Higgs boson searches with tau leptons in CMS

M. Bachtis
University of Wisconsin-Madison
On behalf of the CMS Collaboration

CMS PAS HIG-11-008, HIG-11-009
Introduction

• Tau is the heaviest lepton
 • Higgs couples to mass
 • Violation of lepton universality
 • direct evidence for tau decays of Higgs bosons
• Standard Model (SM)
 • Branching fraction \((H \rightarrow \tau \tau) \) of ~10% for low Higgs mass
• Minimal Supersymmetric Standard Model (MSSM)
 • Branching fraction \((\Phi \rightarrow \tau \tau) \) of 10-15% at low \(M_A \)
 • Enhanced at high \(\tan \beta \)
 • Charged Higgs possible
 • \(H^+ \rightarrow \tau \nu \)
• Results are presented for \(H/\Phi \rightarrow \tau \tau \) and \(H^+ \rightarrow \tau \nu \) with 1.1 fb\(^{-1}\) of data
MSSM (2 doublets/5 Higgs bosons)

Φ via gluon fusion or associated production with b quarks (σ ~ tan β²)

For $M_{H^+} < M_t$, $t \rightarrow bH$

SM

Gluon fusion dominates (irreducible $Z \rightarrow \tau\tau$)

VBF: Low cross section $Z \rightarrow \tau\tau$ suppressed

M.Bachtis (University of Wisconsin)
Hadronic Tau Identification

- Cut based/ using Particle Flow (PF)
- Starts from Jets made of PF candidates
- Creates tau decay mode combinations
 - Reconstructs individual ρ/α^1 resonances
 - Introducing strip of EM objects
 - For γ conversions
 - Tau energy measured only by the constituents!
- Applies criteria on narrowness, mass and isolation
- Efficiency of ~50% for 20 GeV taus, fakes < 1%
- Efficiency scale factor from data (~ 1 fb$^{-1}$) = 1.00 ± 0.06
- Simple version of the algorithm (using PF) runs on the high level trigger

CMS Preliminary 2010, \sqrt{s}=7 TeV, 36 pb$^{-1}$

measured τ fake rate from jets vs expected τ efficiency

M.Bachtis (University of Wisconsin)
VBF $H \rightarrow \tau\tau$ candidate event display

$M_{jj} = 580$ GeV, $\Delta\eta = 3.55$

$\mu P_T = 20$ GeV

$\tau P_T = 69$ GeV

$\text{MET} = 97$ GeV

$\text{jet } P_T = 46$ GeV

$\text{jet } P_T = 177$ GeV

$M_{jj} = 580$ GeV, $\Delta\eta = 3.55$

$\mu P_T = 20$ GeV

$\tau P_T = 69$ GeV

$\text{MET} = 97$ GeV

$\text{jet } P_T = 46$ GeV

$\text{jet } P_T = 177$ GeV

$M_{jj} = 580$ GeV, $\Delta\eta = 3.55$

$\mu P_T = 20$ GeV

$\tau P_T = 69$ GeV

$\text{MET} = 97$ GeV

$\text{jet } P_T = 46$ GeV

$\text{jet } P_T = 177$ GeV
Event Preselection

Analysis is performed using four final states

<table>
<thead>
<tr>
<th>Final State</th>
<th>Trigger</th>
<th>Offline</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu + \tau)</td>
<td>(\mu(15) + \tau(15/20))</td>
<td>(\mu , P_T > 15 \text{ GeV}, , \eta < 2.1) \small{\text{Opposite charge}}</td>
</tr>
<tr>
<td>E+(\tau)</td>
<td>(e(18) + \tau(20))</td>
<td>(e , P_T > 20 \text{ GeV}, , \eta < 2.1) \small{\text{Opposite charge}}</td>
</tr>
<tr>
<td>E+(\mu)</td>
<td>(\mu(17/8) + e(8/17))</td>
<td>(\mu , P_T > 20/10 \text{ GeV}, , \eta < 2.1) \small{\text{Opposite charge}}</td>
</tr>
<tr>
<td>(\mu + \mu)</td>
<td>(\mu(17))</td>
<td>(1^{st} , \mu , P_T > 20 \text{ GeV}, , \eta < 2.1) \small{\text{Opposite charge}}</td>
</tr>
</tbody>
</table>

M.Bachtis (University of Wisconsin)
Neutrinos from taus tend to be collinear to the visible part

