Status and Perspective of the GERDA Neutrinoless Double Beta Decay Experiment

Karl Tasso Knöpfle
MPI Kernphysik, Heidelberg
on behalf of the GERDA collaboration
http://www.mpi-hd.mpg.de/GERDA

\[T_{2\nu}^{1/2} = 1.74 \cdot 10^{21} \text{ yr} \]

\[T_{0\nu}^{1/2} = ? \]

The 19th Particles and Nuclei International Conference (PANIC11)
Massachusetts Institute of Technology, Cambridge, July 24th – 29th, 2011
About 100 members, 19 institutions, 7 countries
Introduction

Construction and Status

Results from Commissioning Runs

Perspectives and Conclusion
Discovery of neutrinoless double beta decay would imply:
- Neutrino is its own anti-particle, has Majorana mass
- Access to absolute neutrino mass scale
- Lepton number violation $\Delta L = 2$
- Further new physics beyond the standard model

So far, best limits for neutrinoless double beta decay from Ge-76 experiments, IGEX and Heidelberg-Moscow (HdM), $T_{1/2} > 1.9 \cdot 10^{25}$ y at 90% confidence limit, as well as claim for evidence by part of HzM collaboration KKDC, PL B586 (04) 198 (71.7 kg\cdot y, BI ~ 0.11 cts/(keV\cdot kg\cdot y)
Reach background index (BI) at $Q_{\beta\beta} = 2039$ keV of $0.01 / 0.001$ cts / (keV \cdot kg \cdot y)

Phase I: use Ge-76 diodes of HD-Moscow & IGEX

~ 18 kg

BI ~ 0.01 cts / (keV \cdot kg \cdot y)

Intrinsic background expected
Reach background index (BI) at $Q_{\beta\beta} = 2039$ keV of $0.01 / 0.001$ cts / (keV·kg·y)

phase II:
add new enriched Ge-76 detectors, 20 kg
BI ~ 0.001 cts / (keV·kg·y)
▷ 37.5 kg enriched Ge-76 bought
35 kg \cdot 3 y exposure

phase I:
use Ge-76 diodes of HD-Moscow & IGEX
~ 18 kg
BI ~ 0.01 cts / (keV·kg·y)
intrinsic background expected

phase III:
depending on results worldwide collaboration for real big experiment
close contacts & MoU with MAJORANA collaboration
GERDA strategy:
underground site to suppress cosmics
improved shield against external radiation
discrimination between single- \((0\nu\beta\beta)\) & multi-site events
clean room with lock

control rooms

water plant & radon monitor

muon & cryogenic infrastructure

water tank, Ø10m, part of muon-veto detector

cryostat, Ø4m, with internal Cu shield

water
Introduction

Construction and Status

Results from Commissioning Runs

Perspectives and Conclusion
Construction delivery of cryostat

6 mar 2008
water tank roof
Construction

L’Aquila M=6.3 earthquake & aftershocks

6 April 2009

negligible impact in underground lab

LNGS galleria
0.03g

14.8m
0.52g peak ground acceleration
Construction

heat exchanger for active cooling & radon shroud

18 jul 2009
Construction

Muon veto instrumentation in water tank

August 2009

1 of 66 PMTs
Cryogenic system

Running smoothly since cryostat filled with LAr in December 2010. No refill needed since thanks to active cooling.

Water plant

Maintaining quality of ultra-pure water (resistivity >17MΩ·cm & TOC <20ppb) from BOREXINO.

Commissioning lock

Rigorously tested above ground in 2010 – working as expected.

Cleanroom and N₂ flushed clean bench

Running smoothly. Handling procedures of Ge diodes - never come in air! - well established.

Slow control

Collects data from all subsystems; web-based interface for global access.

Safety systems

Passed several realistic tests. Fast water drainage (<2 hours) verified.
Introduction

Construction and Status

Results from Commissioning Runs

Perspectives and Conclusion
Runs started in June 2010 using 3 refurbished Genius-TF \(^{\text{nat}} \text{Ge} \)-diodes (7.61 kg)

NB ▶ p-type / coaxial ▶ ‘low background’ diodes

preamps (88K)

2.33kg

2.32kg

2.96kg

calibration: spectra with Th-228 radioactive source
run 12 (0.564 kg·y)
27 days run time
Fit compatible with 1Bq(39Ar)/kg

Data
Monte Carlo
Fit boundaries

Energy (keV)

counts/keV

39Ar

‘understood’
Rather weak discrete lines from Th/U background, Th / U / 40K lines suppressed by factors of ~4 / ~4 / ~20 wrt HdM. 1525 keV line much stronger than expected,
GERDA proposal assumed: $^{42}\text{Ar} / ^{\text{nat}}\text{Ar} < 3 \cdot 10^{-21}$
Count rate of 1525 peak factor ~14 larger than expected.
Count rate of 1525 peak factor ~14 larger than expected.

Additional inner shroud (IS) reduces counts by factor of 4-5. Still larger than expected! IS shields E-field and convection.

NB: Similar observations at $Q_{\beta\beta}$!
Count rate of 1525 peak factor ~14 larger than expected.

Additional inner shroud (IS) reduces counts by factor of 4-5. Still larger than expected! IS shields E-field and convection.

NB: Similar observations at Q_{\beta\beta}!

Biasing IS/OS such that positive ions are attracted by IS: Count rate increases to about previous value.

