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Experimental and numerical studies have shown that, with sufficient nonlinearity,
the theoretical capillary-wave power-law spectrum derived from the kinetic equation
(KE) of weak turbulence theory can be realized. This is despite the fact that the
KE is derived assuming an infinite domain with continuous wavenumber, while
experiments and numerical simulations are conducted in realistic finite domains with
discrete wavenumbers for which the KE theoretically allows no energy transfer. To
understand this, we first analyse results from direct simulations of the primitive Euler
equations to elucidate the role of nonlinear resonance broadening (NRB) in discrete
turbulence. We define a quantitative measure of the NRB, explaining its dependence
on the nonlinearity level and its effect on the properties of the obtained stationary
power-law spectra. This inspires us to develop a new quasi-resonant kinetic equation
(QKE) for discrete turbulence, which incorporates the mechanism of NRB, governed
by a single parameter κ expressing the ratio of NRB and wavenumber discreteness.
At κ = κ0 ≈ 0.02, the QKE recovers simultaneously the spectral slope α0 = −17/4
and the Kolmogorov constant C0 = 6.97 (corrected from the original derivation) of
the theoretical continuous spectrum, which physically represents the upper bound
of energy cascade capacity for the discrete turbulence. For κ < κ0, the obtained
spectra represent those corresponding to a finite domain with insufficient nonlinearity,
resulting in a steeper spectral slope α < α0 and reduced capacity of energy cascade
C > C0. The physical insights from the QKE are corroborated by direct simulation
results of the Euler equations.

Key words: capillary waves, turbulence theory, waves/free-surface flows

1. Introduction

Weak turbulence theory (WTT), developed in the 1960s, provides a mathematical
description of the energy transfer in weakly nonlinear and dispersive waves (Zakharov,
L’vov & Falkovich 1992; Newell & Rumpf 2011). In the framework of WTT, a
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systematic approach, based on the truncated Hamiltonian, reduces the primitive
wave equation to the kinetic equation (KE), which governs the wave spectral
evolution due to nonlinear energy transfer. The stationary solution of the KE yields
a Kolmogorov–Zakharov spectrum of power-law form in the inertial range. This
methodology has been applied in many physical systems, including plasma physics
(e.g. Galtier et al. 2002), optics (e.g. Dyachenko et al. 1992), internal waves (e.g.
Lvov, Polzin & Tabak 2004), surface gravity and capillary waves (e.g. Zakharov &
Filonenko 1966, 1967).

For capillary waves, the KE is first derived in Zakharov & Filonenko (1967), and
takes the form ∂nk/∂t = S(k, nk), where nk is the spectral density of wave action at
vector wavenumber k and S(k, nk)∼

∫∫∞
−∞ δ(k− k1− k2)δ(ωk−ωk1 −ωk2) dk1 dk2 is the

collision integral, representing the nonlinear spectral evolution due to triad resonant
interactions, with ωk ∼ |k|3/2 being the angular frequency.

In an isotropic wavefield, the analytical stationary solution (with large-scale forcing
and small-scale dissipation) of the KE yields a power-law spectrum in the inertial
range (Zakharov & Filonenko 1967; Pushkarev & Zakharov 2000; Pan & Yue 2014),

n(k)= 2πCP1/2kα, (1.1)

where P is the energy flux from large to small scales, α is the spectral slope, with
the theoretical value of α = α0 = −17/4, and C is the Kolmogorov constant, first
analytically evaluated in Pushkarev & Zakharov (2000) with a reported value of 9.85.
In obtaining (1.1), a key assumption is made of an infinite domain with continuous
wavenumber, under which the interaction of a triad satisfies the exact resonance
condition

k− k1 − k2 = 0, (1.2a)
ωk −ωk1 −ωk2 = 0, (1.2b)

such that S(k, nk) takes a non-zero value.
In reality, the assumption of an infinite domain with continuous wavenumber is

never realized, and experimental and numerical validations of (1.1) are attempted only
in finite domains under the context of discrete turbulence. These include the extensive
numerical (e.g. Pushkarev & Zakharov 1996, 2000; Deike et al. 2014b; Pan & Yue
2014) and experimental (e.g. Falcon, Laroche & Fauve 2007; Xia, Shats & Punzmann
2010; Deike, Berhanu & Falcon 2014a) confirmations of α = α0 = −17/4, which
can be considered to be settled. Studies to evaluate the value of C in (1.1) are less
definitive, and it turns out that the value originally reported in Pushkarev & Zakharov
(2000) is off by a factor of

√
2, due to an error in evaluating a key integral. In this

work, we rederive the analytical solution in § 2, which yields the corrected value of
C = C0 = 6.97. This lays down a new premise not only for later study in current
work, but also for all previous attempted validations, among which the most recent
one (Pan & Yue 2014) should be considered as the recovery of C0 in the same order
of magnitude.

