Studies of Nucleon Form Factors with 12 GeV CEBAF and the Super Bigbite Spectrometer

Jens-Ole Hansen

Jefferson Lab

19th Particles and Nuclei International Conference
MIT, July 2011
Nucleon Elastic Form Factors — Formalism

Nucleon hadronic current

\[J_{\text{hadronic}}^\mu = e\overline{N}(p') \left[\gamma_\mu F_1(Q^2) + \frac{i\sigma^{\mu\nu} q_\nu}{2M} F_2(Q^2) \right] N(p) \]

- Dirac FF
- Pauli FF

Sachs form factors

\[G_E = F_1 - \tau F_2 \quad \text{and} \quad G_M = F_1 + F_2 \]

with

\[\tau = \frac{Q^2}{4M_{\text{nucleon}}^2} \]
Second-generation data on G_E^p/G_M^p from JLab

Sharp drop completely unexpected
Second-generation data on G^p_E/G^p_M from JLab

Sharp drop completely unexpected

Data between 10–15 GeV2 will cleanly distinguish some models
World data on G^n_E

Difficult measurement as neutron has no electric charge
World data on G^n_E

Difficult measurement as neutron has no electric charge
Current Best Measurement Techniques

G_E^n / G_M^n

polarized target: $^3\text{He}(\bar{e}, e' n)$

F.o.M. $\propto \sigma \cdot \Omega \cdot P_t^2 \cdot \mathcal{L} \propto \frac{E^2}{Q^{12}} \cdot \Omega \cdot P_t^2 \cdot \mathcal{L}$

G_E^p / G_M^p

Recoil polarization asymmetry: $p(\bar{e}, e' p)$

F.o.M. $\propto \sigma \cdot A_y^2 \cdot \Omega \cdot \mathcal{L} \propto \frac{E^2}{Q^{16}} \cdot \Omega \cdot \mathcal{L}$

(Polarized proton targets cannot tolerate high \mathcal{L})

G_M^n / G_M^p

cross section ratio: $d(e, e' n) / d(e, e' p)$
Current Best Measurement Techniques

G^n_E / G^n_M
- Polarized target: $^3\text{He}(\vec{e}, e'n)$

\[
\text{F.o.M. } \propto \sigma \cdot \Omega \cdot P_t^2 \cdot \mathcal{L} \propto \frac{E^2}{Q^{12}} \cdot \Omega \cdot P_t^2 \cdot \mathcal{L}
\]

G^p_E / G^p_M
- Recoil polarization asymmetry: $p(\vec{e}, e'\vec{p})$

\[
\text{F.o.M. } \propto \sigma \cdot A_y^2 \cdot \Omega \cdot \mathcal{L} \propto \frac{E^2}{Q^{16}} \cdot \Omega \cdot \mathcal{L}
\]

(Polarized proton targets cannot tolerate high \mathcal{L})

Extra factor $A_y^2 \propto 1/Q^4$

G^n_M / G^p_M
- Cross section ratio: $d(e, e'n) / d(e, e'p)$
Current Best Measurement Techniques

G^n_E / G^n_M

polarized target: $^3\text{He}(\vec{e}, e'n)$

$$F.o.M. \propto \sigma \cdot \Omega \cdot P_t^2 \cdot L \propto \frac{E^2}{Q^{12}} \cdot \Omega \cdot P_t^2 \cdot L$$

G^p_E / G^p_M

Recoil polarization asymmetry: $p(\vec{e}, e'\vec{p})$

$$F.o.M. \propto \sigma \cdot A_y^2 \cdot \Omega \cdot L \propto \frac{E^2}{Q^{16}} \cdot \Omega \cdot L$$

(Polarized proton targets cannot tolerate high L)

Challenge!

G^n_M / G^p_M

cross section ratio: $d(e, e'n) / d(e, e'p)$
Current Best Measurement Techniques

G^n_E / G^n_M

Polarized Target: $^3\text{He}(\vec{e}, e' n)$

\[
\text{F.o.M.} \propto \sigma \cdot \Omega \cdot P_t^2 \cdot \mathcal{L} \propto \frac{E^2}{Q^{12}} \cdot \Omega \cdot P_t^2 \cdot \mathcal{L}
\]

G^p_E / G^p_M

Recoil Polarization Asymmetry: $p(\vec{e}, e' \vec{p})$

\[
\text{F.o.M.} \propto \sigma \cdot A_y^2 \cdot \Omega \cdot \mathcal{L} \propto \frac{E^2}{Q^{16}} \cdot \Omega \cdot \mathcal{L}
\]

Need absolute measurement

(Polarized proton targets cannot tolerate high \mathcal{L})