▶ Clear evidence that 42K-ions drift in electric field. Potentially severe consequences for background at Q_{\beta\beta}! Field-free configurations desirable!
Ar-42 specific activity deduced from almost field-free runs 10-12

Published limit: <43 μBq/kg i.e. <4.3\cdot10^{-21} g/g at 90% CL (Barabash et al. 2002)
For homogeneous distribution BI ~0.007 expected – has big uncertainties. However, if 42K ions are collected at detector surface, BI increases.

The high energy spectral part is dependent on dead layer thickness.
Background rate significantly lower than in previous experiments (HdM, IGEX) - but still higher than Phase I goal of 0.01.

Background most probably not only due to 42Ar/42K; could (partially) be due also to distant Th-232 source.

► Background at $Q_{\beta\beta}$ not yet understood - better statistics needed!

Deduced background index in interval ($Q_{\beta\beta} \pm 200$) keV: 0.06 ± 0.01 cts/(keV·kg·y)
Most background between 39Ar endpoint & 1525 keV line accounted for by 2ν2β decays. (Basic background studies done better with non-enriched diodes.)
Introduction

Construction and Status

Results from Commissioning Runs

Perspectives and Conclusion
• Exploitation of pulse shape analysis

For Phase I detectors reduction of BI by a factor of up to 2 might be feasible. Blind analysis indispensable.
- Exploitation of pulse shape analysis
- Deployment of full array of enriched diodes

8 refurbished and tested diodes (HdM, IGEX) available
- 86% isotopically enriched in Ge-76
- 17.66 kg total mass
- 3-string lock under commissioning
- soon ready for start of Phase I physics run
• Exploitation of pulse shape analysis
• Deployment of full array of enriched diodes
• Order of phase II detectors

BEGe (point-contact) type of diode selected for Phase II – superb pulse shape discrimination!

Full production cycle tested with depleted material left over from enrichment process.

Enriched material reduced and purified. Negotiations for Phase II detector order in progress.
R&D for LAr instrumentation

- Exploitation of pulse shape analysis
- Deployment of full array of enriched diodes
- Order of phase II detectors
- Instrumentation of LAr for scintillation veto

Suppression factor at $Q_{\beta\beta}$ of ~5000 measured with Th-228 calibration source. Alternative to scintillation light readout by PMTs: fibers coupled to SiPMs.
• Construction completed.
• All subsystems commissioned and running smoothly.
• All phase I detectors (8 pcs, ~18 kg) refurbished & ready.
• Commissioning with natural and enriched Ge diodes in progress.

► ^{42}Ar isotopic abundance found to be about factor of 4 larger than 90% limit reported previously – serious background for phase II.

► Best background index at $Q_{\beta\beta}$ of all Ge experiments so far, but still factor 6 above phase I goal - not yet fully understood why. LAr instrumentation might be needed already to reach goal of phase I.

• Start of phase I physics run with enriched detectors soon.
• Full production chain tested for phase II BEGe detectors.
• Phase II detectors (~20 kg) to be ordered this year.

goals: phase I: background 0.01 cts / (keV·kg·y)
► scrutinize KKDC result within ~1 year
phase II: background 0.001 cts / (keV·kg·y)
► $T_{1/2} > 1.5 \cdot 10^{26}$ y, $0.09 < <m_{ee}> < 0.15$ eV

* PR C81(10)028502
Backup Slides
sensitivity* achieved with ^{76}Ge

\[T_{1/2}^{0\nu}(n_\sigma) = \frac{4.16 \times 10^{26} y}{n_\sigma} \left(\frac{\varepsilon a}{W} \right) \sqrt{\frac{M t}{b \Delta(E)}} \]

*RevModPhys 80(08)481

Heidelberg-Moskau Experiment.

KKDC: 71.7 kg·y: $T_{1/2} = 1.2 \times (0.7-4.2) \times 10^{25}$

$<m_{\beta\beta}> = 0.44 \times (0.24 - 0.58) \text{ eV (3\sigma)}$
GERDA: low Z shield, underground bare Ge diodes in high-purity LAr

MAJORANA: high Z, deep underground Ge diodes housed in vacuum cryostat, ultra-high-purity electroformed Cu shield

Water: γ & n shield, Cherenkov medium for μ veto

Stainless steel cryostat w Cu shield, Rn tight

10 cm electroformed Cu

45 cm lead

30 cm PE, active μ veto, Rn tight box

LAr can be also active shield!

\[\alpha(LAr) = 0.050/cm \quad \alpha(Cu) = 0.34/cm \]
\[\alpha(H_2O) = 0.043/cm \quad \alpha(Pb) = 0.48/cm \]
GERDA storage tanks

LAr for cool down and filling taken from storage tank.
started in June 2010 using 3 refurbished Genius-TF natGe-diodes (7.61 kg)
NB ► p-type / coaxial ► ‘low background’ diodes
muon induced rate \(\sim 0.01 \text{ cts/(keV} \cdot \text{kg} \cdot \text{year}) \)

veto efficiency \(>94\% \) (system still incomplete)

started in June 2010

using 3 refurbished Genius-TF \(^{\text{nat}}\text{Ge} \)-diodes (7.61 kg)

NB ➤ p-type / coaxial ➤ ‘low background’ diodes

Run12. Exposure: 0.525 kg \(\times \) year

- All events
- Muon veto
- Multiple-detector

Date

- 17-Feb
- 24-Feb
- 02-Mar
- 09-Mar

Energy (keV)

- 7000
- 6000
- 5000
- 4000
- 3000
- 2000
- 1000
- 0

PANIC11 28jul 2011 GERDA – status & perspectives K.T.Knöpfle