ATLAS Searches for Higgs Bosons
Beyond the Standard Model

Trevor Vickey
University of the Witwatersrand, South Africa
University of Oxford, United Kingdom

on behalf of the ATLAS Collaboration

July 28, 2011

The 19th Particles and Nuclei International Conference, PANIC 2011, Massachusetts Institute of Technology, Cambridge, MA, USA
The ATLAS Experiment at the CERN LHC

3-Level Trigger
Reducing the rate from 40 MHz to 200-300 Hz

Muon Spectrometer
(|η|<2.7): Air-core toroids with gas-based muon chambers; Muon trigger and measurement with momentum resolution < 10% up to $p_\mu \sim 1$ TeV

EM Calorimeter
(|η|<3.2): Pb-LAr Accordion; allows for e/γ triggering, identification and measurement; E-resolution: $\sigma/E \sim 10%/\sqrt{E}$

HAD calorimetry
(|η|<5): hermetic and highly segmented; Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T
E-resolution: $\sigma/E \sim 50%/\sqrt{E} \oplus 0.03$

Inner Detector
(|η|<2.5, $B=2T$): Si Pixels, Si strips, Transition Radiation detector (straws); Precise tracking and vertexing, allows for e/π separation; Momentum resolution: $\sigma/p_T \sim 3.8\times10^{-4}$ p_T (GeV) $\oplus 0.015$
i.e. $\sigma/p_T < 2\%$ for $p_T < 35$ GeV
Recent Higgs Search Results in ATLAS

Standard Model Higgs

(Joost Vossebeld’s presentation from Tuesday)

- \(H \rightarrow \gamma \gamma\)
- \(H \rightarrow WW \rightarrow l\nu l\nu\)
- \(H \rightarrow WW \rightarrow l\nu qq\)
- \(H \rightarrow ZZ \rightarrow 4l\)
- \(H \rightarrow ZZ \rightarrow ll\nu\nu/llqq\)
- Combined Search (ATLAS-CONF-2011-112)

Beyond the SM Higgs

(this presentation)

- MSSM \(h/A/H \rightarrow \tau l\tau h\) (arXiv:1107.5003)
- \(H^+ \rightarrow cs\) (ATLAS-CONF-2011-094)
- \(H^+ \rightarrow \tau l\nu\) (ATLAS-CONF-2011-018)
- \(H^+ \rightarrow \tau_h\nu\) (ATLAS-CONF-2011-051)
2 Higgs doublets give rise to 5 physical Higgs bosons: h, H, A, H±

- Enhanced coupling to 3rd generation; strong coupling to down-type fermions (at large tanβ get strong enhancements to h/A/H production rates)
- Neutral φ=h/A/H produced through gg-fusion or b-associated processes

Can parameterize the masses of the Higgs bosons with two free parameters: $\tan \beta$ and m_A (or m_{H^+})
MSSM Neutral Higgs (h/A/H) Search

- Searching in three di-tau channels
 - 36 pb$^{-1}$ of 7 TeV collision data
 - Inclusive analysis (do not reject events based on jet multiplicity)
 - Dominant backgrounds: $Z\rightarrow\tau\tau$ (irreducible), W+jets, ttbar, $Z\rightarrow ll$, QCD

- $h/A/H\rightarrow\tau^+_1\tau^-_{HAD}$ selection criteria:
 - Single isolated lepton
 - Single hadronic tau (tau jet)
 - Oppositely charged tau and lepton
 - Missing $E_T > 20$ GeV
 - Transverse mass requirement to reject W bosons ($M_T < 30$ GeV)
 - Discriminating variable: visible mass

$$M_T = \sqrt{2p_T^e/\mu E_T^{miss}(1 - \cos \Delta\phi)}$$
MSSM Neutral Higgs (h/A/H) Search

- Background estimation using data-driven techniques
- $Z\rightarrow\tau\tau$ from MC cross-checked using embedding:
 - Select $Z\rightarrow\mu\mu$ events in data
 - Replace μ with τ from simulation

- QCD multi-jet and W+jets:
 - Assume that the QCD visible mass shape is the same for the opposite-sign (OS) and same-sign (SS) events (an assumption verified using simulated events)
 - Background estimated from the SS data sample.
 - Correction factor needed for $W+$jets n_{OS-SS} taken from data control region; shape from MC

- Dominant systematic uncertainties:
 - Experimental: jet and tau energy scale (signal 19%; $Z\rightarrow\tau\tau$ 30%)
 - Theoretical: cross section (signal 14%; $Z\rightarrow\tau\tau$ 5%)
MSSM Neutral Higgs (h/A/H) Search

