The MAJORANA DEMONSTRATOR

A search for neutrinoless double-beta decay of germanium-76

Alexis Schubert
on behalf of the MAJORANA Collaboration
The MAJORANA Collaboration (June 2011)

Note: Red text indicates students

The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter

Duke University, Durham, North Carolina, and TUNL
Matthew Busch, James Esterline, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusey, Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Steven Elliott, Victor M. Gehman, Andrew Hime, Mary Kidd, Ben LaRoque, Keith Rielage, Larry Rodriguez, Michael Ronquest, Harry Salazar, David Steele

North Carolina State University, Raleigh, North Carolina and TUNL
Dustin Combs, Lance Leviner, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Fred Bertrand, Greg Capps, Ren Cooper, Kim Jeskie, David Radford, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji

Pacific Northwest National Laboratory, Richland, Washington
Craig Aalseth, Estanislao Aguayo, Jim Fast, Eric Hoppe, Todd Hossbach, Marty Keillor, Jeremy Kephart, Richard T. Kouzes, Harry Miley, John Orrell, Doug Reid

Queen’s University, Kingston, Ontario
Art McDonald

South Dakota School of Mines and Technology, Rapid City, South Dakota
Cabot-Ann Christoffersson, Mark Horton, Stanley Howard

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of Chicago, Chicago, Illinois
Juan Collar, Nicole Fields

University of North Carolina, Chapel Hill, North Carolina and TUNL
Padraic Finnerty, Florian Fraenkel, Graham Giovanetti, Matthew Green, Reyco Henning, Mark Howe, Sean MacMullin, David G. Phillips II, Jacqueline Strain, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Leila Mizouni

University of South Dakota, Vermillion, South Dakota
Vince Guiseppe, Tina Keller, Keenan Thomas, Dongming Mei, Gopakumar Perumpilly, Chao Zhang

University of Tennessee, Knoxville, Tennessee
Yuri Efremenko, Sergey Vasiliev

University of Washington, Seattle, Washington
Tom Burritt, Jonathan Diaz, Peter J. Doe, Greg Harper, Robert Johnson, Andreas Knecht, Michael Marino, Mike Miller, David Peterson R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel, Brett Wolfe
Neutrinoless double-beta decay ($0\nu\beta\beta$)

- Observation indicates:
 - Neutrino is a Majorana particle
 - Lepton number is not conserved
 - Measurement of rate could provide information about neutrino mass

![Diagram of Neutrinoless double-beta decay](image)

- e^-
- $\bar{\nu}_e = \nu_e$
- e^-
- Z to $Z+2$

Summed electron energy

Counts vs. Q-value

$2\nu\beta\beta$

$0\nu\beta\beta$
Neutrino mass and $0\nu\beta\beta$

$0\nu\beta\beta$ rate

$$(T_{1/2})^{-1} = G_{0\nu} |M_{0\nu}|^2 m_{\beta\beta}^2$$

Neutrino mass hierarchy

- Normal Hierarchy: ν_e, ν_μ, ν_τ
- Inverted Hierarchy: $m_3 > m_1 > m_2$

Sensitivity of a tonne-scale 76Ge experiment

$$\langle m_{\beta\beta} \rangle \text{ sensitivity (90\% CL)} [\text{meV}]$$

- Zero background
- 0.1 counts/ROI/yr
- 1 count/ROI/yr

NME: Simkovic et al, Phys Ref C 79, 055501 (2009)
The GERDA and MAJORANA Experiments

Detector array: enriched Ge crystals submerged in liquid argon
Shield: high-purity liquid argon, H_2O

Detector array: enriched Ge crystals in vacuum cryostats
Shield: lead, copper

Goal: select best techniques developed in GERDA and MAJORANA for a joint tonne-scale Ge experiment

http://www.mpi-hd.mpg.de/gerda
http://majorana.npl.washington.edu
The GERDA and MAJORANA Experiments

