Belle results on Lepton Flavor Violation in tau decays

K. Inami (Nagoya Univ.) for Belle collaboration
B-factory at KEK

KEKB: $e^+(3.5 \text{ GeV}) e^-(8 \text{GeV})$

$\sigma(\tau\tau) \sim 0.9 \text{nb}$, $\sigma(bb) \sim 1.1 \text{nb}$

A B-factory is also a τ-factory!

Peak luminosity: $2.1 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$

World highest luminosity!

Belle Detector:

Good track reconstruction and particle identifications

Lepton efficiency: 90%
Fake rate: $O(0.1)\%$ for e
$O(1)\%$ for μ
Belle Luminosity history

Integrated luminosity: $>1000 \text{ fb}^{-1}$
$\Rightarrow \sim 10^9 \text{ BB and } \tau\text{-pairs}$

$> 1 \text{ ab}^{-1}$
On resonance:
$\Upsilon(5S): 121 \text{ fb}^{-1}$
$\Upsilon(4S): 711 \text{ fb}^{-1}$
$\Upsilon(3S): 3 \text{ fb}^{-1}$
$\Upsilon(2S): 24 \text{ fb}^{-1}$
$\Upsilon(1S): 6 \text{ fb}^{-1}$
Off reson./scan:
$\sim 100 \text{ fb}^{-1}$

$\sim 550 \text{ fb}^{-1}$
On resonance:
$\Upsilon(4S): 433 \text{ fb}^{-1}$
$\Upsilon(3S): 30 \text{ fb}^{-1}$
$\Upsilon(2S): 14 \text{ fb}^{-1}$
Off resonance:
$\sim 54 \text{ fb}^{-1}$

Belle is finished in 2010/6/30. Belle-II upgrade started.
\Rightarrow Analysis with full data sample is on going.
Lepton Flavor Violation in tau decay

SUSY is the most popular candidate among new physics models

- naturally induce LFV at one-loop due to slepton mixing

\[\tau \rightarrow \ell \gamma \] mode has the largest branching fraction in SUSY-Seesaw (or SUSY-GUT) models

When sleptons are much heavier than weak scale

- LFV associated with a neutral Higgs boson (h/H/A)

Higgs coupling is proportional to mass

\[\Rightarrow \mu \mu \text{ or } ss (\eta, \eta' \text{ and so on}) \] are favored and B.R. is enhanced more than that of \(\tau \rightarrow \mu \gamma \).

To distinguish which model is favored, all of decay modes are important.
Analysis procedure

- $e^+e^- \rightarrow \tau^+\tau^-$
 1 prong + missing (tag side)
 $\mu\mu\mu$ (signal side)

Fully reconstructed

Signal extraction: $m_{\mu\mu\mu} - \Delta E$ plane

$$m_{\mu\mu\mu} = \sqrt{(E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2)}$$

$$\Delta E = E_{\mu\mu\mu}^{CM} - E_{\text{beam}}^{CM}$$

Blind analysis \Rightarrow Blind signal region

Estimate number of BG in the signal region using sideband data and MC

Blind analysis \Rightarrow Blind signal region

Estimate number of BG in the signal region using sideband data and MC
LFV τ decays; Signal and Background

Signal
- Signal side
 - e^- τ^- e^+
 - μ^- μ^+ μ^-
 - Neutrinos in both sides
 - Missing energy in signal side

Tag Side
- Neutrino(s) in tag side
- Particle ID
- Mass of mesons

2 Photon Process
- $e^+ e^- \rightarrow \gamma \gamma \rightarrow f \bar{f}$
 - $f =$ leptons, quarks

Radiative Bhabha Process
- $e^+ e^- \rightarrow e^+ e^- + \gamma$
 - Many tracks
Analysis strategy

- Rare decay searches
 - Need to understand background and reduce as much as possible

- $\tau \rightarrow \ell\ell\ell$
- $\tau \rightarrow \ell K_s$
- $\tau \rightarrow \ell V^0 (\rightarrow hh')$
- $\tau \rightarrow \ell P^0 (\rightarrow \gamma\gamma)$
- $\tau \rightarrow \ell hh'$
- $\tau \rightarrow \ell \gamma$

- Analyze the modes from simple selection to hard for background reduction
 - Provide feedback to next analysis of similar final state
Search for $\tau \rightarrow 3$leptons

- Data: 782 fb$^{-1}$
- No event is found in the signal region.
- Almost BG free
 - Because of good lepton ID
- $\text{Br} < (1.5-2.7) \times 10^{-8}$ at 90% CL.

