Charm Program at BESIII

Chunlei Liu
On Behalf of the BESIII Collaboration

Carnegie Melon University

19th Particles & Nuclei International Conference
Massachusetts Institute of Technology, Cambridge, MA, USA
Outline

• BESIII introduction
• Charm prospects at BESIII
• Ongoing analyses
• Summary
BEPCII: e^+e^- Double Ring Collider

Good news: already achieved 2/3 of the design luminosity 3 years into running
BESIII: General-Purpose Detector

A new detector, utilizing advanced detector technologies developed over the past two decades.
Data Taken

• Apr. 2009: 106 M ψ’ events (~150 pb⁻¹)
 (plus ~42 pb⁻¹ at 3.65 GeV)
• Jul. 2009: 225 M J/ψ events (~65 pb⁻¹)

• Jun. 2010: ~923 pb⁻¹ at ψ(3770)
 (plus ~70 pb⁻¹ scan data around ψ(3770))
• Apr. 2011: ~2 fb⁻¹ at ψ(3770)
 (~2.9 fb⁻¹ ψ(3770) together, 3.5 times of CLEO-c data)
• May. 2011: ~0.5 fb⁻¹ at 4010 MeV (for Dₛ and XYZ)
Charm Role in Flavor Physics

Theoretical errors dominate width of bands

$|V_{ub}|$ from $B \rightarrow \pi \ell \nu$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p^3 |f_+(q^2)|^2$$

Form factor $f(q^2)$:
- Hard to calculate
- Limits $|V_{ub}|$ precision
- Lattice QCD can do from first principles

Charm decay measurements
- decay constants
- form factors
- V_{CKM} clean extraction
- validate QCD.

over-constrain V_{CKM}
Inconsistency \rightarrow New Physics
Advantage of Open Charm at Threshold

• e^+e^- colliders at threshold: CLEO-c, BESIII, super-tau-charm

 $e^+e^- \rightarrow \psi(3770) \rightarrow DD\bar{a}$

• Benefits for charm physics:
 – Threshold production is clean
 – Known initial energy and quantum number
 – Both D and DD\bar{a}r fully reconstructed
 – Absolute measurement
Clean single tag at BESIII

@ψ(3770) with 420pb⁻¹ first clean single tagging sample:

\[M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2} \]

Resolution:
1.3 MeV for pure charged modes;
1.9 MeV for modes with one π⁰.
mBC of D_s Single Tag
part of data @ 4010 MeV

$D_s \rightarrow K K \pi$

$D_s \rightarrow K_s K$

BESIII Preliminary

$\sigma \sim 1.6$ MeV

BESIII Preliminary

$\sigma \sim 1.4$ MeV
Prospects for Charm at BESIII

precision measurements at BESIII after CLEO-c.

<table>
<thead>
<tr>
<th>CLEO-c errors for D⁰/D⁺ physics with 818 pb⁻¹@3770</th>
<th>BESIII (5fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_D⁺ (D⁺→μ⁺ν)</td>
<td>±4.1% (stat.) ± 1.2% (sys.)</td>
</tr>
<tr>
<td>f_π(0) (D⁰→π⁺ν)</td>
<td>±5.3% (stat.) ± 0.7%(sys.)</td>
</tr>
<tr>
<td>BR(D⁰→Kπ)</td>
<td>±0.9% (stat.) ± 1.8%(sys.)</td>
</tr>
<tr>
<td>BR(D⁺→Kππ⁺)</td>
<td>±1.1% (stat.) ± 2.0%(sys.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLEO-c errors for D_s physics with 600pb⁻¹@4170 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_D_s (D_s⁺→μ⁺ν,τν)</td>
</tr>
<tr>
<td>BR(D_s⁺→KKπ)</td>
</tr>
</tbody>
</table>

For Ds physics, BESIII are taking data at both 4010 and 4170 MeV:

4010 MeV (clean single tag, lower cross section 0.3 nb) → BESIII 0.5 fb⁻¹
4170 MeV (dirty single tag, maximum cross section 0.9 nb) → CLEO-c 0.6 fb⁻¹

Significant gains will be made with increased luminosity at BESIII.
Ongoing Analyses
(using data up to 2.9 fb\(^{-1}\))
Leptonic Analysis

• Two ongoing measurements:
 – $D^+ \rightarrow \mu^+ \nu$,
 – $D_s \rightarrow \mu^+ \nu$

• Motivations:
 – Clean way to measure f_{D^+} and f_{D_s} (by Branch Fraction) in SM
 – Good agreement between expt. f_{D^+} and LQCD calculations
 – $\sim 1.6 \sigma$ difference between expt. f_{D_s} and LQCD calculations
 – Precise f_{D^+} and f_{D_s} measurements are important inputs for theory
D$^+ \rightarrow \mu^+ \nu$ Measurement