- Not the case for W+jets and TTBar
- Define P_ζ variables (introduced in CDF)
 - Project visible di-tau transverse momentum vector and MET in the bisector axis of the visible products
 - Request collinearity between visible and missing E_T part
Topological requirements

- Neutrinos from taus tend to be collinear to the visible part
 - Not the case for W+jets and TTBar
- Define P_ζ variables (introduced in CDF)
 - Project visible di-tau transverse momentum vector and MET in the bisector axis of the visible products
 - Request collinearity between visible and missing E_T part
Event Categorization

Analysis is performed using four categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| **MSSM(b-tag)** | Require less than 2 jets with \(P_T > 30 \text{ GeV}\)
Require at least one b-tagged jet with \(P_T > 20 \text{ GeV}\) |
| **SM(VBF)** | Require exactly two jets with \(P_T > 30 \text{ GeV}\), opposite \(\eta\)
Require \(\Delta \eta(jj) > 3.5\), \(M(jj) > 350 \text{ GeV}\) |
| **MSSM(No b-tag)** | Require less than two jets with \(P_T > 30 \text{ GeV}\)
Require no b-tagged jets with \(P_T > 20 \text{ GeV}\) |
| **SM(No VBF)** | Require less than two jets with \(P_T > 30 \text{ GeV}\)
OR two jets failing VBF criteria |
Categorization related variables

- Events / 1.00
- CMS Preliminary
- 1.1 fb^{-1}
- $\tau_\mu \tau_\mu$
- τ_τ
- $\bar{t}t$
- Electroweak
- Fakes

- Events / 1.00
- CMS Preliminary
- 1.1 fb^{-1}
- τ_τ
- $\bar{t}t$
- Electroweak
- Fakes

- Events / 0.30
- CMS Preliminary
- 1.1 fb^{-1}
- $\tau_\mu \tau_\mu$

- Events / 0.40
- CMS Preliminary
- 1.1 fb^{-1}
- τ_τ
- $\bar{t}t$
- Electroweak
- Fakes

- Events / 20.00
- CMS Preliminary
- 1.1 fb^{-1}
- $\tau_\mu \tau_\mu$

M.Bachtis (University of Wisconsin)
Visible Mass after all requirements ($\mu + \tau$)

No b-tag

- **Background**
 - No-VBF: 15544 ± 685
 - VBF: 14.2 ± 4.0

- **Observed**
 - No-VBF: 15988
 - VBF: 18

No b-tag

- **Background**
 - No-VBF: 14514 ± 640
 - VBF: 193 ± 13

- **Observed**
 - No-VBF: 15067
 - VBF: 243

M.Bachtis (University of Wisconsin)
Visible Mass after all requirements (e+τ)

MSSM

<table>
<thead>
<tr>
<th>Requirement</th>
<th>No-VBF</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No b-tag</td>
<td>9980 ± 302</td>
<td>10787</td>
</tr>
<tr>
<td>VBF</td>
<td>5.9 ± 2.5</td>
<td>7</td>
</tr>
</tbody>
</table>

SM

<table>
<thead>
<tr>
<th>Requirement</th>
<th>No btag</th>
<th>Btag</th>
</tr>
</thead>
<tbody>
<tr>
<td>No VBF</td>
<td>9398 ± 320</td>
<td>10283</td>
</tr>
<tr>
<td>VBF</td>
<td>105 ± 9</td>
<td>101</td>
</tr>
</tbody>
</table>
Visible Mass after all requirements (e+\mu)

| No b-tag | | b-tag |
|----------|------------------|
| **No-VBF** | Background: 4251 ± 151 | Obs.: 4517 |
| | VBF: 6.7 ± 0.9 | **2** |
| **No btag** | 3643 ± 131 | **3942** |
| **Btag** | 150 ± 12 | **143** |

M.Bachtis (University of Wisconsin)
Visible Mass after all requirements ($\mu+\mu$)

<table>
<thead>
<tr>
<th>Category</th>
<th>No-VBF</th>
<th>VBF</th>
<th>No b-tag</th>
<th>Btag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>17392 \pm 117</td>
<td>17596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>17596</td>
<td>103</td>
<td>15711</td>
<td>479</td>
</tr>
</tbody>
</table>

M.Bachtis (University of Wisconsin)
Background estimation and systematics

- \(Z \rightarrow \tau\tau \) and \(\text{TTbar} \) : irreducible
 - Estimated from CMS \(\sigma(Z) / \sigma(\text{ttbar}) \)

