Jets and Jet Substructure
A Quick Overview

Salvatore Rappoccio (JHU)
• Even more than at the Tevatron, the LHC is a very jetty place
 – Backgrounds contain jets
 – Signals contain jets
 – Pileup contains jets
• Understanding jets is a critical piece for all analyses
• Simple picture of 1->2 decay is complicated in QCD!
• Spray of collimated particles
• A lot of complications!
 – Underlying event
 – Pileup
 – Initial + final state radiation
Particle Jets

- Simple picture of 1->2 decay is complicated in QCD!
- Spray of collimated particles
- A lot of complications!
 - Underlying event
 - Pileup
 - Initial + final state radiation
Particle Jets

- Simple picture of 1->2 decay is complicated in QCD!
- Spray of collimated particles
- A lot of complications!
 - Underlying event
 - Pileup
 - Initial + final state radiation

Graphic from Iain Stewart
- Simple picture of 1->2 decay is complicated in QCD!
- Spray of collimated particles
- A lot of complications!
 - Underlying event
 - Pileup
 - Initial + final state radiation

Graphic from Iain Stewart
• This talk isn’t a history, but a snapshot

• Will focus on recent results with application to data
 – There are many other substructure tools available from the theoretical community
 • Will only discuss those that are already used by experiments
 – There are many studies from the experiments using MC
 • Will only discuss those that have data comparisons

• Investigate the principle for most of these tools in detail:
 – Sequential algorithms!
Sequential Clustering Algorithms

- Pairwise examination of input 4-vectors
- Calculate d_{ij}
 \[d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2 \]
- Also find the “beam distance”
 \[d_{iB} = k_{T,i}^n \]
- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

26 July 2011
Sequential Clustering Algorithms

- Pairwise examination of input 4-vectors
- Calculate d_{ij}
 \[
 d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2
 \]
- Also find the “beam distance”
 \[
 d_{iB} = k_T^n, i
 \]
- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

26 July 2011
Sequential Clustering Algorithms

- Pairwise examination of input 4-vectors
- Calculate d_{ij}

$$d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2$$

- Also find the “beam distance”

$$d_{iB} = k^n_{T,i}$$

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted
Sequential Clustering Algorithms

- Pairwise examination of input 4-vectors
- Calculate d_{ij}

 $$d_{ij} = \min(k^n_{t_i}, k^n_{t_j}) \Delta R_{ij}^2 / R^2$$

- Also find the “beam distance”

 $$d_{iB} = k^n_{T,i}$$

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

26 July 2011
Sequential Clustering Algorithms

- Pairwise examination of input 4-vectors
- Calculate d_{ij}

$$d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2$$

- Also find the “beam distance”

$$d_{iB} = k_T^n$$

- Find min of all d_{ij} and d_{iB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

26 July 2011
Sequential Clustering Algorithms

- Pairwise examination of input 4-vectors
- Calculate d_{ij}
 \[d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2 \]
- Also find the "beam distance"
 \[d_{IB} = k_{T,i}^n \]
- Find min of all d_{ij} and d_{IB}
 - If min is a d_{ij}, merge and iterate
 - If min is a d_{IB}, classify as a final jet
- Continue until list is exhausted
Sequential Clustering Algorithms

- Different types
 - $N = 2$: “kT”
 - “Irregular” jets, but good for low pt
 - $N = 0$: “Cambridge-Aachen” (CA)
 - Also irregular, very useful for substructure!
 - $N = -2$: “anti-kT”
 - “Idealized” cone algorithm

Cacciari, Salam, Soyez
• Different types
 – N = 2: “kT”
 • “Irregular” jets, but good for low pt
 – N = 0: “Cambridge-Aachen” (CA)
 • Also irregular, very useful for substructure!
 – N = -2: “anti-kT”
 • “Idealized” cone algorithm

Cacciari, Salam, Soyez
Sequential Clustering Algorithms

- Different types
 - N = 2: “kT”
 - “Irregular” jets, but good for low pt
 - N = 0: “Cambridge-Aachen” (CA)
 - Also irregular, very useful for substructure!
 - N = -2: “anti-kT”
 - “Idealized” cone algorithm