<table>
<thead>
<tr>
<th>Mode</th>
<th>ε (%)</th>
<th>N_{BG}^{EXP}</th>
<th>σ_{syst} (%)</th>
<th>UL ($\times 10^{-8}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^-e^+e^-$</td>
<td>6.0</td>
<td>0.21+-0.15</td>
<td>9.8</td>
<td>2.7</td>
</tr>
<tr>
<td>$\mu^-\mu^+\mu^-$</td>
<td>7.6</td>
<td>0.13+-0.06</td>
<td>7.4</td>
<td>2.1</td>
</tr>
<tr>
<td>$e^-\mu^+\mu^-$</td>
<td>6.1</td>
<td>0.10+-0.04</td>
<td>9.5</td>
<td>2.7</td>
</tr>
<tr>
<td>$\mu^-e^+e^-$</td>
<td>9.3</td>
<td>0.04+-0.04</td>
<td>7.8</td>
<td>1.8</td>
</tr>
<tr>
<td>$\mu^-e^+\mu^-$</td>
<td>10.1</td>
<td>0.02+-0.02</td>
<td>7.6</td>
<td>1.7</td>
</tr>
<tr>
<td>$e^-\mu^+e^-$</td>
<td>11.5</td>
<td>0.01+-0.01</td>
<td>7.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Search for $\ell V^0(=\rho^0, K^{*0}, \omega, \phi)$

- Search with 854 fb$^{-1}$ data sample
 - Select one lepton and two hadrons
 - Require invariant mass to be a vector meson mass
 \Rightarrow The requirement reduces background rather easily.

- Possible background
 - For $\ell=\mu$, hadronic tau decay and qq with miss μ-ID
 - For $\ell=e$, 2photon process could be large BG.
 - It turns out that not only 2photon process but also ee+X process become large background. \Rightarrow Reduced using missing-momentum direction
Result for $\ell V^0(=\rho^0, K^0, \omega, \phi)$

After event selection
- 1 event $\mu\phi$, μK^0, μK^0
- 0 events others

No signal compared to expected BG

Expected number of background (0.1-1.5) events

$$\text{Br}(\tau \rightarrow \ell V^0) < (1.2-8.4) \times 10^{-8}$$

<table>
<thead>
<tr>
<th>$\tau^{-} \rightarrow \ell$</th>
<th>Eff. (%)</th>
<th>N_{BG}^{exp}</th>
<th>$N_{\text{obs.}}$</th>
<th>$N_{\text{UL}}^{\times 10^{-8}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^{-} ρ^0</td>
<td>7.6%</td>
<td>0.29 ± 0.15</td>
<td>0</td>
<td>1.8</td>
</tr>
<tr>
<td>μ^{-} ρ^0</td>
<td>7.1%</td>
<td>1.48 ± 0.35</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>e^{-} ϕ</td>
<td>4.2%</td>
<td>0.47 ± 0.19</td>
<td>0</td>
<td>3.1</td>
</tr>
<tr>
<td>μ^{-} ϕ</td>
<td>3.2%</td>
<td>0.06 ± 0.06</td>
<td>1</td>
<td>8.4</td>
</tr>
<tr>
<td>e^{-} ω</td>
<td>2.9%</td>
<td>0.30 ± 0.14</td>
<td>0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\tau^{-} \rightarrow \ell$</th>
<th>Eff. (%)</th>
<th>N_{BG}^{exp}</th>
<th>$N_{\text{obs.}}$</th>
<th>$N_{\text{UL}}^{\times 10^{-8}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^{-} K^*</td>
<td>4.4%</td>
<td>0.39 ± 0.14</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>μ^{-} K^*</td>
<td>3.4%</td>
<td>0.53 ± 0.20</td>
<td>1</td>
<td>7.2</td>
</tr>
<tr>
<td>e^{-} K^*</td>
<td>4.4%</td>
<td>0.08 ± 0.08</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>μ^{-} K^*</td>
<td>3.6%</td>
<td>0.45 ± 0.17</td>
<td>1</td>
<td>7.0</td>
</tr>
<tr>
<td>μ^{-} ω</td>
<td>2.4%</td>
<td>0.72 ± 0.18</td>
<td>0</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Search for $\ell hh'$