- Data driven estimation for QCD/W+jets
 - OS/SS+W sideband for \(l+\tau \)
 - Fake rate for \(e+\mu \)

- Constrained fit performed to extract signal cross section or set limit
 - Background and systematic uncertainties as nuisance parameters
 - Shapes from data(QCD) or MC
 - Shape agreement checked in sideband regions
 - MC shapes allowed to vary in the fit

Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton ID /trigger</td>
<td>1%</td>
</tr>
<tr>
<td>Tau ID efficiency</td>
<td>6%</td>
</tr>
<tr>
<td>Tau energy scale</td>
<td>3%</td>
</tr>
<tr>
<td>(\sigma(Z \rightarrow \mu\mu/ee))</td>
<td>3%</td>
</tr>
<tr>
<td>(\sigma(\text{ttbar}))</td>
<td>12%</td>
</tr>
<tr>
<td>B-Tag Efficiency</td>
<td>10%</td>
</tr>
<tr>
<td>B-Tag Mistag rate</td>
<td>14%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>2-5%</td>
</tr>
<tr>
<td>PDFs</td>
<td>3%</td>
</tr>
<tr>
<td>UE/Parton Shower</td>
<td>4%</td>
</tr>
<tr>
<td>QCD Scale</td>
<td>4-12%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>6%</td>
</tr>
</tbody>
</table>
MSSM Higgs search results

• No significant excess observed in MSSM search
• Limits set on cross section $\sigma \times \text{BR}(\Phi \rightarrow \tau \tau)$
• Using CLs method
• $\sigma \times \text{BR}$ Limit not model independent
 • MSSM specific
 • bbH/ggH cross section ratio constrained to the ratio in MSSM
 • $\tan \beta = 30$
 • Changes with M_A
SM Higgs search results

- Expect to exclude <10x SM at low mass region
- Observed compatible with expectation
- Included in the CMS grand combination
- Achieved much better sensitivity compared to projections
 - Tau ID / Trigger improvements
- Full analysis potential not exploited yet
Light Charged Higgs search
Final states

Fully Hadronic
- Trigger
 - τ (p_T > 40 GeV, η < 2.3 (1 prong))
 - At least 3 jets p_T > 30 GeV
 - MET > 70 GeV
 - One b-tag

μ+\tau
- Trigger
 - μ (p_T > 20 GeV, η < 2.1)
 - τ (p_T > 20 GeV, η < 2.4)
 - At least 2 jets p_T > 30 GeV
 - MET > 40 GeV
 - One b-tag

μ+e
- Trigger
 - e (p_T > 20, η < 2.4)
 - At least 2 jets p_T > 30 GeV

$\sqrt{s} = 7$ TeV, 1.08 fb$^{-1}$ CMS Preliminary

M. Bachtis (University of Wisconsin)
Background estimation

- **Fully hadronic**
 - QCD multijet background from data
 - EWK +tt with real taus estimated with embedding on muon events
 - EWK+ tt with fake taus by simulation

- **μ+τ**
 - QCD estimated by tau fake rate method
 - Other backgrounds from simulation

- **e+μ**
 - Ttbar background dominant
 - Estimated from simulation
Branching fraction limits

Fully hadronic

\[\text{BR}(t \rightarrow bH) \approx 5\%! \]

μ+τ

μ+e

Combined
CMS statement on the MSSM with 1.1 fb$^{-1}$

- H^+ contributes at low M_A, $H \rightarrow \tau\tau$ drives the sensitivity
- Excluding MSSM at $\tan\beta \sim 15$ for low M_A
- Opening new regime at high M_A
- Huge improvement wrt the Moriond result
 - B-tagging/tau ID efficiency and more data!
Conclusions

• Results have been presented on SM/MSSM Higgs searches with taus using 1.1 fb$^{-1}$ of CMS data
 - Thanks to the excellent performance of LHC and CMS

• Results set new stringent limits in MSSM parameter space

• First results on SM Higgs in di-tau final state are very promising
Background estimation (l+ ℹ️)

- Dominant backgrounds: QCD/W+jets
- W extrapolated from low P_τ region (P_τ < -40)
 - Separately for OS/SS (6% systematic for extrapolation factor)
- Z +jets backgrounds estimated from CMS measurement corrected for $l \to ℹ️$ and $j \to ℹ️$ fake rates
- TTBar from CMS measurement, Diboson from MC (30% uncertainty)
- In SS region W and other backgrounds are subtracted (QCD remaining)
- QCD extrapolated to OS region by a factor from data (~1.06 ± 5%)
Particle Flow Reconstruction