Cacciari, Salam, Soyez
Sequential Clustering Algorithms

- Different types
 - $N = 2$: “kT”
 - “Irregular” jets, but good for low pt
 - $N = 0$: “Cambridge-Aachen” (CA)
 - Also irregular, very useful for substructure!
 - $N = -2$: “anti-kT”
 - “Idealized” cone algorithm

Cacciari, Salam, Soyez
Jet Mass and Substructure
Jet Mass

- What’s the typical mass scale of QCD?
 - See e.g. Ellis et al (arXiv:0712.2447v1)

Finite-size effects from cutoff

Log. divergence at low mass

Scales \(-\)linearly with momentum

\[
\langle M_J^2 \rangle_{NLO} \sim \overline{c} \left(\frac{p_J}{\sqrt{s}} \right) \alpha_s \left(\frac{p_J}{2} \right) p_J^2 R^2,
\]

Graphic taken from Steve Ellis
So far excellent agreement between data and predictions
Dependence seen versus parton shower model, pt vs angular ordering, and even UE tune
• “BDRS” Subjet/filter technique
 - Targeted tagger for identifying boosted Higgs (2-body decay)

• JHU “top tagger”
 - Targeted tagger for identifying boosted top quarks (3-body decay)

• University of Washington “jet pruning”
 - General-purpose tool to “clean up” jets

• Jet “Superstructure”
 - Attempts to separate color singlets from color octets

Use CA PFJets

“Undo” last clustering step

Examine “mass drop” and “subjet symmetry” (make subjet)

$$\mu = \frac{m_{j1}}{m_j}$$

$$y = \frac{\min(p_{T1}, p_{T2}) \cdot (\Delta R_{12})^2}{m_{jet}^2}$$

If significant mass drop and symmetric subjets, reduce the jet scale and recluster (filter subjet)

- This is DIFFERENT from QCD
“BDRS” Subjet/Filter Details

- Use CA PFJets
- “Undo” last clustering step
- Examine “mass drop” and “subjet symmetry” (make subjet)

$$\mu = \frac{m_{j1}}{m_j} \quad y = \frac{\min(p_{T1}, p_{T2}) \cdot (\Delta R_{12})^2}{m_{jet}^2}$$

- If significant mass drop and symmetric subjets, reduce the jet scale and recluster (filter subjet)
 - This is DIFFERENT from QCD
“BDRS” Subjet/Filter Details

- Good agreement between data and MC
- Largest variations between PS and UE tunes

ATLAS-CONF-2011-073

Before filtering

After filtering

• Good agreement between data and MC
• Largest variations between PS and UE tunes
• Based on Kaplan et al. (arXiv:0806.0848)
• Cluster particle flow candidates using Cambridge Aachen
• Reverse the clustering sequence in order to find substructure
• Subjets must satisfy two requirements
 – Momentum fraction criterion: $p_{T\text{subjet}} > 0.05 \times p_{T\text{hard jet}}$
 – Adjacency criterion: $\Delta R(A, B) > 0.4 - 0.0004 \times p_T$
• Iterative process - throw out objects that fail momentum fraction cut and try to decluster again
• Then use:
 – Jet Mass \sim Top mass
 – Minimum mass pairing of subjets \sim W mass

Removes soft clusters
Removes wide angle clusters

Primary Decomposition:
Break jet into two parent clusters

Secondary Decomposition
Repeat on parent clusters

Require ≥ 3
Top Tagging Mistag Rate From Data

- **Anti-tag and probe method**
 - Randomly select one jet, check if its tagged
 - If the random jet is vetoed, the opposite jet is the probe jet

\[
\text{Anti-tagged jet (mass < 140 or mass > 250 or minmass < 50 or nsubjets < 3)}
\]

\[
\text{Probe jet}
\]

\[
\text{Mistag Rate} = \frac{\text{Number of probe jets that are tagged}}{\text{Number of probe jets}}
\]

* Type 1 + 1 = Dijet events, with mass requirement
* Type 1 + 2 = Trijet events

26 July 2011
• Ellis et al. (arXiv:0903.5081)
 • Improves mass resolution by removing soft, large angle particles from the jet
• Recluster each jet, requiring that each recombination satisfy the following:
 \[\frac{\min(p_{T1}, p_{T2})}{p_{Tp}} > 0.1 \]
 \[\Delta R_{12} < 0.5 \times \frac{m_{\text{jet}}}{p_T} \]
• For W tagging, require:
 - Jet mass in 60-100 GeV/c^2
 - Mass drop (\(\mu\)) < 0.4

