selection

- Most stringent limits to date on b squarks
$B_s \rightarrow \mu\mu$: The race is on

- BR($B \rightarrow \mu\mu$) is a sensitive model for new physics
 - very small BR in SM- btw 10^{-9} and 10^{-10} for B and B_s.
 - New Physics can enhance (or suppress)
 - SUSY: $\tan \beta$ sensitivity at sixth power
- Long history of $B \rightarrow \mu\mu$ searches, including LHC recently (LHCb very strong)

- **New Tevatron result** (CDF)
 - update to 7/fb
 - Increase μ acceptance ($0.6 < |\eta| < 1.0$)
 - improve bkgrnd discrimination NN
• First suggestion of the B_s decay?

Expected 95% CL:

\[\mathcal{B}(B_d^0 \to \mu^+\mu^-) < 4.6 \times 10^{-9} \]
\[\mathcal{B}(B_s^0 \to \mu^+\mu^-) < 1.5 \times 10^{-8} \]

Observed 95% CL:

\[\mathcal{B}(B_d^0 \to \mu^+\mu^-) < 6.0 \times 10^{-9} \]
\[\mathcal{B}(B_s^0 \to \mu^+\mu^-) < 4.0 \times 10^{-8} \]

\[\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8} \]

• Assume excess is B_s signal
Result from CDF

Expected 95% CL:
\[\mathcal{B}(B_d^0 \rightarrow \mu^+ \mu^-) < 4.6 \times 10^{-9} \]
\[\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) < 1.5 \times 10^{-8} \]

Observed 95% CL:
\[\mathcal{B}(B_d^0 \rightarrow \mu^+ \mu^-) < 6.0 \times 10^{-9} \]
\[\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) < 4.0 \times 10^{-8} \]

\[\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8} \]

- First suggestion of the B_s decay?
- See excess CC in pure region of $\nu_{NN}>0.97$; p-value assuming SM signal + bkgnd is ~2%
- Assume excess is B_s signal
Result from CDF

• First suggestion of the B_s decay?

Expected 95% CL:

\[
B(B_d^0 \to \mu^+\mu^-) < 4.6 \times 10^{-9}
\]
\[
B(B_s^0 \to \mu^+\mu^-) < 1.5 \times 10^{-9}
\]

Observed 95% CL:

\[
B(B_d^0 \to \mu^+\mu^-) < 6.0 \times 10^{-9}
\]
\[
B(B_s^0 \to \mu^+\mu^-) < 4.0 \times 10^{-8}
\]

\[
B(B_s^0 \to \mu^+\mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}
\]

LHCb and CMS also are expected to have results this week.

 excess CC in pure region of $\nu_{NN}>0.97$; p-value assuming SM signal + bkgnd is ~2%

• Assume excess is B_s signal
Final States with Gauge Bosons:

W+ 2jets - Tevatron

- $W \rightarrow \ell \nu$, $\ell = e$ or μ
- Exactly 2 jets
 - $E_T > 30$ GeV, $|\eta| < 2$
 - dijet pt > 40 GeV
- Compute invariant mass spectrum of jets and compare to expectation
 - Expectation derived from MADGRAPH event generator

- Selection dominated by signal (wjj)
 - ttbar, multi-jet

- See statistically significant excess in falling spectrum
 - Originally $>3\,\sigma$, now $>4\,\sigma$
 - Suggestive structure in background-subtracted plot

D0: We cannot confirm the CDF results

- Same event selection
 - duplicate CDF as much as possible
- Results shown both with and without dR reweighting (to mimic CDF results)

- No signal (at level of CDF result) observed in 4.3/fb of data (same L as first CDF result)
 - Rule out CDF-like excess at >3σ
 - Many tests to show sensitivity

- Experiments trying to resolve differences now; LHC also weighs in
 - ATLAS-CONF-2011-097 (null res.)
 - Still a lot of good data to mine at Tevatron!

D0: Anomalous multi-muon events

- Look at semi-lepton decays of B mesons in two ways
 - count number of same-sign pairs
 - look at overall charge in B decays

- Recently updated to 9/fb

- Discrepancy now at 3.9 σ

- Evidence for anomalous CP in B system

\[A_{sl}^{b} = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}} \]
\[a = \frac{n^{+} - n^{-}}{n^{+} + n^{-}} \]

\[A_{sl}^{b} = [-0.787 \pm 0.172\text{(stat)} \pm 0.093\text{(syst)}]\% \]

\[A_{sl}^{b}\text{(SM)} = [-0.028^{+0.005}_{-0.006}]\% \]

