NOvA Experiment

Jarek Nowak
University of Minnesota
For NOvA Collaboration
NOvA Collaboration

140 Collaborators
24 Institutions
4 Countries
NuMI off-axis ν_e Appearance Experiment

- 810 km long baseline.
- Two detectors 14 mrad off the beam axis.
- Near detector at Fermilab 1 km from target.
- Far detector in Ash River, MN.
- NuMI beam upgraded to 700 kW.

- Search for ν_e appearance and ν_μ survival to measure:
 - θ_{13}
 - Mass hierarchy
 - Constrain CP violation phase
 - Θ_{23}, Δm^2_{32}
Beam:
- Accelerator shutdown to install upgrades for 700kW beam: March 2012
- Horn1 and target design complete
- Kicker for Booster-Recycler in use
- First recycler injector magnet installed

FD:
- Start construction: Jan 2012
- 1 block ready by start of shutdown
- 50% detector by end of shutdown
- Complete by early 2014

ND:
- Cavern excavation during shutdown
- Prototype in operation at FNAL on the surface
NOvA Detectors Side-by-Side

Far Detector
- 930 Planes (15.6 m x 15.6 m)
- 14kTon
- 360000 cells
- Cosmic Ray Muon Rate:
 - ~200 kHz (2-3 m overburden)
- In-Spill Rate
 - 1400 ν_e beam events/year

Near Detector
- 196 Planes (3m x 4m)
 + 10 Steel/Scint Plane Pairs ("Muon Catcher")
- 220 Ton
- 16000 cells
- Cosmic Ray Muon Rate:
 - ~50 Hz (105 m overburden)
- In-Spill Rate:
 - 10 μs duration every 1.33 s
 - 30 neutrino events/spill
Detector Technology

- Detectors composed of highly reflective PVC extrusions
- Filled with liquid scintillator (mineral oil + 5% pseudocumene)
- Each cell readout by a wavelength shifting fiber onto one pixel of a 32-pixel avalanche photodiode (APD)
 - 30 PE from far end of cell into APD for MIP
- Num cells: 360000 (Far), 16000 (Near)
NuMI Off-axis Beam

- Enhanced 700 kW NuMI beamline
- Reduce cycle time from 2.2 to 1.3 seconds.
- Increased intensity/cycle with additional Booster batch.
- New horn and target.
- 10μs beam pulse every 1.3 seconds
- 4.9e13 POT/pulse or 6e20 POT/year

- Placing detectors 14 mrad off the beam axis results in 2GeV narrow band beam. Close to the oscillation maximum.
\(\nu_e \) Appearance

- At L/E~400 km/GeV, dominant oscillation mode is \(\nu_\mu \rightarrow \nu_\tau \)
- A few percent of the missing \(\nu_\mu \) could go into \(\nu_e \)

\[
P(\nu_\mu \rightarrow \nu_e) = \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta m^2_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}} \right|^2
\]

\[
P_{\text{atm}} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2_{31} L}{4E} \right)
\]

\[
P_{\text{sol}} \approx \cos^2 \theta_{23} \sin^2 \theta_{12} \sin^2 \left(\frac{\Delta m^2_{21} L}{4E} \right)
\]

'solar' term is less < 1%

- If CP violation phase \(\delta_{CP} \neq 0 \) part of the interference term is asymmetric to \(\nu \leftrightarrow \bar{\nu} \)

\[
P(\nu_\mu \rightarrow \nu_e) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)
\]

\[
2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left[\cos \left(\frac{\Delta m^2_{32} L}{4E} \right) \cos \delta_{CP} + \sin \left(\frac{\Delta m^2_{21} L}{4E} \right) \sin \delta_{CP} \right]
\]

Neutrinos(-)

Antineutrinos(+)

J. Nowak (UoFM), PANIC11
ν_e Appearance with MSW effect

- With 810 km baseline neutrinos will travel through the Earth crust.
- Due to flavor content of the surrounding matter there is an additional term in the Hamiltonian only for ν_e.

