The Lattice QCD study of the Three Nucleon Force

Takumi Doi
(CNS, Univ. of Tokyo)

for HAL QCD Collaboration

S. Aoki, N. Ishii, K. Sasaki (Univ. of Tsukuba)
T. Hatsuda (Univ. of Tokyo & RIKEN)
Y. Ikeda (Tokyo Inst. Tech.)
T. Inoue (Nihon Univ.)
K. Murano (RIKEN)
H. Nemura (Tohoku Univ.)

arXiv:1106.2276 [hep-lat]
Importance of Three Nucleon Force (3NF)

- 3NF \leftarrow potential among 3N which cannot be reduced to pair-wise 2N potential

\[
\pi \pi \Delta
\]

Fujita-Miyazawa(1957)
Importance of Three Nucleon Force (3NF)

- Precise few-body calc: NN force cannot reproduce B.E.
 \[\delta \text{B.E.} = 0.5-1 \text{MeV for } ^3\text{H} \]
 \[\delta \text{B.E.} = 2-4 \text{ MeV for } ^4\text{He} \]
 - Attractive 3NF necessary

- Saturation density/energy of nuclear matter also requires 3NF
 - EOS of neutron star
 - Flavor universal 3BF (repulsive) ?

- Repulsive 3NF also necessary

\[E/A \]

Nogga et al., PRL85(2000)944
A.Akmal et al., PRC58(1998)1804
Takatsuka et al., PTPS174(2008)80

Demorest et al. (2010)
Freire (2009)

\[1.97 M_\odot \] (J 1614-2230)
\[1.67 M_\odot \] (J 1903+0327)
\[1.44 M_\odot \]

\[3\text{NF?} \]

\[\rho \]

07/28/2011
PANI C11 @ MIT

Nishizaki et al., PTP108(2002)703
Importance of Three Nucleon Force (3NF)

- The effect on the nuclear chart
 - Anomaly in drip line and nontrivial magic number in neutron rich nuclei by 3NF

drip line: $^{28}\text{O} \rightarrow ^{24}\text{O}$

nontrivial magic number

$N=28$ for ^{20}Ca

T. Otsuka et al., PRL105(2010)032501
J. D. Holt et al., arXiv:1009.5984
Lattice QCD as 1st principle calc

- well-defined statistical system (finite a and L)
- gauge invariant
- fully non-perturbative

Monte-Carlo simulations

Quenched QCD: neglects creation-annihilation of quark-antiquark pair
Full QCD: includes creation-annihilation of quark-antiquark pair
Nuclear Force from Lattice QCD

[HAL QCD strategy]

- Potential is constructed so as to reproduce the NN phase shift (or, S-matrix)

- Nambu-Bethe-Salpeter (NBS) wave function
 \[\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}, t) N(\vec{x}, t) | 2N \rangle \]
 - Key concept: asymptotic region \(\leftrightarrow \) phase shift
 \[(\nabla^2 + k_0^2) \psi(\vec{r}) = 0, \quad r > R \]
 - Luscher, NPB354(1991)531
 - C.-J.Lin et al., NPB619(2001)467
 - CP-PACS Coll., PRD71(2005)094504

- Define the potential at interaction region
 \[(\nabla^2 + k_0^2) \psi(\vec{r}) = \int d\vec{r'} U(\vec{r}, \vec{r'}) \psi(\vec{r'}), \quad r < R \]
 - Non-local, but \textbf{E-independent} potential

- Velocity expansion
 \[U(\vec{r}, \vec{r'}) = V_c(r) + S_{12} V_T(r) + L \cdot \vec{S} V_L S(r) + O(\nabla^2) \]
 - Okubo-Marshak(1958)
 - Aoki-Hatsuda-Ishii PTP123(2010)89
 - Truncation in expansion introduces E-dep (only practically), but we can \textbf{improve order by order}
2N potentials (parity-even) from Lattice QCD

\[M(\pi) = 1.13\text{GeV} \]

Nf=2 (CP-PACS)
\[16^3\times32, \ L=2.5\text{fm} \]
\[1/a=1.27\text{GeV} \]
How can we tackle 3NF in Lattice QCD?