- Tag side: 9 D$^+$ hadronic modes (K$\pi\pi$, k$\pi\pi\pi^0$, K$_s\pi$, etc)
- Signal side:
 1. one charged track only and muon PID satisfied
 2. no isolated EMC shower
- Key variable: $M^2_{miss} = E^2_{miss} - P^2_{miss}$

![Graph showing M$^2_{miss}$ Distribution (part of data)](image)
Semi-leptonic Analysis

• Three ongoing measurements:
 – $D^0 \rightarrow K^-/\pi^- e^+ \nu$
 – $D^+ \rightarrow \pi^0/\eta e^+ \nu$
 – $D^+ \rightarrow \omega/\phi e^+ \nu$, $\omega \rightarrow \pi^+\pi^-\pi^0$, $\phi \rightarrow KK$

• Motivations
 – Measure form factors and check theory
 – Test iso-spin symmetry in $D^0/D^+ \rightarrow \pi^-/\pi^0 e^+\nu$
 – Branch fraction measurements (large error for PDG value of $D^+ \rightarrow \omega e^+\nu$, and only upper limit for $D^+ \rightarrow \phi e^+\nu$.)
D^0 -> K^-/\pi^- e^+ \nu Measurement

• Tag side: Three D^0 modes (K\pi, K\pi\pi^0, K\pi\pi\pi)

• Signal side:
 1. two good tracks with opposite charges
 2. K/\pi PID and electron PID requirements
 3. electron has opposite charge as the tag side kaon

• Key variable: \(U_{\text{miss}} = E_{\text{miss}} - P_{\text{miss}} \)

U_{\text{miss}} Distribution of D^0 -> K e \nu mode
(part of data)

U_{\text{miss}} Distribution of D^0 -> \pi e \nu mode
(part of data)
$$d\Gamma(D \rightarrow Pe\nu)\over dq^2 = X{G_F^2 |V_{cd(s)}|^2 \over 24\pi^3} p^3 |f_+(q^2)|^2$$

Where q^2 is invariant mass of lepton-neutrino system

- To extract form factors, need to fit yields in q^2 bins.
- Less than 10 bins in q^2 from 0 to 3 GeV2
- Excellent resolution according to MC: $\sigma \sim 0.015$ GeV2

$$\Delta q^2 = q^2 - q^2_{\text{truth}}$$

From signal Monte Carlo
D Branch Fraction Measurement

• Motivation:
 (1) Important to normalize decay fractions of D and B mesons
 (2) Precise measurements of $B(D^0 \rightarrow K\pi)$ and $B(D^+ \rightarrow K\pi\pi)$ can directly improve precisions of CKM elements
 (3) Check CLEO-c measurements

• Current status:
 (1) Luminosity measurement
 (2) K/π tracking, π^0, K^0_s efficiency measurements
 (3) PID efficiency measurement

• All other analyses at BESIII would benefit from systematics studies
DDbar Cross Section Measurement

• Motivation
 – Measure ratio of D^0 and D^+ cross section to check theory calculation
 – To extract non-DDbar Brach Fraction
• previous results at $E_{cm} \sim 3773$ MeV:
 – BESII, $\sim 5.93 +/- 0.59$ nb (PRL, 97:121801, 2006)
 – CLEO-c, $\sim 6.51 +/- 0.08$ nb (xinshi, 2011 LLWI)
• Both single tag and double tag techniques are used to measure the DDbar cross sections at BESIII
Other Analyses at BESIII

- Dalitz plot analysis ($D^0 \to K\pi\pi^0$, $D^+ \to K^0_s\pi\pi^0$, $D^0 \to K\pi\eta$, $D^+ \to KK\pi$):
 - Study the $K\pi$ system, search for the low mass scalar resonance κ
 - Develop the Dalitz plot analysis software for Charm physics at BESIII

- Search for CP violation through T-violation in modes: $D^+ \to K^0_sK^+\pi^+\pi^-$ and $D^+ \to K^+K^-\pi^+\pi^0$
Summary

• BESIII is accumulating data at record speed
• Charm prospects at BESIII is great
• Rich results are coming out soon
Back Up
Non-DDbar Brach Fraction

- $\psi(3770)$ (mixture of S and D waves) expected to decay to DDbar entirely
- However, long history of non-DDbar branch fraction measurements:
 - ~1988, Mark III/II, Lead-Glass Wall: ~50% non-DDbar
 - ~2006-2008, BESII: 14.7% +/- 3.2%
 - ~2010, CLEO-c: no evidence of non-DDbar, set upper limit <9% at 90%CL
Non-Ddbar Measurement at BESIII

• Use same p(3770) data as charm physics
• Inclusive measurement
• Exclusive measurement:
 – $\psi(3770)\rightarrow \gamma \chi_{cJ}$
 – $\psi (3770)\rightarrow J/\psi \pi \pi, J/\psi \pi^0, J/\psi \eta$
 – $\psi (3770)\rightarrow \text{VP}$
 – $\psi (3770)\rightarrow \text{light hadrons}$