- Update with 854 fb$^{-1}$ data
 - BaBar; $\text{Br}<(7-48) \times 10^{-8}$ at 221 fb$^{-1}$
- 14 modes are investigated ($h, h' = \pi^\pm$ and K^\pm)
 - $\tau^- \rightarrow \ell^- h^+ h'^-$: 8 modes (lepton flavor violation)
 - $\tau^- \rightarrow \ell^- h^+ h'^-$: 6 modes (lepton number violation)

Missing momentum can help to reject this kind of BGs since signal has ν only on tag side.
In the signal region

1 event: in $\mu^+\pi^-\pi^-$ and $\mu^-\pi^+K^-$
no events: in other modes
⇒ no significant excess

Set upper limits at 90%CL:
$\text{Br}(\tau \to \ell hh') < (2.0-8.6) \times 10^{-8}$
(preliminary)
Upper limits on LFV τ decays

90\% C.L. Upper limits for LFV τ decays

Updated this summer

Under studying with full data sample
Effect to physics models

- Experimental results have already ruled out some parts of the parameter space.
 - Exclude large $\tan\beta$, small SUSY/Higgs mass

<table>
<thead>
<tr>
<th>Model</th>
<th>reference</th>
<th>$\tau \to \mu\gamma$</th>
<th>$\tau \to \mu\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM+ ν mixing</td>
<td>PRD45(1980)1908, EPJ C8(1999)513</td>
<td>Undetectable</td>
<td></td>
</tr>
<tr>
<td>SM + heavy Maj ν_R</td>
<td>PRD 66(2002)034008</td>
<td>10^{-9}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>Non-universal Z’</td>
<td>PLB 547(2002)252</td>
<td>10^{-9}</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>SUSY SO(10)</td>
<td>PRD 68(2003)033012</td>
<td>10^{-8}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>mSUGRA+seesaw</td>
<td>PRD 66(2002)115013</td>
<td>10^{-7}</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>SUSY Higgs</td>
<td>PLB 566(2003)217</td>
<td>10^{-10}</td>
<td>10^{-7}</td>
</tr>
</tbody>
</table>

- Accessing other models and other parameter space
• Belle-II will produce >10^{10} tau leptons.
• Sensitivity depends on BG level.
 – Recent improvement of the analysis
 (BG understanding, intelligent selection)
 → Improve achievable sensitivity
• $B(\tau \to \mu\mu\mu) \sim O(10^{-10})$ at 50ab$^{-1}$
 – Improvement of BG reduction is important.
 • Beam BG
 • Signal resolution
• Search for LFV τ decays using $\sim 10^9 \tau$ decays
 – 48 modes have been investigated.
• **No evidence** is observed yet.
• Upper limits on branching ratio around $O(10^{-8})$
 – $B(\tau \rightarrow \mu \mu \mu) < 2.1 \times 10^{-8}$, $Br(\tau \rightarrow \mu \nu^0) < (1.2-8.4) \times 10^{-8}$
 – $B(\tau \rightarrow \mu h h') < (2.1-8.6) \times 10^{-8}$, $Br(\tau \rightarrow \Lambda h) < (2.8-4.2) \times 10^{-8}$ etc.
 – Exploring some new-physics parameters space.

• Update $\tau \rightarrow \mu \gamma/e\gamma$ with full data sample ($\sim 1000 fb^{-1}$)
• Optimization for BG reduction is important for future experiment
 – Belle-II try to obtain the sensitivity of $O(10^{-9\sim10})$.
Result for $\tau \rightarrow J P^0 (=\pi^0, \eta, \eta')$

$(2.1-4.4)$ times more stringent results than previous Belle result $(401 fb^{-1})$