PANIC 2011

arXiv:1106.6308v1 (9/fb)
D0: Anomalous multi-muon events

- Look at semi-lepton decays of B mesons in two ways
 - count number of same-sign pairs
 - look at overall charge in B decays
- Recently updated to 9/fb
- Discrepancy now at 3.9 σ
- Evidence for anomalous CP in B system

\[
A_{sl}^b = [-0.787 \pm 0.172^{+0.005}_{-0.006}]\%
\]

\[
A_{sl}^b (\text{SM}) = [-0.028 \pm 0.005]\%
\]

arXiv:1106.6308v1 (9/fb)
CDF: A_{FB} in top pair production

- Hints in Tevatron data?
- Look for forward-backward asymmetry in top pair production

- Tevatron: proton-anti-proton collider
- In Standard Model, anti-top-quark is mostly along direction of anti-proton
- SM predicts a small asymmetry (6%)
- Test this in data

- Both CDF and D0 have always seen high value - now increased significance
Latest CDF results

• Look at both di-lepton and lepton + jets top channels
• Construct asymmetry variable from decay products
• Convert raw asymmetry to parton-level asymmetry and compare to prediction
• See biggest discrepancy in di-lepton at high mass

\[\Delta \eta_l = \eta_{l+} - \eta_{l-} \]
\[A^{\Delta \eta_l} = \frac{N(\Delta \eta_l > 0) - N(\Delta \eta_l < 0)}{N(\Delta \eta_l > 0) + N(\Delta \eta_l < 0)} \]

CDF Public Note 10436 (dilepton)
Latest CDF results

• Look at both di-lepton and lepton + jets top channels
• Construct asymmetry variable from decay products
• Convert raw asymmetry to parton-level asymmetry and compare to prediction
• See biggest discrepancy in di-lepton at high mass

\[A_{FB} = 0.15 \pm 0.05 \text{(raw)} \]
\[= 0.42 \pm 0.15 \text{(stat)} \pm 0.05 \text{(sys)} \]

measured vs expectation, >2 \(\sigma \) discrepancy

CDF Public Note 10436 (dilepton)
Latest CDF results

- Look at both di-lepton and lepton + jets top channels
- Construct asymmetry variable from decay products
- Convert raw asymmetry to parton-level asymmetry and compare to prediction

- See biggest discrepancy in di-lepton at high mass

$A_{FB} = 0.15 \pm 0.05 (\text{measured})$
$A_{FB} = 0.15 \pm 0.05 (\text{expectation})$

Awaiting D0 result
LHC: pp means no SM asymmetry; non-SM still visible?

$\Delta \eta_l = \eta_l^+ - \eta_l^-$

$A_{FB} = 0.42 \pm 0.15$

$LHC: pp \text{ means no SM asymmetry; non-SM still visible?}$
New Gauge Bosons

$W' \rightarrow \ell \nu$ ($\ell = e, \mu$)

- Simple search for stiff lepton and large missing momentum (MET)
- Backgrounds: extrapolate data in mT distribution to high values in both channels
 - dominant: SM $W^* \rightarrow \ell \nu$
- No excess, limits on W' in Altarelli Model (carbon copy of SM W at higher mass)

Combined limit in SSM:
Expected: $m(W') > 2.20$ TeV
Observed: $m(W') > 2.27$ TeV

413 Alexander Gude
$Z' \rightarrow ll$ (new CMS result)

- Brand new: 1.1/fb
 - data collected through June
- Very clean signature: two leptons of opposite electric charge
- Resonant production on top of Drell-Yan spectrum
 - This is dominant background
- So far no significant excess
Z' → ℓℓ (new CMS result)\[1.1/fb\]

- Brand new: 1.1/fb
 - Data collected through June
- Very clean signature: two leptons of opposite electric charge
- Resonant production on top of Drell-Yan spectrum
 - This is dominant background
- So far no significant excess
• Limit on ratio to SM Z cross section measured in data
• for SSM Z’ m>2 TeV

CMS preliminary, $\int L dt = 1.1 \text{fb}^{-1}$

- median expected
- 68\% expected
- 95\% expected
- Z'_SSM
- Z'_ψ
- $G_{KK} k/M_{Pl} = 0.1$
- $G_{KK} k/M_{Pl} = 0.05$
- 95\% C.L. limit
New development: focus on details of jets

• Fruitful area of research between theory and experiment
• Several motivations
 • better understanding of jets (cone vs sequential recombination)
 • how to deal with very boosted objects at LHC
• Result:
 • many new tools to best get back at parton-level information
• See Sal Rapoccio’s, D. Krohn’s talks in parallel, Gavin Salam’s talk in plenary
CMS: look for high-p_T tail of the $Z' \rightarrow ttbar$ signal