\begin{align*}
 a &= \pm \frac{G_F N_e}{\sqrt{2}} \approx (4000 \text{ km})^{-1} \\
 P_{sol} &\approx \cos^2 \theta_{23} \sin^2 2 \theta_{12} \sin^2 (aL) \left(\frac{\Delta m^2_{21}}{4E} \right)^2 \\
 \Delta m^2_{21} &\approx (4000 \text{ km})^{-1}
\end{align*}

Oscillation probability depends on sign of Δm^2

Oscillation probability modified by about 30% for NOvA

From S. Parke, “Neutrino Oscillation Phenomenology” in Neutrino Oscillations: Present Status and Future Plans
Sensitivity

• Sensitivity to $\sin^2(2\theta_{13}) \neq 0$ after 3 years each of neutrino beam and antineutrino beam in case of normal and inverted hierarchy

• $18\text{e}20$ PoT in each neutrino and antineutrino mode
Comparing to recent results

90% CL Sensitivity to $\sin^2(2\theta_{13}) \neq 0$

- $L = 310 \text{ km}, 15 \text{ kT}$
- $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$
- $\sin^2(2\theta_{23}) = 1$
- 3 years at 700 kW,
 1.2 MW, and 2.3 MW
for each ν and $\bar{\nu}$

- $\Delta m^2 > 0$
- $\Delta m^2 < 0$
Resolution of the mass hierarchy

- Resolution of the mass hierarchy after 3 years ($18e20$ PoT) each of neutrino beam and antineutrino beam in case of normal and inverted hierarchy.
- Comparing results from neutrino and antineutrino beams.
Neutrino and antineutrino parameters

• Minos reported 2σ difference between best fit values for neutrinos and antineutrinos.
• NOvA will be able to test this discrepancy at 3σ (5σ) CL after 1(3) year of running in each neutrino and antineutrino mode.

Difference between neutrino and Antineutrino MINOS results.

NULL HIPOTHESIS
NOvA Near Detector Prototype (NDOS)

- Prototype **Near Detector on Surface (NDOS)** – Taking Data Now!
- Identical to future Near Detector
Prototype detector

Main goals are:

- Test detector design and prepare for far detector production.
- Develop DAQ system on custom design hardware
- Tune calibration procedures.

NDOS collects data from NuMI and BNB beams

- Show electron neutrino selection and $e\pi^0$ separation.
- Verify cosmic background suppression.
- Study nuclear hadronization models and multinucleon production.
- Quasi-elastic cross section at 2 GeV.
Lessons Learned

- Redesign of module manifolds to improve its structural integrity
- A few new quality assurance stages in the module production and installation.
- New installation procedures.
- Identification and fixing of DAQ performance issues.
- APDs and electronic redesign.
MC Events in NOvA

V_μ Charged-current
Long well-defined muon track, proton is a short track with large energy deposition at the track end.

V_e Charged–current
Single shower with characteristic e–m shower development.

NC with π^0 in final state
Possible gaps near event vertex, multiple displaced e–m showers.

Small shower from 2nd γ
Neutrinos
Finding Neutrinos

- Neutrino candidates selection cuts bring clear peak of beam events.
- 110 mrad off NuMI axis
- NDOS nearly on Booster axis, but detector rotated wrt axis
Neutrino candidates

- 110 mrad off NuMI axis
- NDOS nearly on Booster axis, but detector rotated wrt axis

<table>
<thead>
<tr>
<th></th>
<th>PoT</th>
<th>NuMI</th>
<th>Cosmic Bg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino</td>
<td>5.6e18</td>
<td>253</td>
<td>39</td>
</tr>
<tr>
<td>Antineutrino</td>
<td>8.4e19</td>
<td>1001</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PoT</th>
<th>BNB</th>
<th>Cosmic Bg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antineutrino</td>
<td>3e19</td>
<td>222</td>
<td>92</td>
</tr>
</tbody>
</table>
Michel Electrons

- Use Michel electrons for electro-magnetic energy calibration

• q > 300 ADC counts
• t > 40 μsec into the spill
• cluster to be within 30 cm of muon end point

Random coincidences. These are clusters that are matched to muons recorded 20 seconds prior to event.
Summary

- NOvA is on track to make many important contributions to neutrino physics.
 - Measurement of θ_{13}
 - Determination of mass hierarchy
 - More precise measurements of Δm^2, $\sin^2(2\theta_{23})$
- Far detector construction coming soon.
- NuMI beam upgrade has started.
- Near detector on the surface taking neutrino data now.
BACKUP SLIDES
Calibration

