Recent Results from MINOS

Lisa Whitehead Brookhaven National Laboratory

On behalf of the MINOS Collaboration

PANIC, July 28, 2011

The MINOS Experiment

Detectors consist of alternating layers of steel plates and scintillator strips in a ~1.3 T toroidal magnetic field

NuMI Beam

Neutrino Interactions at MINOS

L. Whitehead, BNL

Muon Neutrino Disappearance

Neutrinos or Antineutrinos

Antineutrino Disappearance

Use the antineutrino-enhanced beam to measure the disappearance parameters with antineutrinos

Phys. Rev. Lett. 107, 021801 (2011)

Antinus in the Nu Beam

Do an antineutrino disappearance search with the 7% antineutrino component of the neutrino beam...

Electron Neutrino Appearance

appearance of
$$v_e$$
 in a v_μ beam
 $P(v_\mu \rightarrow v_e) \approx \sin^2(2\theta_{13}) \sin^2\theta_{23} \sin^2(\frac{\Delta m_{atm}^2 L}{4 E})$ (Dominant term)

Higher order terms that depend on δ and the mass hierarchy

Projected Sensitivity

Sensitivity =

90% CL upper limit we would set if we observed exactly the background prediction.

Since 2010 result: Phys. Rev. D 82, 051102

- 1.2x10²⁰ POT (17%) more data
- Improved event selection variable: 15% sensitivity gain

Shape fit:
12% sensitivity gain

Library Event Matching (LEM)

New v_{e} selection variable!

Find best matches from a library of MC events

Judge how signal-like an event is based on those best matches.

Matching is done using only strip info (location and charge)

No dependence on high level reconstructed quantities

Compute value of discriminant from information of N best matches

Library Event Matching (LEM)

3 variables describing best matches + reconstructed energy used as inputs to a neural net

Output of neural net is the LEM selection variable

Prior to using LEM, a set of Preselection cuts is applied to remove events that are obviously not signal:

- No long tracks
- At least one well-formed shower
- With visible energy 1-8 GeV

FD Background Prediction

Separately for each event type -Oscillations affect each differently

LEM > 0.6

MINOS ND Data

- _{NC} (59%)

MINOS PRELIMINARY

– ν_μ-cc (29%)

neutral current

3000

2000

- charged current v
- charged current v (beam)

Near Detector 2011

F/N $F = N \times R$

ND data

MC Far-to-Near ratio

July 28, 2011

Separate ND data into the 3 event types by fitting data from 3 different beam configurations:

Events / 1 imes 10¹⁹ POT / GeV 1000 00 2 6 Reconstructed Energy (GeV) L. Whitehead, BNL

8

Far Detector Prediction

For 8.2x10 ²⁰ POT	Component	# Events	
Signal-enhanced region (LEM>0.7)	NC	34	-
	ν_{μ} CC	7	-
δ=0	beam $v_{e}^{}$ CC	6	
$\Delta m^2 = 2.32 \times 10^{-3} eV^2$ $\theta_{23} = \pi/4$ $\sin^2 2\theta_{13} = 0.16$	$^{2}v_{\tau}$ CC	2	Predicted background and signal at CHOOZ limit
	Total Bkgd	49	
	v_{e} CC signal	30	
Note bkgd prediction is dependent on θ_{13}	PRELIMINARY	1	

Far Detector Data

Observed data: 62

Best Fit

Allowed Regions

Assuming: $\delta=0, \theta_{23} = \pi/4$ normal (inverted) hierarchy

$$\sin^2(2\theta_{13}) < 0.12(0.19)$$

90% CL

$$sin^{2}(2\theta_{13}) = 0.04(0.08)$$

Best Fit

We exclude $\sin^2 2\theta_{13} = 0$ at 89% CL

Feldman-Cousins contours

Uncertainties in the other oscillation parameters are included

Summary

- MINOS has made the most precise measurement of $|\Delta m^2_{32}|$
- MINOS is the 1st experiment to directly observe muon antineutrino disappearance new results soon!
- MINOS has updated our electron neutrino appearance search with more data and improved analysis techniques: overall 30% gain in sensitivity

Assuming $\delta=0$, $\theta_{23}=\pi/4$, normal (inverted) hierarchy, we set a 90% C.L. upper limit of $\sin^2(2\theta_{13})<0.12$ (0.19) and exclude $\sin^2(2\theta_{13})=0$ @ 89% CL

L. Whitehead, BNL

Soudan Fire and Recovery

- On March 17 smoke was detected in the MINOS hall at Soudan due to a fire in the shaft
- Power to the lab was shut off automatically
- Foam was pumped in to extinguish the fire
- No damage to the MINOS detector
- Detector returned to full operations May 19

After the fire...

Good as new...

Comparison to T2K Results

L. Whitehead, BNL

July 28, 2011

Matching (LEM)

Info from best matches (LEM)

FD v_{e} -selected energy spectrum

Example of a v_e -Selected Event

θ_{13} sensitivity with antineurinos

Antinu Sensitivity with more data

Sensitivity assuming true parameters as measured by the 1.71x10²⁰ POT antineutrino analysis

Protons Delivered to Target

Total NuMI protons to 00:00 Monday 20 June 2011

