Search for Massive Neutrinos in the decay $\pi^+ \rightarrow e^+ \nu$

Chloé Malbrunot
For the PIENU Collaboration

1. Arizona State University
2. Brookhaven National Laboratory
3. KEK
4. Osaka University
5. TRIUMF
6. University of British Columbia
7. University of Northern British Columbia
9. Virginia Polytechnic Institute & State University
10. Tsinghua University

PANIC 2011
Because of helicity the \(\pi^+ \to e^+ \nu \) decay is suppressed over the \(\pi^+ \to \mu^+ \nu \) decay by a factor \((m_e/m_\mu)^2 \).

\[
R_{SM}^{e/\mu} = \frac{\Gamma(\pi \to e\nu + \pi \to e\nu\gamma)}{\Gamma(\pi \to \mu\nu + \pi \to \mu\nu\gamma)} = 1.2352(1) \times 10^{-4}
\]

The presence of a heavy neutrino changes this helicity relation and alter the value of the branching ratio.

If the heavy neutrino mass is \(M_\nu = 60\text{~to}130 \text{~MeV/c}^2 \) additional low energy positron peak would be detected in the \(\pi^+ \to e^+ \nu_e \) spectrum.

(For measurement of the pion branching ratio at TRIUMF, see Talk: C. Malbrunot - Parallel 5G - Lepton Universality and Forward Jets)
Experimental Method

- Stop pions in an active target Scintillator
- Select $\pi^+ \rightarrow e^+$ events

Required

- High purity pion beam
- Knowledge of response function of calorimeter
- Good $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ background suppression

Target

- π^+
- μ^+
- 4 MeV
- e^+

Full Energy spectrum

- $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
- $\pi^+ \rightarrow e^+$
- $\sim 500 \text{ ns time gate}$

Suppressed Energy spectrum

- Nal energy [MeV]
- CsI
- Nal
- CsI

Counts

07/28/2011
The PIENU detector

- Large solid angle ($\Omega/4\pi = 20\%$)
- Good statistics
- Contain shower leakage (CsI)
- Decay positron travels few material

- Silicon near target & WC
- Good tracking
- Detection of Decay In Flight

- High resolution calorimeter
 Nal : 1% σ at 70 MeV

- Use of fast digitizers
 500 MHz
 separation between $\pi \rightarrow \mu \rightarrow e$ and $\pi \rightarrow e$
The PIENU detector (cont'd)

Monolithic NaI(Tl) crystal surrounded by 97 pure CsI crystals

PIENU II is movable and detachable from PIENU I for line shape measurement at various e+ entrance angles.
50 kHz pion stop in Target with 2% positrons and 10% muons

Triggers: 600Hz

- \(\pi \rightarrow e \nu \): Early (2-50 ns)
- \(\pi \rightarrow \mu \rightarrow e \): Prescaled (1/16)
- Monitor and calibration triggers: \(e^+ \) beam, Xe, cosmic-ray

Waveforms are recorded

A. Aguilar-Arevalo et al., Nucl. Instr. and Meth. A 609 (2009)
Target energy

4 MeV

Kink angle in \(\pi^+ \) track

Suppression of background

Target energy

\(\pi^+ \)

Total Energy deposited in Target

Downstream & Upstream tracking enables background suppression based on vertex position

Panoramic display
Suppression of background (cont'd)

Summary of cuts:
- Time cut (takes advantage of the difference in lifetimes)
- Target energy cut *
- Kink cut
- Pulse Shape cut
- Z vertex *
- CsI veto *
- Radial cut in WC3 *

Optimization of cuts by minimizing
\[S = \frac{\sqrt{N_{<54\,\text{MeV}}}}{N_{>54\,\text{MeV}}} \]

* Cuts with energy dependence

Tighter angular cuts = better peak resolution
Only effective above 47 MeV
Analysis region divided:
1) 0-47 MeV: no angular cut
2) 47-60 MeV: 35 deg cut

<table>
<thead>
<tr>
<th>Positron energy [MeV]</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-47 MeV</td>
<td>Britton et al. Exp.</td>
</tr>
<tr>
<td>47-60 MeV</td>
<td>This analysis All cuts</td>
</tr>
<tr>
<td>70-80 MeV</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle cut: 20°, 30°, 35°, 40°, 70°</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-80 MeV</td>
<td></td>
</tr>
</tbody>
</table>

\[S = \frac{\sqrt{N_{<54\,\text{MeV}}}}{N_{>54\,\text{MeV}}} \]
Response function of the calorimeter was measured with a positron beam at various angles. **Photo-nuclear reactions** in the NaI crystal were discovered.