Detector array: enriched Ge crystals submerged in liquid argon
Shield: high-purity liquid argon, H₂O

Goal: select best techniques developed in GERDA and MAJORANA for a joint tonne-scale Ge experiment

Detector array: enriched Ge crystals in vacuum cryostats
Shield: lead, copper

http://www.mpi-hd.mpg.de/gerda
http://majorana.npl.washington.edu
The MAJORANA Experiment

- Search for neutrinoless double-beta decay using an array of germanium detectors enriched in 76Ge
- First phase of MAJORANA under construction: the DEMONSTRATOR, 40-kg R&D detector
- Attempt to achieve a background rate 100x lower than previous Ge experiments
The MAJORANA Experiment

• Search for neutrinoless double-beta decay using an array of germanium detectors enriched in 76Ge

• First phase of MAJORANA under construction: the DEMONSTRATOR, 40-kg R&D detector

• Attempt to achieve a background rate 100x lower than previous Ge experiments

Background goal for tonne-scale:
1 count per tonne-year in 4-keV region surrounding Q-value
The MAJORANA DEMONSTRATOR

- First phase of the MAJORANA experiment
- 40-kg ultra-clean Ge detector array deployed in two cryostats at 4850’ level of Sanford Lab
- 20 to 30 kg of crystals enriched to 86% 76Ge
- **Technical goal:** demonstrate background levels that justify construction of tonne-scale experiment
- **Science goal:** test recent claim of $0\nu\beta\beta$ observation - Phys. Lett. B 586 198 (2004)
The **Majorana Demonstrator**

- Ge detector
- Detector string
- Cryostat

The DEMONSTRATOR
The Majorana Demonstrator

- Ge detector
- Detector string
- Cryostat
The MAJORANA DEMONSTRATOR

Ge detector

detector string

cryostat

The DEMONSTRATOR
The MAJORANA DEMONSTRATOR
The **MAJORANA DEMONSTRATOR**
The **MAJORANA DEMONSTRATOR**

- Ge detector
- Detector string
- Cryostat

The DEMONSTRATOR
The MAJORANA DEMONSTRATOR

Passive and active shielding:
- polyethylene scintillator veto
- radon exclusion box
- lead
- commercial copper
- electro-formed copper
Germanium detectors

- **MAJORANA** will use p-type point contact Ge detectors
- Excellent energy resolution: 0.16% FWHM at 2039 keV Q-value
- Can be enriched to 86% in 76Ge: *source is detector*
- Pulse-shape analysis can distinguish multi-site backgrounds from single-site signal events
- Low energy threshold allows opportunistic physics: *dark matter search*

Model of electric field in PPC detectors

Energy spectrum with pulse-shape analysis

- 208Tl
- DEP
- all events
- single-site events
Backgrounds
Backgrounds

Expected backgrounds

Intrinsic radiation: U and Th decay chains, $2\nu\beta\beta$

Cosmic rays:
- Activation at surface creates unstable isotopes in Ge, copper
- Muons, muon-induced neutrons can interact in detectors and apparatus
Backgrounds

Expected backgrounds

Intrinsic radiation: U and Th decay chains, $2
\nu\beta\beta$

Cosmic rays:
- Activation at surface creates unstable isotopes in Ge, copper
- Muons, muon-induced neutrons can interact in detectors and apparatus

Background reduction techniques

Passive and active shielding: copper, lead, polyethylene, scintillator

Ultra-clean materials: Ge, copper, parylene

Depth: experiment will be conducted deep underground
Backgrounds

Expected backgrounds

- **Intrinsic radiation:** U and Th decay chains, $2\nu\beta\beta$
- **Cosmic rays:**
 - Activation at surface creates unstable isotopes in Ge, copper
 - Muons, muon-induced neutrons can interact in detectors and apparatus

Background reduction techniques

- **Passive and active shielding:** copper, lead, polyethylene, scintillator
- **Ultra-clean materials:** Ge, copper, parylene
- **Depth:** experiment will be conducted deep underground