<table>
<thead>
<tr>
<th>$\tau \rightarrow$</th>
<th>Eff. %</th>
<th>N_{BG}^{exp}</th>
<th>N_{obs}</th>
<th>UL x10$^{-8}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\eta'(\rightarrow \pi\pi\eta)$</td>
<td>8.1%</td>
<td>0.00$^{+0.16}_{-0.00}$</td>
<td>0</td>
<td>10.0</td>
</tr>
<tr>
<td>$\mu\eta'(\rightarrow \rho^0\gamma)$</td>
<td>6.2%</td>
<td>0.59$^{+0.41}_{-0.00}$</td>
<td>0</td>
<td>6.6</td>
</tr>
<tr>
<td>$\mu\eta'(\text{comb.})$</td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>$\eta'(\rightarrow \pi\pi\eta)$</td>
<td>7.3%</td>
<td>0.63$^{+0.45}_{-0.00}$</td>
<td>0</td>
<td>9.4</td>
</tr>
<tr>
<td>$\eta'(\rightarrow \rho^0\gamma)$</td>
<td>7.5%</td>
<td>0.29$^{+0.29}_{-0.00}$</td>
<td>0</td>
<td>6.8</td>
</tr>
<tr>
<td>$\eta'(\text{comb.})$</td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>$\mu\pi^0(\rightarrow \gamma\gamma)$</td>
<td>4.2%</td>
<td>0.64$^{+0.32}_{-0.00}$</td>
<td>0</td>
<td>2.7</td>
</tr>
<tr>
<td>$e\pi^0(\rightarrow \gamma\gamma)$</td>
<td>4.7%</td>
<td>0.89$^{+0.40}_{-0.00}$</td>
<td>0</td>
<td>2.2</td>
</tr>
</tbody>
</table>
eK*, eK*, ep modes

Other BG for eK*, eK* and ep
⇒ Event with γ conversion

For example, eK* mode

\[\tau^- \rightarrow \pi^- \pi^0 \nu \]

with γ conversion from π^0

Require large invariant mass of e^+e^- candidate, to reduce the BG

data γ-conversion
generic ττ MC

eK* MC

overlap dE/dx region between e and K

Fake K* as miss KID

\[e^- \rightarrow \pi^- \pi^0 \]

\[\gamma \rightarrow \nu \pi \]

\[\text{Mee with } e^- K^+ \text{ MC} \]
4 modes are searched for. (h=\(\pi\) and K)
- \(\tau^- \rightarrow \Lambda h^-\): (L-B) conserving decay
- \(\tau^- \rightarrow \Lambda h^-\): (L-B) violating decay

Current upper limits (no search for \(\Lambda K\) on Belle)
- Belle \(Br < (7.2-14) \times 10^{-8} @ 154 fb^{-1}\)
- BaBar \(Br < (5.8-15) \times 10^{-8} @ 237 fb^{-1}\)

update with 906 fb\(^{-1}\) @ Belle
BG rejection for Λh

To reduce $\tau\tau$ BG including K_S^0
⇒ reconstruct K_S^0 and reject events that are likely to be K_S^0

A half of K_s^0 BG events are rejected.

To reduce $q\bar{q}$ BG including Λ
⇒ reject events with a proton in tag side (due to BN conservation, the events including a Λ tend to have baryon on tag side.)

A third of $q\bar{q}$ BG events are rejected.
Results of Λh

(preliminary)

In the signal region

no candidate event are found

\Rightarrow no significant excess

<table>
<thead>
<tr>
<th>Mode</th>
<th>ε (%)</th>
<th>N_{BG}</th>
<th>σ_{syst} (%)</th>
<th>N_{obs}</th>
<th>s_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \rightarrow \Lambda \pi^-$</td>
<td>4.80 ± 0.15</td>
<td>8.2</td>
<td></td>
<td>0</td>
<td>2.3</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \Lambda \pi^-$</td>
<td>4.39 ± 0.18</td>
<td>8.2</td>
<td></td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \Lambda K^-$</td>
<td>4.11 ± 0.14</td>
<td>8.6</td>
<td></td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \Lambda K^-$</td>
<td>3.16 ± 0.19</td>
<td>8.6</td>
<td></td>
<td>0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Set upper limits@90%CL:

$\text{Br}(\tau^- \rightarrow \Lambda \pi^-) < 2.8 \times 10^{-8}$ (L-V) cons.
$\text{Br}(\tau^- \rightarrow \Lambda K^-) < 3.1 \times 10^{-8}$ (L-V) viol.
$\text{Br}(\tau^- \rightarrow \Lambda \pi^-) < 3.0 \times 10^{-8}$
$\text{Br}(\tau^- \rightarrow \Lambda K^-) < 4.2 \times 10^{-8}$

Around x(2–3) improvement from the previous BaBar results