- At higher momenta: top merged into “fat jets”
- Utilize “top tagger” to look for such boosted jets
- Hadronic-$ttbar$: 6 jets, 2 b’s, single-jet trigger (>240 GeV)
- Break jets apart; look for sub-jets of merged top (bqqbar’) or merged W only (qqbar’); check mass against hypothesis
- Only consider events consistent with ttbar-enhancing selection
- 60% efficiency for ttbar $p_T>600$ GeV
- A difficult, background-dominated measurement! (ttbar and qcd)
CMS: look for high-\(p_T\) tail of the \(Z' \rightarrow \text{ttbar}\) signal
Testing higher-mass $Z' \rightarrow \text{t}\text{t}\overline{\text{b}}\overline{\text{b}}$

- Perform counting experiment in mass bins; no excess observed in 886/pb

- As a result: sensitive to higher-mass Z' signals
 - Sub-pb sensitivity for masses above 1 TeV
 - No sensitivity below 1 TeV
 - Complementary to ATLAS result on $Z' \rightarrow \text{t}\text{t}\overline{\text{b}}\overline{\text{b}}$ w/traditional jet techniques (ATL-CONF-2011-087)

- Demonstration of jet substructure methodology in action
ATLAS: new physics with *lepton jets* (40/pb)

- Leptonic decay of light, highly boosted new particles lead to *lepton jets*
 - Example: dark photons in Hidden Valley scenarios
 - Cosmic ray results?
 - → collimated, isolated leptons
- Challenge: separate these from QCD
 - Estimate from data (J/Ψ, Υ)
 - Isolation controls QCD
- Good prospect for future measurements with more data

Table

<table>
<thead>
<tr>
<th></th>
<th>$\geq 4\mu$</th>
<th>+3 HQ</th>
<th>2 LJ</th>
<th>Isol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>246</td>
<td>84</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>expect.</td>
<td>200 ± 50</td>
<td>81 ± 20</td>
<td>1.74 ± 0.48</td>
<td>0.20 ± 0.19</td>
</tr>
</tbody>
</table>

CMS: EXO-11-013
D0: PRL 105, 211802 (2011)
ATLAS: new physics with **lepton jets** (40/pb)

- Leptonic decay of light, highly boosted new particles lead to **lepton jets**
 - Example: dark photons in Hidden Valley scenarios
 - Cosmic ray results?
 - → collimated, isolated leptons
- Challenge: separate these from QCD
 - Estimate from data (J/Ψ, Υ)
 - Isolation controls QCD
- Good prospect for future measurements with more data

<table>
<thead>
<tr>
<th>≥ 4µ</th>
<th>+3 HQ</th>
<th>2 LJ</th>
<th>Isol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>246</td>
<td>84</td>
<td>3</td>
</tr>
<tr>
<td>expect.</td>
<td>200 ± 50</td>
<td>81 ± 20</td>
<td>1.74 ± 0.48</td>
</tr>
</tbody>
</table>

CMS: EXO-11-013
D0: PRL 105, 211802 (2011)
This was just a taste much more to be done

- LHC: CMS and ATLAS results are available:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic

- Tevatron: CDF and D0 results are available:
 - http://www-d0.fnal.gov/results/index.html

- Other talks LHC and Tevatron searches
 - 1J-1 Search for Squarks and Gluinos Using Different Final States with the ATLAS Detector, Marc HOHLEFELD
 - 1J-3 Search for Supersymmetry at CMS in all-hadronic final states, Matthias SCHROEDER
 - 1J-4 Search for R- Parity violating SUSY and Long Lived Particles with the ATLAS Detector, Michael MAZUR
 - 1J-6 Search for Supersymmetry at CMS in lepton or photon final states, Konstantinos THEOFILATOS
 - 2I-2 Searches for new physics through rare decays from CDF, Robert HARR
 - 3I-4 Like-sign dimuon charge asymmetry at D0, Penny Kasper
 - 3K-2 Jets and Jet Substructure, Sal RAPPOCCIO
 - 4I-1 Searches for new physics in top decays at DO, Marc-Andre PLEIER
 - 4I-3 Search for a heavy neutrino and right-handed W of the left-right symmetric model with CMS detector, Alexander GUDE
 - 4I-5 Exotics Searches for New Physics with the ATLAS Detector, Jalal ABDALLAH
In Summary

- D0 and CDF continue to mine the Tevatron dataset
 - Some hints - what will LHC say?
- We thank our FNAL AD team for the great performance of the Tevatron Run 2
- LHC machine is performing spectacularly and we thank our colleagues in CERN AD
- CMS and ATLAS: data samples 30x bigger than in the winter
 - Will have much more in the coming months and coming year
 ➡️ Maybe 20/fb by end of 2012
- This talk: a sampling of all Tevatron and LHC results
 - See other talks in coming days for more information
 - No smoking gun yet but …