Neutrons are generated by photo-nuclear reactions $I(\gamma,n)$ in NaI. If the **neutron escapes** from the crystal, the separation energy of the neutron is lost.

The lineshape spectrum is **subtracted** from the pienu data before performing the massive neutrino search.
Massive neutrino search

Search for extra peak in the suppressed spectrum

- Components of the fit:
 - $\pi-\mu-e$ (Michel spectrum for $t = 150-500$ ns)
 - μDIF (distorted Michel spectrum)
 - $A*\exp(B*t) + C$ (to simulate background and tail)
 - Extra peak (MC generated)

Fitting regions:
- 9-62 MeV (35 degree cut)
- 9-50 MeV (No angle cut)
- 0.5 MeV steps. Peak position fixed. Fit over entire energy region.

Fit of 35 deg. spectrum without peak.
χ^2/DOF = 1.00
$\pi\text{DIF}=2\%$ of pienu
$\mu\text{DIF}=3\%$ of pienu

Energy spectrum for μDAR and μDIF

Peak shapes for 35 deg. data

Counts

Normalized counts

Positron energy [MeV]
Amplitude of the potential peaks and the associated errors converted to upper limit on the ratio $\Gamma(\pi^+ \to e+\nu_i)/\Gamma(\pi^+ \to e+\nu_e)$ as a function of positron energies (or massive ν mass).

Acceptance correction for energy dependent cuts applied

Factor of 5 improvement over prior limits on the mass range $M_\nu = 90\sim115$ MeV/c2
<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>09</td>
<td>End of beamline extension work</td>
</tr>
<tr>
<td></td>
<td>10-12</td>
<td>Test run</td>
</tr>
<tr>
<td>2009</td>
<td>05</td>
<td>PIENU detector completed</td>
</tr>
<tr>
<td></td>
<td>05-09</td>
<td>Run I</td>
</tr>
<tr>
<td></td>
<td>09-12</td>
<td>Run II</td>
</tr>
<tr>
<td>2010</td>
<td>03</td>
<td>Temperature enclosure completed</td>
</tr>
<tr>
<td></td>
<td>04-09</td>
<td>Run III</td>
</tr>
<tr>
<td></td>
<td>10-12</td>
<td>Run IV</td>
</tr>
<tr>
<td>2011</td>
<td>08-12</td>
<td>Run V</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>Run VI</td>
</tr>
</tbody>
</table>

Data used for this analysis
1/2 million $\pi^+ \rightarrow e^+$ events after selection cuts
Conclusions

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>09</td>
<td>End of beamline extension work</td>
</tr>
<tr>
<td></td>
<td>10-12</td>
<td>Test run</td>
</tr>
<tr>
<td>2009</td>
<td>05</td>
<td>PIENU detector completed</td>
</tr>
<tr>
<td></td>
<td>05-09</td>
<td>Run I</td>
</tr>
<tr>
<td></td>
<td>09-12</td>
<td>Run II</td>
</tr>
<tr>
<td>2010</td>
<td>03</td>
<td>Temperature enclosure completed</td>
</tr>
<tr>
<td></td>
<td>04-09</td>
<td>Run III</td>
</tr>
<tr>
<td></td>
<td>10-12</td>
<td>Run IV</td>
</tr>
<tr>
<td>2011</td>
<td>08-12</td>
<td>Run V</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>Run VI</td>
</tr>
</tbody>
</table>

Data used for this analysis
1/2 million $\pi^+ \rightarrow e^+$ events after selection cuts

6 million $\pi^+ \rightarrow e^+$ events accumulated so far