- **h/A/H→τ_e-τ_μ** selection criteria:
 - Single electron trigger
 - One e (p_T>20 GeV) and μ (p_T>10 GeV); opposite charge; isolated
 - p_T(e) + p_T(μ) + MET < 120 GeV
 - Δϕ(e, μ) > 2 rad (e.g., ttbar, single top and di-boson suppression)
 - Discriminating variable: effective mass

- **Backgrounds:**
 - Z→ττ estimated from MC and shape validated using the embedding method
 - Multi-jet estimated from data using ABCD method (iso. and OS/SS)

- **Systematics**
 - MC background cross-sections (5-10%), multi-jet estimate (~20%)

<table>
<thead>
<tr>
<th>Final state</th>
<th>Exp. Background</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>eμ</td>
<td>63 ± 7</td>
<td>70</td>
</tr>
<tr>
<td>lτ_had</td>
<td>206 ± 35</td>
<td>206</td>
</tr>
<tr>
<td>Sum</td>
<td>269 ± 36</td>
<td>276</td>
</tr>
</tbody>
</table>
MSSM Neutral Higgs (h/A/H) Search

- Combine the T_e-T_{HAD}, T_μ-T_{HAD} and T_e-T_μ channels
- Exclusion limit calculated using a shape analysis with the visible and effective mass distributions with a profile likelihood approach
 - Limit with the m_h^{max} benchmark scenario
A Generic 2HDM: Charged Higgs Bosons

- Charged Higgs bosons could be produced from a generic 2HDM
- H^+ Production:
 - Light H^+: $pp \rightarrow tt \rightarrow bW bH^+$
 - Heavy H^+: $gb \rightarrow tH^+$
- H^+ Decay:
 - Light H^+: Almost exclusively to $\tau\nu$
 - Heavy H^+: $tb; \tau\nu; \chi^+\chi^0$

<table>
<thead>
<tr>
<th>Production</th>
<th>H^+ Decay</th>
<th>W Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp\rightarrow tt, t\rightarrow bH^+$</td>
<td>$\tau_H\nu$</td>
<td>qq</td>
</tr>
<tr>
<td>$pp\rightarrow tt, t\rightarrow bH^+$</td>
<td>$\tau_H\nu$</td>
<td>lv</td>
</tr>
<tr>
<td>$pp\rightarrow tt, t\rightarrow bH^+$</td>
<td>$\tau_L\nu$</td>
<td>qq</td>
</tr>
<tr>
<td>$pp\rightarrow tt, t\rightarrow bH^+$</td>
<td>$\tau_L\nu$</td>
<td>lv</td>
</tr>
<tr>
<td>$pp\rightarrow tt, t\rightarrow bH^+$</td>
<td>cs</td>
<td>lv</td>
</tr>
<tr>
<td>$gb\rightarrow tH^+$</td>
<td>tb</td>
<td>qq, lv</td>
</tr>
<tr>
<td>$gb\rightarrow tH^+$</td>
<td>$\tau_H\nu$</td>
<td>qq</td>
</tr>
</tbody>
</table>
Charged Higgs: $H^+ \rightarrow \tau(\text{had})\nu$

- Each of the backgrounds are determined in a data-driven way:
 - $e \rightarrow \tau$ fakes using tag-and-probe method with $Z \rightarrow ee$ in 7 TeV collision data
 - jet $\rightarrow \tau$ fakes using $\gamma + $jet events from data
 - QCD by inverting the tau selection to obtain a control sample in data
 - True τ backgrounds using an embedding method on $t\bar{t}$bar data events with muons (with the exception of the τ+lepton final state)

- Reasonably good agreement with data in our final discriminating vars.
- Working on H^+ searches in these final states with >1 fb$^{-1}$ of data now
Charged Higgs: $H^+ \rightarrow \tau^{\pm}(\text{lep})\nu$

- As a first step, used 2010 data to test our data-driven background estimates and discriminating variables that had been recently introduced.
- Reasonably good agreement with data in our final discriminating vars.
- Working on H^+ searches in these final states with >1 fb$^{-1}$ of data now.

dilepton analysis

lepton+jets analysis

Generalized transverse mass,
Charged Higgs: $H^+ \rightarrow c\bar{s}$

- Final state allows for full reconstruction of the H^+ candidates

- Selection criteria:
 - Isolated lepton
 - MET requirement
 - ≥ 4 jets
 - ≥ 1 b-tag
 - m_T requirement
 - Entire event reconstructed using a χ^2 fitter

\[
\chi^2 = \sum_{i=l,4\text{ jets}} \frac{(p_T^{i,\text{fit}} - p_T^{i,\text{meas}})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_{j,\text{UE,fit}} - p_{j,\text{UE,meas}})^2}{\sigma_{\text{UE}}^2} + \sum_{k=b,j,blv} \frac{(M_k - M_{\text{top}})^2}{\sigma_{\text{top}}^2}.
\]
Charged Higgs: $H^+ \rightarrow c\bar{s}$