→ If there is TeV-scale new physics, its discovery is around the corner - stay tuned!
Backup Slides
AFB: New Physics implications and LHC

- To accommodate this signal need new physics to interfere with qqbar → ttbar
- s-channel: exchange of spin 1 color octet
- t-channel: exchange of spin 0, 1; several color structures possible
- LHC: pp vs ppbar
 - no defined direction
 - g-g initial state dominant
 - SM effect is much smaller
- Difficult measurement at LHC
 - forward-central charge asymmetry
 - Large non-SM effects could be visible in 2011 data

\[
\mathcal{A}_F(y_0) = \frac{N_t(y_0 < |y| < 2.5) - N_{\bar{t}}(y_0 < |y| < 2.5)}{N_t(y_0 < |y| < 2.5) + N_{\bar{t}}(y_0 < |y| < 2.5)}
\]

CDF Bs to $\mu\mu$ full NN output

- Excess limited to most sensitive region
- Probability for background only fluctuation small
- Central fit value \sim5 times SM
- Prob. of SM value sig + bgnd to fluctuate to this level is 2%
Z to $\mu\mu$ tag and probe w/early data

- Study di-muon mass spectrum from Z-peak to high masses
- High mass region almost free of SM events but mis-reconstruction can yield additional background → alignment needs to be understood

- Overall muon efficiency (from MC tag-and-probe) at the Z-peak = (97.6±0.6)%
 Simulation shows no dependence on p_T within 1%
- Require opposite charges
 charge mis-assignment measured with cosmics to be <0.5%@500 GeV and <1.5%@1TeV

Performance results from cosmics data

Cosmics momentum

Muon momentum resolution up to O(TeV)

Di-muon mass spectrum for 50 pb$^{-1}$ at 7 TeV in case of evidence for a Z' with $m = 1.24$ TeV

Developed method to combine electron and muon channel based on likelihoods
CDF Result details (backup)

<table>
<thead>
<tr>
<th>NN Bins</th>
<th>Mass bins</th>
<th>5.31-5.334</th>
<th>5.334-5.358</th>
<th>5.358-5.382</th>
<th>5.382-5.406</th>
<th>5.406-5.43</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Exp</td>
<td>1.62±0.49</td>
<td>1.6±0.48</td>
<td>1.58±0.47</td>
<td>1.57±0.47</td>
<td>1.55±0.46</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0.970<NN<0.987</td>
<td>Exp</td>
<td>0.82±0.27</td>
<td>0.8±0.27</td>
<td>0.79±0.26</td>
<td>0.78±0.26</td>
<td>0.78±0.26</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.995<NN<1.000</td>
<td>Exp</td>
<td>0.21±0.14</td>
<td>0.18±0.13</td>
<td>0.16±0.12</td>
<td>0.16±0.12</td>
<td>0.16±0.12</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NN Bins</th>
<th>Mass bins</th>
<th>5.31-5.334</th>
<th>5.334-5.358</th>
<th>5.358-5.382</th>
<th>5.382-5.406</th>
<th>5.406-5.43</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Exp</td>
<td>2.38±0.56</td>
<td>2.34±0.55</td>
<td>2.31±0.54</td>
<td>2.28±0.54</td>
<td>2.25±0.53</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.970<NN<0.987</td>
<td>Exp</td>
<td>0.67±0.24</td>
<td>0.66±0.24</td>
<td>0.65±0.24</td>
<td>0.64±0.23</td>
<td>0.63±0.22</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.995<NN<1.000</td>
<td>Exp</td>
<td>0.56±0.39</td>
<td>0.54±0.38</td>
<td>0.53±0.38</td>
<td>0.52±0.37</td>
<td>0.51±0.36</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Results in bins of NN discriminant and di-\(\mu\) mass for \(B_s\) window
- CC shows excess across high-purity mass range
E_T^{Miss} resolution vs total event energy

Particle Flow

Figure: Data vs MC: PF \vec{E}_{xy} resolution as function of PF ΣE_T
Virdee - PLHC

W^\pm and Z^0 Bosons as Standard Candles!

electrons

![Electron Distribution](image1)

muons

![Muon Distribution](image2)

taus

![Tau Distribution](image3)

Z boson

![Z boson Distribution](image4)

W boson

![W boson Distribution](image5)
A Top Candidate Event: \(e\mu + 2 \text{ b-jets} + \text{MET} \)
Ideal channel to probe detector performance

Efficiency 40-60%
Mis-tag rate : 0.2-