Background mitigation techniques

- **Analysis cuts:** $0\nu\beta\beta$ should deposit energy in a small region of a single detector; other events can be flagged:
 - events that deposit energy in multiple detectors
 - events that deposit energy in multiple locations in one detector
 - events that are time correlated with other events

The Majorana Demonstrator
Recent progress

- DOE and NSF funding started in FY 2010
- **November 2010:** 19 of 36 natural Ge detectors delivered to Sanford Lab
- **April 2011:** All 36 natural Ge detectors characterized and accepted by Los Alamos National Lab
- **June 2011:** Isoflex completed enrichment of 20 kg Ge; delivery by Sept. 2011
- **August 2010:** Production of electro-formed copper started in shallow site at Pacific Northwest National Lab
- **July 2011:** Ten electro-forming baths operational at Sanford 4850’ level
- Preparation of lab in Davis Campus at Sanford 4850’ level is underway
Recent progress: germanium detectors

Facility established for reduction of GeO$_2$ to metal, zone refinement of Ge metal

19 natural Ge detectors delivered to Sanford in November 2010

Underground storage facility in Cherokee Caverns

Ongoing MC background simulation campaign

Isotope Fractional Composition

- 70Ge: 0.00006(1)
- 72Ge: 0.00011(1)
- 73Ge: 0.00033(3)
- 74Ge: 0.086(5)
- 76Ge: 0.914(5)

Facility established for reduction of GeO$_2$ to metal, zone refinement of Ge metal

Ongoing MC background simulation campaign

Progress and Highlights

- Isotope Fractional Composition
- Underground storage facility in Cherokee Caverns
- Facility established for reduction of GeO$_2$ to metal, zone refinement of Ge metal
- 19 natural Ge detectors delivered to Sanford in November 2010
- Ongoing MC background simulation campaign
Recent progress: production of ultra-clean copper

 electro-forming laboratory at Sanford

machining of electro-formed copper from PNNL

electro-forming baths in the underground clean room at 4850’ level of Sanford Lab
Recent progress: electronics and cabling

- Requires materials very low in radioactive impurities
- Trace proximity of traces provides ~1 pF
- Silica or sapphire substrate provides thermal control
- Amorphous Ge resistor: deposit in H gives proper resistance at low temperature

Front End Preamp

- Amorphous Ge resistor
- Silica substrate
- Au/Cr traces
- Custom Parylene coated wires

Prototype front-end electronics

Clean parylene cable production

Parylene ribbon cable ~ 3 mm

Multiple-detector electronics test string
Summary and Outlook

• Observation of neutrinoless double-beta decay would determine Majorana nature of the neutrino and could provide information about neutrino mass

• **MAJORANA** will search for 0νββ of 76Ge with an array of Ge detectors

• Construction of the first phase of **MAJORANA**, the **DEMONSTRATOR**, is underway:

 • Beneficial occupancy of MJD lab by May 2012

 • Prototype cryostat of natural Ge by late summer 2012

 • Enriched material ready for detector fabrication by February 2012

 • First module with enriched Ge in 2013
Thank you!

The MAJORANA Collaboration
Neutrino mass

Estimated KATRIN Sensitivity

Disfavored by $0\nu\beta\beta$

Klapdor-Kleingrothaus et al. claimed signal

Inverted

Normal
Isotopic concentrations of enriched material

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Fractional Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>70Ge</td>
<td>0.00006(1)</td>
</tr>
<tr>
<td>72Ge</td>
<td>0.00011(1)</td>
</tr>
<tr>
<td>73Ge</td>
<td>0.00033(3)</td>
</tr>
<tr>
<td>74Ge</td>
<td>0.086(5)</td>
</tr>
<tr>
<td>76Ge</td>
<td>0.914(5)</td>
</tr>
</tbody>
</table>

PNNL measurement of material from ECP