- Examine the di-jet spectrum from ttbar events and look for a second peak
 - After selection, ttbar background > 80%
 - Data-driven estimate for QCD
 - Number of events observed agrees with SM expectation

Channel

<table>
<thead>
<tr>
<th>Channel</th>
<th>Muon</th>
<th>Electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>193</td>
<td>130</td>
</tr>
<tr>
<td>SM $t\bar{t} \rightarrow W^+ b W^- \bar{b}$</td>
<td>156^{+24}_{-29}</td>
<td>106^{+16}_{-20}</td>
</tr>
<tr>
<td>W/Z + jets</td>
<td>17 ± 6</td>
<td>9 ± 3</td>
</tr>
<tr>
<td>Single top</td>
<td>7 ± 1</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.30 ± 0.02</td>
<td>0.20 ± 0.02</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>11 ± 4</td>
<td>6 ± 3</td>
</tr>
<tr>
<td>Total Expected (SM)</td>
<td>191^{+26}_{-30}</td>
<td>127^{+17}_{-21}</td>
</tr>
</tbody>
</table>

$\mathcal{B}(t \rightarrow H^+ b) = 10\%$

- $t\bar{t} \rightarrow H^+ b W^- \bar{b}$: 20^{+3}_{-4}
- $t\bar{t} \rightarrow W^+ b W^- \bar{b}$: 127^{+19}_{-23}

Limits at 95% CL

- Expected Limit
- Expected $\pm 1\sigma$
- Expected $\pm 2\sigma$
- Observed Limit
- CDF Observed
- D0 Observed
Conclusion

- The LHC era has begun!
 - Proton-proton collisions at world-record energies last year
 - ATLAS collected nearly 50 pb\(^{-1}\) of data in 2010
 - For 2011 ATLAS has collected >1.5 fb\(^{-1}\) thus far

- First ATLAS limits with ~40 pb\(^{-1}\) on
 - MSSM h/A/H \(\rightarrow\) \(\tau\tau\)
 - MSSM \(H^\pm\) \(\rightarrow\) cs

- Expected exclusion limits with ~1 - 2 fb\(^{-1}\) look very promising for BSM Higgs boson searches

- Or perhaps something even more exciting if Nature is kind...
Back-up Slides
Calculated using HIGLU and ggh@nnlo
For bbh a matching scheme has been implemented to combine 4 (NLO QCD) and 5-flavor (NNLO QCD) calculations
4-flavor cross-sections are known to be more conservative (underestimates the cross-section for large Higgs boson masses)
Error bands of both the 4FS and 5FS overlap at low masses
“Santander matching” gives equal weight to both calculations at $M_H=100$ GeV and about 1/3 4FS and 2/3 5FS at $M_H=300$ GeV
MSSM Neutral Higgs (h/A/H) Search

- Limits for individual channels
Charged Higgs: $\tau+$jets channel

Event selection criteria:

1. Event preselection:
 (a) Event-level cleaning cuts.
 (b) E_T^{miss} plus τ-trigger.
 (c) At least 4 jets with $p_T > 20$ GeV.

2. Exactly one τ jet with $p_T > 20$ GeV. ("tight" LLH)

3. Veto identified electrons and muons.

4. $E_T^{\text{miss}} > 20$ GeV.

5. $E_T^{\text{miss}} / \sqrt{\sum E_T} > 3$ GeV$^{1/2}$.

6. At least one b-tagged jet.

7. The jjb candidate with the highest p_T^{jjb} value must satisfy $m(jjb) \in [120, 240]$ GeV.
Charged Higgs: τ+lepton channel

- Event selection criteria:

1. Event preselection:
 (a) Event-level cleaning cuts.
 (b) Lepton trigger.
 (c) Exactly one trigger-matched isolated lepton with $p_T > 20$ GeV.

2. Exactly one τ jet with $p_T > 20$ GeV. ("tight" LLH)

3. At least two jets with $p_T > 20$ GeV.

4. At least one of the jets is b-tagged.

5. $E_T^{\text{miss}} > 60$ GeV.

6. $\sum E_T > 200$ GeV.

7. Selected τ jet and lepton have opposite charge.
Hadronic Tau Reconstruction in ATLAS

• **Reconstruction seed jets**
 - Calorimeter jets reconstructed with the anti-kT algorithm (starting from topological clusters)
 - Distance parameter $R = 0.4$

• **Track Association**
 - A track is associated with tau candidate if it is within the core cone ($\Delta R < 0.2$ of the seed jet axis)
 - Also pass the following criteria:
 • $p_T > 1$ GeV
 • At least 7 hits in the silicon tracker (B-layer ≥ 1, pixel ≥ 2)
 • Requirements on transverse and longitudinal impact parameters ($|d_0| < 1.0$ mm and $|z_0 \sin \theta| < 1.5$ mm)