Particle Flow (PF) algorithm
- Combines information from all sub-detectors
- Provides unique event description
 - Particles

PF candidates used in this analysis
- Tau Identification
- Jet Reconstruction
- Missing E_T reconstruction
- Lepton Isolation

Light version of PF algorithm also running in the High Level Trigger
- Crucial for tau triggers
 - Tau energy measured online with PF
 - Small turn on effects
Acceptance x Efficiency vs mass

- $bb \to \phi$ (MSSM)
- $gg \to \phi$ (MSSM)

BTag Category

- $qq \to H$ (SM)
- $gg \to H$ (SM)

VBF Category

M.Bachtis (University of Wisconsin)
Tau ID efficiency

<table>
<thead>
<tr>
<th>Uncertainty’s source</th>
<th>HPS combined loose $\Delta \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Momentum Scale</td>
<td><< 1%</td>
</tr>
<tr>
<td>τ-Jet Energy Scale</td>
<td>< 1%</td>
</tr>
<tr>
<td>Track Reconstruction</td>
<td>3.9%</td>
</tr>
<tr>
<td>Track Momentum Scale</td>
<td>< 1%</td>
</tr>
<tr>
<td>Lead. Track P_T Cut</td>
<td>1%</td>
</tr>
<tr>
<td>Loose Isolation</td>
<td>2.5%</td>
</tr>
<tr>
<td>Jet $\rightarrow \tau_{had}$ Fakes</td>
<td>1.2%</td>
</tr>
<tr>
<td>Lead. Track Corr. Factor</td>
<td>1.7%</td>
</tr>
<tr>
<td>Loose Iso. Corr. Factor</td>
<td>2.1%</td>
</tr>
<tr>
<td>Fit (Statistical Uncertainty)</td>
<td>2.6%</td>
</tr>
<tr>
<td>Sum</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

Tag and probe applied in 1fb$^{-1}$ of data
New uncertainty is 6%!
Triggers are using Particle Flow

Energy of Tau in high level trigger is created only by the PF constituents

- Consistent with offline tau
- Small turn on effects

CMS Preliminary 2011
\(\sqrt{s} = 7 \text{ TeV} \)
\(\int L = 721 \text{ pb}^{-1} \)

LooseisoPFTau20
SM H Limits: Channel by channel

Expected

- $\tau_\mu \tau_h$
- $\tau_e \tau_h$
- $\tau_e \tau_\mu$
- $\tau_\mu \tau_\mu$
- Combined

Observed

- $\tau_\mu \tau_h$
- $\tau_e \tau_h$
- $\tau_e \tau_\mu$
- $\tau_\mu \tau_\mu$
- Combined

Expected $\sigma_{95\% \text{CLs}} / \sigma_{\text{SM}}$

Observed $\sigma_{95\% \text{CLs}} / \sigma_{\text{SM}}$

m$_H$ [GeV]

M.Bachtis (University of Wisconsin)
MSSM Limits: Channel by channel

Expected

Observed

$\sigma \times BR(\phi \rightarrow \tau \tau)$

$\sigma \times BR(\phi \rightarrow \tau \tau)$

10^3

10^2

10^1

10^{-1}

$m_A [\text{GeV}]$

$m_A [\text{GeV}]$

100 150 200 250 300 350 400 450 50

100 150 200 250 300 350 400 450 500

$\tau_\mu \tau_h$
$\tau_e \tau_h$
$\tau_e \tau_\mu$
$\tau_\mu \tau_\mu$

Combined

$\tau_\mu \tau_h$
$\tau_e \tau_h$
$\tau_e \tau_\mu$
$\tau_\mu \tau_\mu$

Combined

M. Bachtis (University of Wisconsin)
Table 1: The systematic uncertainties (in %) for the backgrounds and the signal from $t\bar{t} \rightarrow H^\pm b H^\mp b$ (HH) and $t\bar{t} \rightarrow W^\pm b H^\mp b$ (WH) processes at m_{H^\pm}=80-160 GeV/c^2.

