Exploring Gluon Polarization in the Proton
with \textit{STAR}

Carl Gagliardi
Texas A&M University
for the \textit{STAR} Collaboration

Outline

- Introduction
- Inclusive measurements
- Correlation measurements
Partonic origin of the proton spin?

\[S_z = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_z \rangle \]

Polarized DIS: \(\sim 0.3 \)

Three 2006 fits of equal quality:
- \(\Delta G = 0.13 \pm 0.16 \)
- \(\Delta G \sim 0.006 \)
- \(\Delta G = -0.20 \pm 0.41 \)

all at \(Q^2 = 1 \text{ GeV}^2 \)

Leader et al, PRD 75, 074027

- Measuring the **gluon polarization distribution** is a primary goal of the RHIC spin program
Exploring gluon polarization at RHIC

\[A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto \frac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL} \]

\[\Delta f: \text{polarized parton distribution functions} \]

\[\frac{\Delta G}{G} \quad \frac{\Delta q}{q} \quad \frac{\Delta q}{q} \]

Partonic fractions in jet production at 200 GeV

For most RHIC kinematics, \(gg \) and \(qg \) dominate, making \(A_{LL} \) for hadrons, photons, and jets sensitive to \textbf{gluon polarization}.

Carl Gagliardi – Exploring Gluon Polarization in the Proton with \textit{STAR}
STAR detector in two views

- High precision tracking with the TPC
- Electromagnetic calorimetry with the BEMC, EEMC, and FMS
- Additional detectors for relative luminosity, local polarimetry, and minbias triggering
Gluon polarization measurements at STAR

Inclusive measurements

– Features
 • High precision measurements
 • Average over partonic kinematics
 • Powerful for determining the scale of ΔG

– Channels
 • Neutral pions
 • Direct photons
 • Jets

Correlation measurements

– Features
 • Less abundant
 • Resolve partonic kinematics on event-by-event basis
 • Provide information about the shape of $\Delta g(x)$

– Channels
 • Charged pions opposite jets
 • $\gamma+$jet
 • Di-jets

• Both types of measurements provide important information for global analyses

• Large acceptance of STAR makes jet and di-jet measurements particularly attractive
STAR inclusive $\pi^0 A_{LL}$ at various rapidities

- During 2006, **STAR** measured A_{LL} for inclusive π^0 for three different rapidity regions
- Larger rapidity correlates to stronger dominance of qg scattering with larger x quarks and smaller x gluons
- Expect A_{LL} to decrease as η increases

Status of '09 data analysis: See poster by W. Leight
Jet cross section from 2006 data

- Good agreement between data and simulation
- Good agreement with NLO pQCD calculation after hadronization and underlying event correction is applied
- Jet production is **well understood** at RHIC energies
Jet cross section from 2006 data

- Good agreement between data and simulation
- Good agreement with NLO pQCD calculation after hadronization and underlying event correction is applied
- Jet production is well understood at RHIC energies
STAR inclusive jet A_{LL} from 2006

- **STAR** inclusive jet A_{LL} excludes those scenarios that have a large gluon polarization within the accessible x region
STAR inclusive jet A_{LL} from 2006

- **STAR** inclusive jet A_{LL} excludes those scenarios that have a large gluon polarization within the accessible x region.
DSSV – first global analysis with polarized jets

de Florian et al., PRL 101, 072001

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC pp data on an equal footing
DSSV – first global analysis with polarized jets

de Florian et al., PRL 101, 072001

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC pp data on an equal footing
2009 upgrades

Jet specific

- 2009 jet patch trigger upgrades
 - Overlapping jet patches and lower E_T threshold improve efficiency and reduce trigger bias
 - Net increase of 37% in jet acceptance
 - Remove beam-beam counter trigger requirement:
 - Trigger more efficiently at high jet p_T
 - Measure non-collision background

- Improvements in jet reconstruction
 - Subtract 100% of track momentum from struck tower energy (2009) instead of MIP (2006)
 - Overall jet energy resolution improved from 23% to 18%

Enhance all channels

- Increased trigger rate and reduced thresholds enabled by DAQ1000
- Sampled ~ 4 times the figure-of-merit relative to 2006
Direct photon cross section and A_{LL} from 2009

- Cross section at 200 GeV is consistent with NLO pQCD calculations
- A_{LL} for direct photons has very clean theoretical interpretation, but
 - Cross section is very small
 - Background is very large
 - Very difficult measurement!
- Need far more statistics

For details:
See poster by M. Betancourt
\(A_{\text{LL}} \) for inclusive jets: 2006 to 2009

- 2009 STAR inclusive jet \(A_{\text{LL}} \) measurements are a factor of 3 (high-\(p_T \)) to >4 (low-\(p_T \)) more precise than 2006
- Results fall between predictions from DSSV and GRSV-STD
- Precision sufficient to merit finer binning in pseudorapidity

\[\sqrt{s} = 200 \text{ GeV} \quad \vec{p} + \vec{p} \rightarrow \text{jet} + X \quad |\eta| < 1 \]

\(\pm 8.8\% \) scale uncertainty from polarization not shown
2009 STAR inclusive jet A_{LL}

- A_{LL} separated into two pseudorapidity ranges
- Forward jets involve:
 - A larger fraction of quark-gluon scattering with:
 - Higher x quarks that are more polarized
 - Lower x gluons that are less polarized
 - Larger $|\cos(\theta^*)|$, which reduces \hat{A}_{LL}
- A_{LL} falls between the predictions from DSSV and GRSV-STD
Expected future inclusive jet A_{LL} precision