- In the case of 2N system...
 - Calc 4pt func \Rightarrow NBS amp.
 $\psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}; t) N(\vec{x}; t) | 2N \rangle$
 $\Rightarrow \quad (E - H_0)\psi(\vec{r})$
 $= \quad [V_c(r) + S_{12}V_T(r) + \cdots]\psi(r)$

- Extension to 3N system
 - Calc 6pt func \Rightarrow NBS amp. of 3N
 $\psi(\vec{r}, \vec{\rho}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) N(\vec{x} + \vec{r}/2 + \vec{\rho}) | 3N \rangle$
 - Obtain 3NF through
 $(E - H'_0 - H'_0)\psi(\vec{r}, \vec{\rho}) = \left(\sum_{i<j} V_{ij}(\vec{r}_{ij}) + V_{3NF}(\vec{r}, \vec{\rho})\right)\psi(\vec{r}, \vec{\rho})$

- Difficulty(1): volume factor
 - 2N: naïve $O(L^6)$ calc $\Rightarrow O(L^3 \log L^3)$
 - 3N: naïve $O(L^9)$ calc $\Rightarrow O(L^6 \log L^6)$

- Difficulty(2): naïve calc of quark dof grows in factorial ($\sim N_u! \cdot N_d!$)
 - 2N: $O(L^3) \times N_{\text{wick}} \times$ color/spinor loops
 - 3N: $O(L^6) \times N_{\text{wick}} \times$ color/spinor loops

3NF is exceptionally challenging problem!

C.f. pioneering lat calc of B.E. 3He($=^3$H), 4He
T.Yamazaki et al., arXiv:0912.1383
How can we tackle 3NF in Lattice QCD? (cont’d)

- Calculation for **fixed 3D-configuration** of 3N system
 - **Direct access to 3NF is possible!**
 - We can explore the various features of 3NF (spin/isospin/spacial, etc.)
 - Huge calc cost (**O(10^2-10^3)** factor compared to 2N)
 - We study **linear setup**

We consider Triton channel

- **Linear setup** with various distance “r₂”

short “r₂” setup

long “r₂” setup

Study r₂-dependence of 3NF

07/28/2011 PANIC11 @ MIT
Features of Linear setup for ^3H

- Simplified coupled channel analysis possible
 - The vector to 3rd particle $\vec{\rho} = \vec{0}$
 - $L^{(1,2)}\text{-pair} = L^{\text{total}} = 0$ or 2 only
 - Possible bases are only three, which can be labeled by $1S_0$, $3S_1$, $3D_1$ for (1,2)-pair

\textbf{Schrodinger Eq.}

\[\hat{H}_0 \begin{pmatrix} \psi^{(1S_0)} \\ \psi^{(3S_1)} \\ \psi^{(3D_1)} \end{pmatrix} + \begin{pmatrix} V \\ (V_{2N} + V_{3NF}) \end{pmatrix} \begin{pmatrix} \psi^{(1S_0)} \\ \psi^{(3S_1)} \\ \psi^{(3D_1)} \end{pmatrix} = E \begin{pmatrix} \psi^{(1S_0)} \\ \psi^{(3S_1)} \\ \psi^{(3D_1)} \end{pmatrix}\]
Parity-odd potential Issue

- However, in order to determine TNF in 3x3 coupled channel, we need information of parity-odd potential
 - Although (1,2)-pair is L=even, (3,1),(2,3)-pair have L=odd components

- Parity-odd potential from lattice QCD (still) in progress
 - \Rightarrow 3X3 channel, but unknown $V_C^{I,S=0,0}, V_C^{I,S=1,1}, V_T^{I,S=1,1}, \text{TNF}(s)$

\[
\hat{H}_0 \begin{pmatrix}
\psi(1S_0) \\
\psi(3S_1) \\
\psi(3D_1)
\end{pmatrix} + \begin{pmatrix}
V \\
(V_{2N} + V_{3NF})
\end{pmatrix} \begin{pmatrix}
\psi(1S_0) \\
\psi(3S_1) \\
\psi(3D_1)
\end{pmatrix} = E \begin{pmatrix}
\psi(1S_0) \\
\psi(3S_1) \\
\psi(3D_1)
\end{pmatrix}
\]

$V_C^{I,S=1,0}, V_C^{I,S=0,1}, V_T^{I,S=0,1}$: (P = even)

$V_C^{I,S=0,0}, V_C^{I,S=1,1}, V_T^{I,S=1,1}$: (P = odd)

Target to be determined
Solution using “symmetric” wave function

- Rotate the basis
 \[|\psi_S\rangle = 1/\sqrt{2} (-|\psi_{1S_0}\rangle + |\psi_{3S_1}\rangle) \]
 \[|\psi_M\rangle = 1/\sqrt{2} (+|\psi_{1S_0}\rangle + |\psi_{3S_1}\rangle) \]

