Project 8: a radiofrequency approach to the neutrino mass

Ben Monreal, UC Santa Barbara
Neutrino mass

Oscillation experiments measure $\Delta(m^2)$

- **normal hierarchy**: m_3
- **inverted hierarchy**: m_2 and m_1
- **degenerate hierarchy**: m_3

Kinematics say < 2 eV
Cosmology says (?) < 0.3 eV

Ben Monreal PANIC11
$^3\text{H} \rightarrow ^3\text{He}^+ + e^- + \bar{\nu}_e$

Current limit 2.0 eV, BR < 10^{-10}
KATRIN goal 0.2 eV, BR < 10^{-12}
$\Delta m_{23} \sim 0.05$ eV, BR < 10^{-14}

$Q = M_T - M_{^3\text{He}} - M_e$

Most E_e at ~ 3 keV
Cyclotron radiation

- Accelerating charge = EM radiation
- Coherent, narrowband
- High power per electron

\[P_{\text{tot}} = \frac{1}{4\pi\varepsilon_0} \frac{2q^2\omega_c}{3c} \frac{\beta_1^2}{1 - \beta^2} \]

- Electron energy contributes to velocity \(v \), power \(P \), frequency \(\omega \)
 - Can we detect this radiation, measure \(v, P, \omega \), and determine \(E \pm 1 \text{ eV} \)?
100,000 tritium decays in 30µs
Frequency precision

- Schawlow: “Never measure anything but frequency”
- $f \cdot \Delta E/E \sim \Delta f = 1/\Delta t$
- 1 eV energy resolution
 - $\Delta f / f = 2 \times 10^{-6}$ (easy!)
 - $\Delta t = 20\mu s$ (hard!)
 - $\beta c \cdot \Delta t = 1400$ meters
- Thermal noise:
 - $P_K(T) = k_B T \Delta f$
- Redshift/blueshift!
Low-energy electrons cannot be both redshifted and narrow-frequency: no “fakes”
UW prototype

S.S. Cr. tubes connected to physics can for support

Magnetic bottle stores electron

1x3cm preamp on top

1cm^2 pin diode on bottom

32.5°

Ben Monreal PANIC11
\(^{83}\text{Rb} \rightarrow ^{83m}\text{Kr} \)
(t\(_{1/2} \)=86 d, BR=100%)
\(^{83m}\text{Kr} \rightarrow ^{83}\text{Kr} + 17.8 \text{ keV e}^- + 14.3 \text{ keV } \gamma \)
(t\(_{1/2} \)=1.8 h, BR=25%)

Simulations: single-electron cyclotron radiation will be above thermal noise

\[\begin{array}{c}
\text{Energy [fJ]} \\
\text{24} \\
\text{22} \\
\text{20} \\
\text{18} \\
\text{16} \\
\text{14} \\
\text{12} \\
\text{10} \\
\text{8} \\
\text{6} \\
\text{4} \\
\text{2} \\
\end{array} \]

\[\begin{array}{c}
\text{Freq [Hz]} \\
\times 10^9 \\
\end{array} \]

Ben Monreal PANIC II

preamp

balun

parallel plates
Complexities

I. Electron energy not constant

Current detector simulation

0.5 ms trapped electron

(Frequency after mixing)
Complexities

1. Electron energy not constant
2. B-field may not be uniform

Current detector simulation
Complexities

1. Electron energy not constant
2. B-field may not be uniform
3. Oscillations, Doppler shifts = frequency sidebands

Magnet construction, DAQ, bandwidth, and SNR are all entangled

UCSB Ben Monreal PANIC11
- **Bad**: most e⁻ escape in < 1µs (long)
- **Bad**: no power at \(f = f_0 \); just red/blueshift
 - (redshift at waveguide group velocity)
 - need high-bandwidth data analysis
- **Good**: data analysis is JUST fourier trans

Long solenoid/waveguide

- **Bad**: most e⁻ escape in < 1µs (long)
- **Good**: simplest possible spectrum (peak at \(f_0 \))
- **Good**: only need \(\sim \)1 MHz DAQ
- **Bad**: 30GHz is tough cavity size

Long solenoid/cavities

- **Good**: keeps e⁻ in view of simple antenna for a long time
- **Bad**: center frequency depends on pitch angle, radial position
- **Maybe**: all of the unknowns are encoded in the rich sideband structure (?)
Resonant cavity

Longish, uniform field

Is there a long-lived signal to trigger on? YES

Can we determine the cyclotron frequency precisely? YES

Reanalysis can subtract “phase shift” = narrow peak at f_0
Conclusions

- Project 8 is the first realistic prospect for a post-KATRIN neutrino mass experiment
- Coming soon: 1st single-electron detection with 83mKr source
 - Quick low-res T_2 experiment?
- Come up with “scalable design” and build tabletop version (≈few-eV m_ν sensitivity)
 - We welcome magnet and RF engineering advice
- Proposal for large experiment