• **STAR** will measure inclusive jet A_{LL} in **500 GeV collisions** during the 2012 and 2013 RHIC runs
 – Higher beam energy provides sensitivity to smaller x_g
 – Expect ~ 90 pb$^{-1}$ during 2012; much more during 2013
Expected future inclusive jet A_{LL} precision

Inclusive Jet A_{LL} for $|\eta|<1$

- $STAR$ will measure inclusive jet A_{LL} in **500 GeV collisions** during the 2012 and 2013 RHIC runs
 - Higher beam energy provides sensitivity to smaller x_g
 - Expect ~ 90 pb$^{-1}$ during 2012; much more during 2013

- $STAR$ also anticipates significant **future reductions** in the uncertainties for **200 GeV collisions** relative to the 2009 results
Beyond inclusive A_{LL} measurements

- Inclusive A_{LL} measurements at fixed p_T average over a **broad x range**.
- Can hide considerable structure if $\Delta g(x)$ has a node.
- **Correlation measurements can constrain the shape of $\Delta g(x)$**.
Charged pions opposite jets

- Trigger and reconstruct a jet, then look for a charged pion on the opposite side
- Events with high-z π^+ emphasize gluon scattering off highly-polarized u quarks
- **Significantly increases the sensitivity of $A_{LL}(\pi^+)$**

Status of ’09 data analysis:
See poster by J. Hays-Wehle
2006 di-jet cross section

\[x_1 = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4} \right) \]

\[x_2 = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4} \right) \]

\[M = \sqrt{x_1 x_2 s} \]

\[y = \frac{1}{2} \ln \frac{x_1}{x_2} = \frac{\eta_3 + \eta_4}{2} \]

\[|\cos\theta^*| = \tanh \left| \eta_3 - \eta_4 \right| / 2 \]

- Di-jets permit event-by-event calculations of \(x_1 \) and \(x_2 \) at LO
- Di-jet cross section is well-described by NLO pQCD with corrections for hadronization and underlying event
2006 di-jet A_{LL} provides a start at constraining the shape of $\Delta g(x)$.
2009 STAR di-jet partonic coverage

\[x_1 = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4} \right) \]

\[x_2 = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4} \right) \]

\[M = \sqrt{x_1 x_2 s} \]

\[y = \frac{1}{2} \ln \frac{x_1}{x_2} = \frac{\eta_3 + \eta_4}{2} \]

\[|\cos \theta^*| = \tanh \left(\frac{\eta_3 - \eta_4}{2} \right) \]

For more details: See poster by M. Walker
2009 **STAR** di-jet partonic coverage

\[x_1 = \frac{1}{\sqrt{s}} \left(p_{T,3}e^{\eta_3} + p_{T,4}e^{\eta_4} \right) \]

\[x_2 = \frac{1}{\sqrt{s}} \left(p_{T,3}e^{-\eta_3} + p_{T,4}e^{-\eta_4} \right) \]

\[M = \sqrt{x_1 x_2 s} \]

\[y = \frac{1}{2} \ln \frac{x_1}{x_2} = \frac{\eta_3 + \eta_4}{2} \]

\[|\cos \theta^*| = \tanh \frac{\eta_3 - \eta_4}{2} \]

For more details: See poster by M. Walker
2009 STAR di-jet partonic coverage

$x_1 = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4} \right)$

$x_2 = \frac{1}{\sqrt{s}} \left(p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4} \right)$

$M = \sqrt{x_1 x_2 s}$

$y = \frac{1}{2} \ln \frac{x_1}{x_2} = \frac{\eta_3 + \eta_4}{2}$

$|\cos\theta^*| = \tanh \frac{\eta_3 - \eta_4}{2}$

For more details:
See poster by M. Walker

Carl Gagliardi – Exploring Gluon Polarization in the Proton with STAR
2009 STAR di-jet A_{LL}

- For fixed M, different kinematic regions sample different x ranges
- A_{LL} falls between DSSV and GRSV-STD

For more details:
See poster by M. Walker
Projected sensitivity for di-jets at 500 GeV

\[x_1, x_2 = \frac{M}{\sqrt{s}} \exp \left(\pm \frac{\eta_3 + \eta_4}{2} \right) \]

- Higher energy accesses lower \(x_g \)
- Expect smaller \(A_{LL} \)
- Uncertainties shown are purely statistical
- Maybe add EEMC-EEMC di-jets to reach lowest \(x \) values after FGT is installed (?)
Conclusions

- **STAR 2006** results play a significant role in recent global analysis
- **STAR 2009** results will have a strong impact on the determination of gluon polarization
- We will reduce the uncertainties even further in the near future
- Stay tuned!

![Graphs and plots related to gluon polarization and jet production in proton-antiproton collisions.](image-url)
Jet reconstruction in **STAR**

Data jets

MC jets

Jet direction

Midpoint cone algorithm

(Adapted from Tevatron II - hep-ex/0005012)

- Seed energy = 0.5 GeV
- Cone radius $R = 0.7$ in η-ϕ space
- Split/merge fraction $f = 0.5$

Use **PYTHIA + GEANT** to quantify detector response
Jet+hadron correlations at NLO
from de Florian, PRD 79, 114014

\[z \equiv \frac{p_T^h}{p_T^{jet}} \]

\[x_1 \equiv (p_T^{jet} \exp(\eta_{jet}) + p_T^{jet} \exp(\eta_h)) / \sqrt{s} \]

\[x_2 \equiv (p_T^{jet} \exp(-\eta_{jet}) + p_T^{jet} \exp(-\eta_h)) / \sqrt{s} \]

- NLO calculations show strong correlation between the real \(x \) and \(z \) values and LO estimates
Gluon polarization with gamma+jet

- Sensitivity estimates including realistic photon efficiencies and purities, benchmarked with real data
 - Maybe higher purity with future isolation cuts using FGT