G^n_M / G^p_M

Cross Section Ratio: $d(e, e' n) / d(e, e' p)$

![Diagram](image-url)
6 GeV electron accelerator, $I_{\text{max}} \approx 200 \mu\text{A}$, $P_{\text{beam}} = 85\%$
Jefferson Lab

6 GeV electron accelerator, $I_{\text{max}} \approx 200 \mu\text{A}, \ P_{\text{beam}} = 85\%$
JLab 12 GeV Upgrade

- Double beam energy (6 → 12 GeV)
- 11 GeV max to Halls A, B, C
- 12 GeV to new Hall D
- Maintain ability to deliver lower-pass energies to Halls (1.1, 2.2, ... GeV)
- Re-use vast majority of existing equipment
- Major upgrades to existing Halls
- First physics in 2014
JLab 12 GeV Upgrade

- Double beam energy (6 → 12 GeV)
- 11 GeV max to Halls A, B, C
- 12 GeV to new Hall D
- Maintain ability to deliver lower-pass energies to Halls (1.1, 2.2, ... GeV)
- Re-use vast majority of existing equipment
- Major upgrades to existing halls
- First physics in 2014
Super BigBite

- New equipment in Hall A, to be constructed
- Set of components for **flexible** spectrometer configuration
 - Dipole magnet
 - GEM trackers
 - Calorimeter
 - CH\(_2\) analyzers (for p polarimeter)
 - Dual-radiator RICH (for SIDIS program)
- Use in combination with existing apparatuses, *e.g.* BigBite
SBS Magnet

- Simple dipole, vertical bending
- 46 cm gap, 2.5 T-m
- Provides large acceptance

<table>
<thead>
<tr>
<th>θ_{centr} (deg)</th>
<th>D (m)</th>
<th>$\Delta \phi$(hor) (deg)</th>
<th>$\Delta \theta$(vert) (deg)</th>
<th>Ω (msr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>9.5</td>
<td>±1.3</td>
<td>±3.3</td>
<td>5</td>
</tr>
<tr>
<td>5.0</td>
<td>5.8</td>
<td>±1.9</td>
<td>±4.9</td>
<td>12</td>
</tr>
<tr>
<td>7.5</td>
<td>3.2</td>
<td>±3.0</td>
<td>±8.0</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>1.6</td>
<td>±4.8</td>
<td>±12.2</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>1.5</td>
<td>±4.9</td>
<td>±12.5</td>
<td>76</td>
</tr>
</tbody>
</table>

- Momentum resolution

\[
\frac{\Delta p}{p} = (0.03p[\text{GeV}] + 0.29)[\%]
\]

- Angular resolution ≈ 0.3 mrad
- Vertex resolution $\approx 1 \ldots 2$ mm
SBS Magnet

- Simple dipole, vertical bending
- 46 cm gap, 2.5 T-m
- Provides large acceptance

<table>
<thead>
<tr>
<th>θ_{centr} (deg)</th>
<th>D (m)</th>
<th>$\Delta \phi$ (hor) (deg)</th>
<th>$\Delta \theta$ (vert) (deg)</th>
<th>Ω (msr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>9.5</td>
<td>± 1.3</td>
<td>± 3.3</td>
<td>5</td>
</tr>
<tr>
<td>5.0</td>
<td>5.8</td>
<td>± 1.9</td>
<td>± 4.9</td>
<td>12</td>
</tr>
<tr>
<td>7.5</td>
<td>3.2</td>
<td>± 3.0</td>
<td>± 8.0</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>1.6</td>
<td>± 4.8</td>
<td>± 12.2</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>1.5</td>
<td>± 4.9</td>
<td>± 12.5</td>
<td>76</td>
</tr>
</tbody>
</table>

- Momentum resolution
\[
\frac{\Delta p}{p} = (0.03p[\text{GeV}] + 0.29)[\%]
\]

- Angular resolution ≈ 0.3 mrad
- Vertex resolution $\approx 1 \ldots 2$ mm
Gas Electron Multiplier (GEM) Trackers

- F. Sauli, NIM A386, 531 (1997)
- Very high rate capability
- Successfully used in COMPASS
- Gain $O(10^4)$
- $\leq 70\mu m$ position resolution
- 40×50 cm2 prototype sections being tested