• But, hadronic tau reconstruction alone is not enough...
Hadronic Tau Identification in ATLAS

- Use discriminating variables that give us the upper hand

\[
R_{\text{track}} = \frac{\sum_{i} \Delta R_i < 0.4 \ p_T, \ i}{\sum_{i} \Delta R_i < 0.4 \ p_T, i}
\]
Track Radius

\[
f_{\text{track}} = \frac{p_{T,1}^{\text{track}}}{p_T}
\]
Leading Track Momentum Fraction

\[
R_{\text{EM}} = \frac{\sum_{i\in\{\text{EM 0-2}\}} \Delta R_i < 0.4 \ E_{\text{T},i}^{\text{EM}}}{\sum_{i\in\{\text{EM 0-2}\}} \Delta R_i < 0.4 \ E_{\text{T},i}^{\text{EM}}}
\]
Electromagnetic Radius

\[
f_{\text{core}} = \frac{\sum_{i\in\{\text{all}\}} \ E_{\text{T},i}^{\text{EM}}}{\sum_{i\in\{\text{all}\}} \ E_{\text{T},i}^{\text{EM}}}
\]
Core Energy Fraction

\[
S_T = \frac{L_T^{\text{flight}}}{\delta L_T^{\text{flight}}}
\]
Transverse Flight Path Significance

\[
S_T = \frac{E_{\text{T}}^{\text{flight}}}{\delta E_T^{\text{flight}}}
\]
Electromagnetic Fraction

\[
f_{\text{track}} = \frac{p_{T,1}^{\text{track}}}{p_T}
\]
Leading Track Momentum Fraction

\[
R_{\text{EM}} = \frac{\sum_{i\in\{\text{EM 0-2}\}} \Delta R_i < 0.4 \ E_{\text{T},i}^{\text{EM}}}{\sum_{i\in\{\text{EM 0-2}\}} \Delta R_i < 0.4 \ E_{\text{T},i}^{\text{EM}}}
\]
Electromagnetic Radius

ATLAS Preliminary
3 prongs 15 GeV < p_T < 60 GeV
- 2010 dijet data \(\int dt L = 23 \text{ pb}^{-1}\)

ATLAS-CONF-2011-077
To distinguish between tau leptons and jets, investigated three independent identification algorithms:

- Simple cut-based, projective likelihood (LLH), and Boosted Decision Tree (BDT)
- Cut-based ID uses a subset of the discriminating variables
- Trained separately based on number of prongs
- Distinction between an electron and tau is made using an electron veto
- Tau ID tuned for signal efficiencies of ~30% (tight) and ~60% (loose)

Background efficiency measured using collision data
- Used 7 TeV collision data collected late in 2010
- Background sample taken from di-jet events

\[
\varepsilon_{\text{sig}} = \frac{N_{\tau}^{\text{pass,match}}}{N_{\tau}^{\text{match}}}
\]

\[
\varepsilon_{\text{bkgd}} = \frac{N_{\text{bkgd}}^{\text{pass}}}{N_{\text{bkgd}}^{\text{total}}}
\]
The NMSSM: $\mu\mu$ channel

- The Next-to-MSSM
 - Introduces a complex singlet scalar field
 - Higgs sector expands as a result:
 - 3 CP-even scalars: h_1, h_2, h_3
 - 2 CP-odd scalars: a_1, a_2
 - 2 Charged scalars: H^\pm

- The light CP-odd Higgs, a_1
 - Could be very light, e.g. ~ 10 GeV
 - Could have dominant production mode $h \rightarrow a_1 a_1$

- In the ideal scenario
 - $m_{a_1} < 2 m_B$
 - Dominant decay modes into $\tau\tau, c\bar{c}, g\bar{g}$
 - $\mu\mu$ final state is a clean search channel

Plots from arXiv:0911.2460v5
The NMSSM: $a_1 \rightarrow \mu \mu$ channel

- Event selection criteria:
 - $\geq 2\mu$ with $p_T > 4$ GeV; $|\eta| < 2.5$
 - Oppositely-charged muon pairs in the range $4.5 < m_{\mu\mu} < 14$ GeV are analyzed using a likelihood ratio

- Use a Likelihood Ratio:
 - Use di-muon vertex fit quality and isolation
 - Signal PDFs taken from $\Upsilon(1S)$; background subtracted from sidebands: $6 < m_{\mu\mu} < 7.5$ GeV and $11.5 < m_{\mu\mu} < 12$ GeV
 - Background estimated from sidebands: $4.5 < m_{\mu\mu} < 5.5$ GeV and $12.5 < m_{\mu\mu} < 14$ GeV

- Limits:
 - Likelihood function with 50 MeV bins
 - Separate fits in the regions 6-11 GeV and 9-12 GeV

- ATLAS-CONF-2011-020