- We can construct the wave function in which any 2N pair is spin/isospin anti-symmetric
 \[\vec{\rho} = 0 \]

- \(L=\text{even for any 2N pair} \) automatically guaranteed

\[
\hat{H}_0 \begin{pmatrix} \psi_S \\ \psi_M \\ \psi_{3D_1} \end{pmatrix} + \begin{pmatrix} V_{2N} & & \\
& & \\
& & \\
\end{pmatrix} \begin{pmatrix} \psi_S \\ \psi_M \\ \psi_{3D_1} \end{pmatrix} + \hat{V}_{3NF} \begin{pmatrix} \psi_S \\ \psi_M \\ \psi_{3D_1} \end{pmatrix} = E \begin{pmatrix} \psi_S \\ \psi_M \\ \psi_{3D_1} \end{pmatrix}
\]
Solution using "symmetric" wave function

- We can construct the wave function in which any 2N pair is spin/isospin anti-symmetric
 - \(\Rightarrow L=\text{even for any 2N pair} \) automatically guaranteed
- 3x3 coupled channel is reduced to
 - one channel with only 3NF unknown
 - two channels with \(V_C^{I,S=0,0}, V_C^{I,S=1,1}, V_T^{I,S=1,1} \), (3NF) unknown

\[
\begin{pmatrix}
H_0 & V_{2N} & V_{3NF} \\
V_M & \psi_M & \psi_{D_1} \\
V_M & \psi_M & \psi_{D_1}
\end{pmatrix}
= E
\begin{pmatrix}
\psi_S \\
\psi_M \\
\psi_{D_1}
\end{pmatrix}
\]

- \(\Rightarrow \) Even without parity-odd \(V \), we can determine one 3NF
 - This methodology works for any fixed 3D-conf other than linear

07/28/2011 PANIC11 @ MIT
Repulsive 3NF (3NR)

- We determine 3NF effectively represented by a scalar/isoscalar functional form
 - c.f. phenomenological 3NF to reproduce saturation point of nuclear matter, etc.

\[V_{3NF} = V_{2\pi E} + (V_{3\pi R}) + V_{3NR} \]

\[V_{3NR} = U_0 \sum_{cyc} T^2(r_{12})T^2(r_{13}) \]

\[T(r) = \left(1 + \frac{3}{\mu r} + \frac{3}{\mu^2 r^2}\right) \frac{e^{-\mu r}}{\mu r} T_{\text{cut}}(r) \]

AdS/CFT: \[V_{3NF} = +\text{const.} \cdot \frac{1}{r^4} \]

K. Hashimoto, N. Iizuka
JHEP 1011 (2010) 058

Plot of 3NR only: there is cancellation from 3NA

07/28/2011

PANI C11 @ MIT
Lattice calculation setup

- Nf=2 dynamical clover fermion + RG improved gauge configs (CP-PACS)
 - 598 configs X 32 measurements
 - beta=1.95, \(a^{-1}=1.27 \text{GeV} \), \(a=0.156 \text{fm} \)
 - \(16^3 \times 32 \) lattice, \(L=2.5 \text{fm} \)
 - Kappa(ud)=0.13750
 - \(M(\pi) = 1.13 \text{GeV} \)
 - \(M(N) = 2.15 \text{GeV} \) \((M_\pi L=14) \)
 - \(M(\Delta) = 2.31 \text{GeV} \)
- Techniques
 - **Automatic Wick contraction code** to handle 4 up- and 5 down-quarks
 - **Non-rela limit op** is used to create 3N state at source

 \[
 N_{\text{src}} = \epsilon_{abc}(u_a^T C\gamma_5 \frac{1+\gamma_4}{2} d_b) \frac{1+\gamma_4}{2} u_c
 \]

 \(\Rightarrow \) Factor of \(2^3=8 \) faster

BGL@KEK

T2K@Tsukuba
Results for wave functions

\[\Psi_S \text{ overwhelms the wave function:} \]

\[\Rightarrow \text{Indication of the dominance of all S-wave component, higher waves suppressed} \]
Genuine Three Nucleon Force

T.D. et al. (HAL QCD Coll.)
arXiv:1106.2276 [hep-lat]

Huge Impact on physics of high density matters, EoS, Neutron Star, SuperNova, ...

short-range repulsive 3NF!

M(\pi) = 1.13GeV

07/28/2011
Check on sink time dependence

Huge Impact on physics of high density matters, EoS, Neutron Star, SuperNova, ...