Gain vs. rate

- Ar/CO$_2$/CF$_4$ (60/20/20) mixture
- 500 KHz /cm2
- SBS

Ar/CO$_2$/CF$_4$ (60/20/20) mixture

- 500 KHz /cm2
SBS for Gep5

<table>
<thead>
<tr>
<th>quantity</th>
<th>resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta, %$</td>
<td>$0.03_p+0.20$</td>
</tr>
<tr>
<td>x'_{tor}, mrad</td>
<td>$0.09 \pm 0.59/p$</td>
</tr>
<tr>
<td>y_{tar}, mm</td>
<td>$0.53 + 4.49/p$</td>
</tr>
<tr>
<td>y'_{tor}, mrad</td>
<td>$0.14+1.34/p$</td>
</tr>
</tbody>
</table>
GEp(5) experiment

Reaction

\[p(\vec{e}, e'\vec{p}) \]

- 40 cm LH2 target
- \(\mathcal{L} = 8 \cdot 10^{38} \text{cm}^{-2}\text{s}^{-1} \)
- High calorimeter thresholds to reject background
- Coincidence rate \(\leq 5 \text{ kHz} \)
- 45 days of beam approved

<table>
<thead>
<tr>
<th>(Q^2) (GeV)</th>
<th>(E_{\text{beam}}) (GeV)</th>
<th>(p_p) (GeV)</th>
<th>(\theta_{\text{SBS}}) (deg)</th>
<th>(E') (GeV)</th>
<th>(\theta_{\text{BigCal}}) (deg)</th>
<th>(\Delta[G_E/G_M]) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>6.6</td>
<td>3.5</td>
<td>28.0</td>
<td>3.94</td>
<td>26.3</td>
<td>2.3</td>
</tr>
<tr>
<td>10.0</td>
<td>8.8</td>
<td>6.2</td>
<td>16.7</td>
<td>3.47</td>
<td>35.3</td>
<td>6.5</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>7.4</td>
<td>16.9</td>
<td>4.45</td>
<td>29</td>
<td>13.5</td>
</tr>
</tbody>
</table>
GEp(5) Tracking Monte Carlo

Front tracker GEM strip occupancy

- Raw occupancy
- With Λ and D cuts

Tracking Efficiency

- No search region (Max missing planes 2)
- With search region (Max missing planes 3)

Track reconstruction accuracy

- Realistic digitization of GEM & electronics response
- Huge photon background rate, $\mathcal{O}(100)$ MHz
- > 90% tracking efficiency despite > 70% raw occupancy!
- $\approx 40 \mu$m reconstruction accuracy
GEp(5) Expected Precision

\[\frac{G_E^p}{G_M^p} \]

- **VMD - E. Lomon (2002)**
- **VMD - Bijker and Iachello (2004)**
- **RCQM - G. Miller (2002)**
- **DSE - C. Roberts (2009)**

\[F_2/F_1 \propto \ln^2(Q^2/\Lambda^2)/Q^2, \Lambda = 300 \text{ MeV} \]

Legend:
- **GEp(1)**
- **GEp(2)**
- **GEp(3) (prelim, stat only)**
- **GEp(5) E12-07-109, SBS**
Neutron FF Experiments

\[G^n_E \text{ measurement} \]

\[\overrightarrow{^3\text{He}}(\overrightarrow{e}, \overrightarrow{e'}n) \]

\[A \propto \frac{G^n_E G^n_M \sin \theta^* \cos \phi^*}{a(G^n_M)^2} + b \]

- 60 cm high-pressure \(^3\text{He}\) target (effective polarized neutron)
- \(P_t \geq 65\%\) at \(I = 40\ \mu\text{A}\)
- \(\mathcal{L} = 6 \cdot 10^{36}\text{cm}^{-2}\text{s}^{-1}\)
- BigBite with GEM trackers for precise electron kinematics
- SBS magnet deflects protons
- 50 days of beam approved
Optically-pumped spin-exchange target
Extensive R&D over last decade (UVa)
New convection method very promising
$P \geq 65\%$
Fast spin rotation (seconds)

New target cell design gains $\times 15$ in luminosity
G_M^n Ratio Method Measurement

G_M^n measurement

$$\frac{d(e, e'n)}{d(e, e'p)}$$

- 10 cm LD2 target
- $\mathcal{L} = 3 \cdot 10^{37} \text{cm}^{-2}\text{s}^{-1}$
- Magnet separates QE protons and neutrons
- 25 days of beam approved
G_M^n Expected Precision

![Graph showing G_M^n/G_D vs Q^2 for different experiments and models.]

- Rock
- Lachniet
- E12-07-104, CLAS12
- E12-09-019, SBS
Summary

- The Super BigBite program in JLab’s Hall A will measure the nucleon elastic form factors at the highest Q^2 to date.
- The measurements represent the current state of the art, offering the highest figure of merit in each case.
- Results will provide crucial input for theory in a previously-unexplored kinematical regime.