26 July 2011
• Very good agreement between MC and data jet mass!
• Strong dependence on PS model and tune, but all very good in “signal region” for interesting particles (high jet mass)
• Gallicchio and Schwartz (arXiv:1001.5027v3)
• Take advantage of color connection between objects to distinguish color singlets

\[\vec{t} = \sum_{i \in \text{jet}} \frac{p_T^i |r_i|}{p_T^{\text{jet}}} \vec{r}_i. \]
Characterization of Substructure Tools
Standard candle: Find a W peak in jet masses!
- Examine boosted semileptonic ttbar
- Look at mass of W-jet candidates
- Look at no b-tags (ATLAS) or with b-tags (CMS)
- Both show a nice clear W peak from within jets
- Also observe good data to MC agreement
W Tagging With Jet Pruning

- Can compute ratio of efficiencies in data and MC
 - Completely statistically dominated, will improve with more data!

- Combined selection:
 - $60 < M_{\text{jet}} < 100$
 - $\mu < 0.4$

- Combined efficiencies:
 - Data: 28%
 - MC: 30%

- Evaluate “data-to-MC scale factor”:
 - $SF = 0.93 \pm 0.13$
Top Mass in Semileptonic Sample

- Take events in the W window (60-100)
- Combine with closest jet, form top mass
- Very clear top signal, can even be used to measure top mass!
Some pileup dependence seen, but largely mitigated by substructure tools!
Searches with Substructure Techniques
Searches

• So far, most work done on characterizing algorithms in data
 – Compare QCD jets data/MC
 – Found the first signals of resonances within jets

• However, already started using new ideas in searches to good effect
• Use data-driven 2-dim sideband method
• Look for excess above QCD background

• 2 Channels:
 – All hadronic
 • Dijet
 – Semileptonic
 • MET+jet versus jet

• Observe 57, expect 46 ± 16
• No evidence for new physics, set a limit of 20 fb⁻¹ for cross section of new objects with jet pt > 400 GeV

26 July 2011
• Mttbar Search
 – Yellow is data-driven QCD background
 • Weight pretag distribution with mistag rate
 – Red is TTbar
 • From MC

• Perform counting experiment in signal windows

• Exclude KK gluons with M in range 1.0-1.5 TeV

26 July 2011
Measurement Using Jet Superstructure

- Utilizing the jet superstructure variables, can examine color flow of hadronic W in ttbar events
- Can distinguish between color octet and color singlet models
- Find the data are consistent with the color singlet model
 - Fraction of uncolored W bosons is 0.56 ± 0.42
 - Large uncertainties, consistent with SM (1.0)

arXiv:1101.0648v1 [hep-ex]
Conclusions

- Exciting times for jet substructure tools!
- Tevatron and LHC are both successfully deploying tools in new physics searches
- Already opening phase spaces to scrutiny for leading models of new physics
Backup Slides
Jet Corrections

- Correct nonlinearities in detector
- Correct to constituent particles
- Correct back to parton level
• Explicit removal: charged hadron subtraction
• Average removal:
 - mean pt per unit area subtraction
26 July 2011

Top Tagging Details

CMS-PAS-JME-10-013

(a) m_{jet} (GeV/c^2) vs. p_T^jet (GeV/c) for Top Tagging CMS Simulation Z \to t\bar{t}, \sqrt{s} = 7 TeV.

(b) m_{jet} (GeV/c^2) vs. p_T^jet (GeV/c) for Top Tagging CMS Simulation QCD Dijet, \sqrt{s} = 7 TeV.

(c) m_{min} (GeV/c^2) vs. p_T (GeV/c) for Top Tagging CMS Simulation Z \to t\bar{t}, \sqrt{s} = 7 TeV.

(d) m_{min} (GeV/c^2) vs. p_T (GeV/c) for Top Tagging CMS Simulation QCD Dijet, \sqrt{s} = 7 TeV.
Top Tagging Details

- Discriminating variables:
 - Number of subjets: 3 or 4
 - Top Mass: Approximated by jet mass
 - Mass in 100-250 GeV/c²
 - W Mass: Approximated by min pairwise mass
 - Min mass > 50 GeV/c²

\[m_{\text{min}} = \min[m_{12}, m_{13}, m_{23}] \]