- Cosmic muons provide intra-detector calibration source for every cell
Neutrino Mixing

- Massive neutrinos \rightarrow mass eigenstates \neq weak interaction eigenstate
- Neutrino is produced in flavor α and can be detected in different flavor β
 - \rightarrow depending on distance (L) travelled and neutrino energy (E) $\rightarrow L/E$
 - \rightarrow parameters: mixing angles (θ_{ij}) and mass differences $\Delta m^{2}_{ij} = m^{2}_{i} - m^{2}_{j}$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U_{\beta j}^{*} e^{-i \frac{m^{2}_{j} L}{2E}} U_{\alpha j} \right|^{2}$$

atmospheric and accelerator
L/E\sim500km/GeV

Indications of oscillation
From MINOS and T2K

Reactor + Solar
L/E\sim15,000 km/GeV

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & e^{i\delta_{2}} \\ 0 & 0 & e^{i\delta_{3}} \end{pmatrix}$$

with $c_{ij} = \cos(\theta_{ij})$, $s_{ij} = \sin(\theta_{ij})$, $\theta_{ij} = \text{mixing angle}$ and $\Delta m^{2}_{ij} = \text{mass}^{2}$ difference
Comparisons to MC

- Early look at contained events indicates NuMI MC event rate agrees with data

POT normalized

PRELIMINARY

<table>
<thead>
<tr>
<th></th>
<th>NuMI</th>
<th>Cosmic Bg</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiducial</td>
<td>1001</td>
<td>69</td>
<td>861</td>
</tr>
<tr>
<td>Fully contained</td>
<td>184</td>
<td>12</td>
<td>187</td>
</tr>
</tbody>
</table>
Case Study

- Consider ν_e appearance at the CHOOZ limit:
 - Before cuts, signal is 4σ above background
 - Cuts on summed event pulse height, event length: 7σ
 - Sophisticated selection based on event topology: 18σ
 - Compare to $\sim 4\sigma$ of MINOS analysis

<table>
<thead>
<tr>
<th>Interaction Type</th>
<th>Events in 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ CC</td>
<td>2500</td>
</tr>
<tr>
<td>NC</td>
<td>2200</td>
</tr>
<tr>
<td>ν_e CC beam</td>
<td>120</td>
</tr>
<tr>
<td>ν_e CC signal</td>
<td>270</td>
</tr>
</tbody>
</table>
Sensitivity to Hierarchy

\[
\sin^2(2\theta_{13}) \text{ vs. } P(\bar{\nu}_e) \text{ for } P(\nu_e) = 0.02
\]

L = 810 km, 12 km off-axis

\[\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2\]
\[\sin^2(2\theta_{23}) = 1\]

1 and 2 \(\sigma\) Contours for Starred Point for NOvA

\[\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2\]
\[\sin^2(2\theta_{23}) = 1\]

NOvA 3 years at 700 kW for each \(\nu\) and \(\bar{\nu}\)
Example of Constraining CP

$\Delta m^2_{32} = 2.4 \times 10^{-3}$ eV2

$\sin^2(2\theta_{23}) = 1$

NOνA 3 years
at 700 kW
for each ν and $\bar{\nu}$

$\Delta m^2 > 0$
$\Delta m^2 < 0$
POT Accumulated

NuMI POT vs. Time (for runs with > 1 subrun)

BNB POT vs. Time (for runs with > 1 subrun)
NDOS Energy Spectrum
ND Manifold Architecture

- manifold cover
- fill tube manifold cover
- distributed fill tube
- manifold side seal, left
- manifold center seal
- extrusion assembly
- optical connector
- snout (back)
- snout (front)
- bottom raceway
- bottom fiber tray
- top raceway
- top fiber tray
- fiber cover
- manifold side seal, right
Raceway Functionality

Face of optical connector

- Registers fibers in optical connector
- Guarantees acceptable bend radius
- Shields fibers from events in manifold
- Facilitates assembly

Threading fibers into opt conn
Module Construction Process

2 to 1 gluing

preparation

stringing

threading

flycutting

Inner seal plasma prep