<table>
<thead>
<tr>
<th></th>
<th>HH</th>
<th>WH</th>
<th>QCD</th>
<th>non QCD Type 1</th>
<th>non QCD Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$t\bar{t}$</td>
<td>tW</td>
</tr>
<tr>
<td>$\tau - p_T^{miss}$ trigger</td>
<td>24-26</td>
<td>24-25</td>
<td>9.6</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>τ-jet id</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>jet, $\ell \rightarrow \tau$ mis-id</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>JES+JER+MET</td>
<td>13-17</td>
<td>14-19</td>
<td>18</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>lepton veto</td>
<td>0.2-0.3</td>
<td>0.3-0.4</td>
<td>1.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>b-jet tagging</td>
<td>12-15</td>
<td>14-16</td>
<td>16</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>jet $\rightarrow b$ mis-id</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>QCD stat.+syst.</td>
<td></td>
<td></td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non QCD Type 1 stat.</td>
<td></td>
<td></td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_W \rightarrow \tau \rightarrow \mu$</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>muon selections</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC stat</td>
<td>4.1-7.0</td>
<td>4.8-7.2</td>
<td>16.3</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>cross-section</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>luminosity</td>
<td>6.0</td>
<td></td>
<td>6.0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Systematics $H^+ (\mu+e/\tau)$

mu+tau channel

<table>
<thead>
<tr>
<th></th>
<th>HH</th>
<th>WH</th>
<th>$t\bar{t}$</th>
<th>$t\bar{t}\ell\ell$</th>
<th>τ fakes</th>
<th>Single top</th>
<th>VV</th>
<th>DY($\mu\mu$)</th>
<th>DY($\tau\tau$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ-jet id</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>15.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jet, $\ell \rightarrow \tau$ mis-id</td>
<td>6.0</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>JES+JER+MET</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>b-jet tagging</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
<td>8.0</td>
<td>8.0</td>
<td>7.0</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>jet\rightarrowb mis-id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lepton selections</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>τ fakes (stat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ fakes (syst)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-section</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC stats</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>6.0</td>
<td>5.0</td>
<td>8.0</td>
<td>71.0</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>luminosity</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e-mu channel

<table>
<thead>
<tr>
<th></th>
<th>HH</th>
<th>WH</th>
<th>$t\bar{t}$</th>
<th>DY(ll)</th>
<th>W+jets</th>
<th>Single top</th>
<th>VV</th>
</tr>
</thead>
<tbody>
<tr>
<td>JES+JER+MET</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>7.0</td>
<td>6.0</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>dilepton selection</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>cross section</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>4.0</td>
<td>5.0</td>
<td>8.0</td>
<td>4.0</td>
</tr>
<tr>
<td>MC stats</td>
<td>7.5</td>
<td>3.4</td>
<td>0.5</td>
<td>3.2</td>
<td>16.0</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>luminosity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Establishing the standard candles

CMS

$Z \rightarrow \tau\tau$ $^{36\text{ pb}^{-1}\text{ at }\sqrt{s} = 7\text{ TeV}}$

$\sigma(pp \rightarrow ZX) \times BR(Z \rightarrow \tau\tau)$ / σ_{theory} (NNLO)

CMS preliminary

$36\text{ pb}^{-1}\text{ at }\sqrt{s} = 7\text{ TeV}$

CMS $Z \rightarrow ee, \mu\mu$
- $e + \tau_{\text{had}}$
- $\mu + \tau_{\text{had}}$
- $\mu + \mu$
- $e + \mu$

CMS $Z \rightarrow \tau\tau$ (combined)
- D0 Run II 1 fb$^{-1}$, $\mu + \tau_{\text{had}}$
- CDF Run II 0.35 fb$^{-1}$, $e + \tau_{\text{had}}$

CMS hadronic
- TOP-11-007 (L=1.09/fb)
- $136 \pm 20^{+40}_{-40} \pm 8$
 (val = stat. + syst. + lum)

CMS tau dilepton
- TOP-11-008 (L=1.09/fb)
- $149 \pm 24^{+26}_{-26} \pm 9$
 (val = stat. + syst. + lum)

CMS combined
- TOP-11-001 (L=36/fb)
- $158 \pm 18 \pm 6$
 (val = tot. + lum.)

CMS dilepton
- arXiv:1105.5661 (L=36/fb)
- $168 \pm 18^{+14}_{-14} \pm 7$
 (val = stat. + syst. + lum)

CMS +jets
- arXiv:1106.0902 (L=36/fb)
- $173 \pm 14^{+30}_{-29} \pm 7$
 (val = stat. + syst. + lum)

MSTW2008(N)NLO PDF, scale@ PDF(90% C.L.) uncertainty

Top Pair Production Cross Section [pb]