Status and Prospects of the MiniCLEAN Dark Matter Experiment

Keith Rielage, for the MiniCLEAN Collaboration
Los Alamos National Laboratory

LA-UR 10-07217
Pulse-Shape Discrimination in LAr

- Noble liquids have singlet and triplet excited states
- For argon and neon, decay times for these states are different and long enough to provide discrimination between electronic and nuclear recoils
- Electronic recoils result in creation of more triplet states so more late light
- Data shows discrimination of 10^{-10} achievable, demonstrated 10^{-9}
Overarching Goals of MiniCLEAN

Technical Proof-of-Principle
We aim to demonstrate all salient features of a 4π single-phase detector using, interchangeably, targets of LAr and LNe.

Analysis Philosophy
Using our experiences from SNO, SK etc … we aim to develop a robust analysis program where all detector parameters and response to signal and backgrounds are over-constrained through simulation and calibration.

Dark Matter Search
Perform a search for WIMP dark matter with a sensitivity competitive and complementary to next generation experiments with order 100 kg fiducial mass.

Future
MiniCLEAN serves as a prototype to a full-scale (~50T) CLEAN to be located at DUSEL in South Dakota.
Conceptually Simple Detector

- Sphere of argon or neon serves as target for WIMPs
- Scintillation light from recoils at 80-128 nm
- Converted to visible by wavelength shifter on acrylic
- Light guide brings visible light to photomultiplier tube where signal recorded
Conceptually Simple Detector

- Noble Elements scintillate in extreme ultraviolet (EUV)
- Essentially no fast, sensitive, big and cheap photon detectors are directly sensitive to EUV
- Characterizing WLS behavior is very important

<table>
<thead>
<tr>
<th>EUV Light</th>
<th>WLS</th>
<th>Visible Light</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon/Neon</td>
<td>TPB</td>
<td>Acrylic/Ar/Ne</td>
<td>PMT</td>
</tr>
</tbody>
</table>

![Diagram showing the interaction of EUV light with various materials and their corresponding wavelength transmittance graphs.](image)

![Graph showing scintillation probability density and transmittance against wavelength for different substances.](image)
MiniCLEAN Conceptual Design

Not Shown: Magnetic Compensation, Process Systems, Cable Bundles

Tank 18' dia. x 25' tall
47,600 gallons

~1.5m water top & sides
~3.5m water bottom
MiniCLEAN Conceptual Design

Calibration Port

Optical Module

Outer Vessel

Inner Vessel

Stand

LAr/LNe

163 cm
Inner Vessel

• Inner Vessel is being machined at Winchester Precision Technologies in Winchester, NH
Optical Cassettes

- Fabricating prototype parts
- Dedicated test setup to benchmark simulations and perform engineering tests
Simulations and Backgrounds

- Particular attention to backgrounds from:
 - 39Ar in argon target (Pulse shape discrimination)
 - Fast neutrons from PMT glass (Shielding, tagging)
 - Radon plate-out on WLS surface (Assembly, tagging)
- Full detector simulation in RAT
- Model of signals and background in multiple variables
Calibrations

- Calibration program designed to completely verify a positive signal in the same detector using enriched argon and neon targets.
The DEAP and CLEAN Family of Detectors

DEAP-0:
Initial R&D detector

DEAP-1:
7 kg LAr
2 warm PMTs
At SNOLab 2008

DEAP-3600:
3600 kg LAr (1000 kg fiducial mass)
255 warm PMTs
At SNOLAB mid-2013

picoCLEAN:
Initial R&D detector

microCLEAN:
4 kg LAr or LNe
2 cold PMTs
surface tests at Yale

MiniCLEAN:
500 kg LAr or LNe (150 kg fiducial mass)
92 cold PMTs
At SNOLAB mid-2012

50-tonne LNe/LAr Detector:
pp-solar ν, supernova ν, dark matter <10^{-46} cm^2
At DUSEL or SNOLAB ~2017?
MiniCLEAN Sensitivity

![Graph showing WIMP-nucleon cross section vs. WIMP mass for various experiments.]

- Events / 10 kg / yr
- Events / 100 kg / yr
- Events / 1000 kg / yr
MiniCLEAN Schedule

- Assembly begins in September (IV ready in December)
- Commissioning starts July 2012
- First liquid argon run starts by end of 2012
Longer Term Plans

- Single-phase detectors are easily scaleable to larger sizes
- CLEAN detector would be 10-50 tons capable of argon and neon target
- Allows for both a dark matter search and precision measurement of pp solar neutrinos
- Build on experience with MiniCLEAN and DEAP-3600
DEAP/CLEAN Collaborators

University of Alberta
B. Beltran, P. Gorel, A. Hallin, S. Liu, C. Ng, K.S. Olsen, J. Soukup

Boston University
D. Gastler, E. Kearns, S. Linden

Carleton University
M. Bowcock, K. Graham, P. Gravelle, C. Oullet

Harvard University
J. Doyle

Los Alamos National Laboratory

Massachusetts Institute of Technology
L. Feng, J.A. Formaggio, J. Kelsey, J. Monroe, K. Palladino

National Institute of Standards and Technology
K. Coakley

University of New Mexico
M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Wang

University of North Carolina/TUNL
R. Henning, S. MacMullin

University of Pennsylvania
T. Caldwell, J.R. Klein, A. Latorre, A. Mastbaum, G.D. Orebi Gann, S. Seibert

Queen’s University

Royal Holloway University London
J. Monroe

SNOLAB Institute

University of South Dakota
V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang

Syracuse University
R. Bunker, Y. Chen, R.W. Schnee, B. Wang

TRIUMF
P.-A. Amaudruz, A. Muir, F. Retiere

Yale University
D.N. McKinsey, J.A. Nikkel, Y. Shin
Questions?

MiniCLEAN Shield Tank
Courtesy F. Duncan