Consistent \(\rightarrow \) Saturated to G.S.

\[V_{3NF}(r_2) \text{ [MeV]} \]

\[(t-t_0)/a=8 \]
\[(t-t_0)/a=9 \]

\(M(\pi) = 1.13 \text{GeV} \)

T.D. et al. (HAL QCD Coll.)
arXiv:1106.2276 [hep-lat]

(07/28/2011) (further improvement in progress)
Studies on discretization error

Discretization error in Laplacian op. is small

Comparison with Improved Laplacian op.

Discretization error in Laplacian op. is small

\[\nabla^2_{\text{std}} f(\vec{x}) = \frac{1}{a^2} \sum_{i} [f(\vec{x} + a_i) + f(\vec{x} - a_i) - 2f(\vec{x})] \]

\[\nabla^2_{\text{imp}} f(\vec{x}) = \frac{1}{12a^2} \sum_{i} [-f(\vec{x} + 2a_i) + f(\vec{x} - 2a_i) + 16f(\vec{x} + a_i) + f(\vec{x} - a_i) - 30f(\vec{x})] = \nabla^2 f(\vec{x}) + \mathcal{O}(a^4) \]

\[= \nabla^2 f(\vec{x}) + \mathcal{O}(a^2) \]

Used for Kinetic energy
Summary/Outlook

- We have performed the **Lattice QCD** study of the **Genuine Three Nucleon Force (3NF)**
 - Wave function with anti-symmetric in spin/isospin for any 2N pair
 - 2N subtraction is possible using only parity-even potentials
 - We have calculated **linear setup** of 3N (^3H) system
 - System is reduced to 3X3 coupled channel
 - Nf=2 dynamical clover fermion at $m_\pi = 1.13$ GeV
 - **Repulsive 3NF at short distance**, further studies ongoing

- Outlook
 - Finer lattices and lighter masses, larger volumes
 - More independent 3NFs using parity-odd potential \Rightarrow FM, chEFT
 - Other 3D-conf of 3N, such as triangle \Rightarrow spacial information of 3NF
 - In future: other channel, I=3/2 [hard to access by scatt. exp]
 Extend the flavor space SU(2) \Rightarrow SU(3) : Astrophysics (e.g., Neutron Star)
Backup Slides
Parity-even 2N potentials (input)

\[M(\pi) = 1.13 \text{GeV} \]
Effective 2N potential in 3N

\[M(\pi) = 1.13 \text{GeV} \]
Solution using “symmetric” wave function

- Rotate the basis

\[|\psi_S\rangle = \frac{1}{\sqrt{2}} (-|\psi_{S_0}\rangle + |\psi_{S_1}\rangle) \quad |\psi_M\rangle = \frac{1}{\sqrt{2}} (+|\psi_{S_0}\rangle + |\psi_{S_1}\rangle) \]

- We can construct the wave function in which any 2N pair is spin/isospin anti-symmetric

\[
|\psi_S\rangle = 1/\sqrt{6} \left[- (p_{\uparrow}\downarrow n_{\uparrow} - n_{\uparrow} p_{\uparrow}) n_{\downarrow} \\
- (n_{\uparrow} n_{\downarrow} - n_{\downarrow} n_{\uparrow}) p_{\uparrow} \\
+ 1/2 (p_{\uparrow}\downarrow n_{\uparrow} + n_{\uparrow} p_{\downarrow} - p_{\downarrow} n_{\uparrow} - n_{\downarrow} p_{\uparrow}) n_{\uparrow} \\
+ 1/2 (p_{\uparrow}\downarrow n_{\downarrow} - n_{\uparrow} p_{\downarrow} + p_{\downarrow} n_{\downarrow} - n_{\uparrow} p_{\downarrow}) n_{\uparrow} \right]
\]

\(\leftrightarrow I = 0, S = 1 \)

\(\leftrightarrow I = 1, S = 0 \)

\(\leftrightarrow I = 1, S = 0 \)

\(\leftrightarrow I = 0, S = 1 \)

\(\rightarrow L=\text{even for any 2N pair} \) automatically guaranteed
Explicit formula for the potential matrix

The potential matrix for the 2N part in 3x3 coupled channel in linear setup can be written as:

\[
V_{2N} = \begin{pmatrix}
+V_C^{10}(r) + V_C^{01}(r) & +\frac{1}{2}V_C^{10}(r) - \frac{1}{2}V_C^{01}(r) & -2V_T^{01}(r) \\
+\frac{1}{2}V_C^{10}(2r) + \frac{1}{2}V_C^{01}(2r) & -\frac{1}{2}V_C^{10}(2r) + \frac{1}{2}V_C^{01}(2r) & +2V_T^{01}(2r) \\
\end{pmatrix} \\
\begin{pmatrix}
+\frac{1}{2}V_C^{10}(r) - \frac{1}{2}V_C^{01}(r) & +\frac{3}{4}V_T^{01}(r) + \frac{1}{4}V_C^{10}(r) + \frac{1}{4}V_C^{01}(r) + V_T^{11}(r) \\
-\frac{1}{2}V_C^{10}(2r) + \frac{1}{2}V_C^{01}(2r) & +\frac{1}{2}V_C^{10}(2r) + \frac{1}{2}V_C^{01}(2r) \\
\end{pmatrix}
\]

\[
V_T^{11}(r) - 3V_T^{11}(r) \\
+V_T^{01}(r) - 3V_T^{11}(r) \\
+2V_T^{01}(2r) \\
+V_T^{01}(r) - 3V_T^{11}(r) \\
+2V_T^{01}(2r) \\
+2V_T^{01}(2r)
\]

\[
V_C^{I,S=1,0}, V_C^{I,S=0,1}, V_T^{I,S=0,1} : (P = \text{even}) \\
V_C^{I,S=0,0}, V_C^{I,S=1,1}, V_T^{I,S=1,1} : (P = \text{odd})
\]

(LO-terms) 07/28/2011 PANIC11 @ MIT (r → 2r convention) 25
Importance of Three Nucleon Force (3NF)

- **3NF** \leftrightarrow potential among 3N which cannot be reduced to pair-wise 2N potential
 - Important role in B.E. of light-nuclei
 - Nucleus-nucleus scattering, Ay puzzle?
 - Saturation point of nuclear matter
 - **EoS** of high density matter \Rightarrow Neutron Star, SuperNova
 - Properties of neutron rich nuclei \Rightarrow Nucleosynthesis

Fujita-Miyazawa (1957)
Importance of Three Nucleon Force (3NF)

- Precise few-body calc: NN force cannot reproduce B.E.
 \[\delta B.E. = 0.5-1 \text{MeV for } ^3\text{H} \]
 \[\delta B.E. = 2-4 \text{ MeV for } ^4\text{He} \]
 - Attractive 3NF necessary

- Saturation density/energy of nuclear matter also requires 3NF
 - EOS of neutron star
 - Flavor universal 3NF (repulsive) ?
 - Repulsive 3NF also necessary
 - A.Akmal et al., PRC58(1998)1804
 - Takatsuka et al., PTPS174(2008)80

- The effect on the nuclear chart
 - anomaly in drip line and magic numbers by 3NF
 - Ay puzzle in N-d, N-A scatt., etc.
 - (3NF may worsen the situation)
 - T.Otsuka et al., PRL105(2010)032501
Importance of Three Nucleon Force (3NF)

- **Precise few-body calc:**
 - e.g. benchmark calc of ^4He by 7 methods (NN only)

 ![Graph showing precision for binding energy](Image)

 \[\delta B.E. = \begin{array}{c}
 0.5-1 \text{MeV for } ^3\text{H} \\
 2-4 \text{ MeV for } ^4\text{He}
 \end{array} \]

 ![Graph showing missing binding energy](Image)

 H. Kamada et al., PRC64(2001)044001

- **2N force cannot reproduce B.E.**
 - Attractive 3NF necessary

 ![Graph showing 3NF and binding energy](Image)

 Nogga et al., PRL85(2000)944
Attractive 3NF necessary!
Three Nucleon Force (3NF)

- It is natural to expect the existence of 3NF
- It is very nontrivial to determine 3NF from QCD
- $2\pi E$-3NF Fujita-Miyazawa, PTP17(1957)360
 - Off-energy-shell πN scatt
- EFT expansion \Rightarrow 3NF appears at NNLO order
- Phenomenological short-range repulsion is necessary
- $2\pi E$-3NF too attractive, often suppressed (artificially) by form factor
- NB: the combination of (2NF,3NF) \Rightarrow observables

U.v.Kolck, PRC49(1994)2932
Epelbaum, Prog.Part.Nucl.Phys.57(06)654
Japan’s next gen computer

- K computer at Kobe, Japan
- 10PFlops (2012)

K (Kei) = $10^{16} = 10$ Peta