The consideration of nonlinear resonance broadening (NRB) is essential in
understanding discrete turbulence since it is mathematically known (Kartashova 1990)
that the exact triad resonance condition (1.2) cannot be satisfied in a finite domain
resonator (as (1.2b) for integer wavenumbers turns into a special case of Fermat’s
last theorem). The relationship of NRB (and nonlinearity level) to the dynamics
can be argued from a sandpile model (Nazarenko 2006; Lvov & Nazarenko 2010;
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Nazarenko 2011). With increasing magnitude of NRB, the spectral slope varies from
that corresponding to frozen, mesoscopic to continuous (kinetic) turbulence. These
predictions are consistent with simulations of the primitive Euler equations (Pushkarev
& Zakharov 2000; Pan & Yue 2014, 2015) and experiments (e.g. Denissenko,
Lukaschuk & Nazarenko 2007; Deike, Bacri & Falcon 2013). In addition to the
spectral slope α < α0, the simulation demonstrates the reduced capacity of energy
cascade at insufficient level of nonlinearity, producing spectra with C > C0. The
problem is also tackled by geometrically considering the formation of quasi-resonant
triads with NRB under wavenumber discreteness (e.g. Pushkarev & Zakharov 2000;
Connaughton, Nazarenko & Pushkarev 2001), and a conclusion is reached that an
energy cascade over range of wavenumber is only possible under sufficient NRB.
However, a quantitative measure of NRB is still lacking in the context of a realistic
wavefield, and its relation with the nonlinearity level and spectral properties is yet to
be established. In § 3, we provide such an analysis using data from direct simulation
of Euler equations to elucidate the mechanism of NRB in discrete turbulence.

Although the KE is not strictly applicable for discrete turbulence (as S(k, nk)= 0),
it provides a useful framework for understanding the dynamics of multi-wave
interactions. Motivated by insights from § 3, we propose a new quasi-resonant kinetic
equation (QKE) wherein the delta function on frequency in S(k, nk) is replaced by
a generalized delta function of finite width β, which allows a small mismatch in
the frequency condition (1.2b) and accounts for the NRB (a similar approach using
a generalized KE for shallow-water gravity waves was considered by Zaslavskii &
Polnikov (1998), Piscopia et al. (2003) and Polnikov & Manenti (2009)). A new
parameter κ ≡ β/(k1/21k) is introduced in the QKE, which uniquely characterizes
the normalized NRB by the wavenumber discreteness. The present formulation is
related to the Zakharov equation (e.g. Annenkov & Shrira 2001) for the general
problem under the assumption of quasi-Gaussianity. The QKE we propose can then
be considered as an approximation of the Zakharov equation with an explicit form
for the NRB.

From physical considerations and corroborating results from Euler equation
simulations, the maximum energy flux achievable in the context of weak turbulence
is described by (1.1) in a theoretically infinite domain (1k→ 0). For finite 1k, this
result is obtained from the QKE with κ = κ0 = 0.02, recovering simultaneously the
theoretical values of α0 and C0. This physically represents an upper limit, under
sufficient NRB, of the energy flux by quasi-resonance approximating that of exact
resonance. For κ < κ0, corresponding to insufficient NRB for a given discreteness,
spectra with α<α0 and C>C0 are replicated in the predictions of the QKE, consistent
with a system with reduced capacity of energy cascade. The QKE thus provides a
simple model, described by the parameter κ , which establishes the connection of
NRB and the power-law spectral properties in a finite domain.

2. Solution of the KE in a theoretically infinite domain

Under the assumption of a theoretically infinite domain, the KE of capillary waves
reads (for simplicity, the time and mass units are chosen so that the surface tension
coefficient σ and the fluid density ρ are unity)

∂nk

∂t
= S(k, nk), (2.1a)

S(k, nk)=
∫∫ ∞
−∞
[Rkk1k2 − Rk1kk2 − Rk2kk1] dk1 dk2, (2.1b)
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Rkk1k2 = 4π|Vkk1k2 |2δ(k− k1 − k2)δ(ωk −ωk1 −ωk2)[nk1nk2 − nknk1 − nknk2], (2.1c)

Vkk1k2 =
1

8π
√

2
(ωkωk1ωk2)

1/2

[
Lk1,k2

(k1k2)1/2k
− Lk,−k1

(kk1)1/2k2
− Lk,−k2

(kk2)1/2k1

]
, (2.1d)

Lk1,k2 = k1 · k2 + k1k2. (2.1e)

The stationary solution of (2.1) can be analytically solved for isotropic capillary-
wave turbulence. While the detailed derivation is recently formulated in Pan (2016),
we briefly review the procedure which leads to the correction of the theoretical
Kolmogorov constant C0 regarding its original derivation (Pushkarev & Zakharov
2000).

For an isotropic spectrum, the angular dependences of all wavenumber vectors k can
be eliminated by transforming (2.1) from Cartesian coordinates to polar coordinates.
This involves an integral that appears in many wave turbulence derivations (for another
example, gravity waves, see Zakharov 2010), in the form of

I =
∫ π

−π

∫ π

−π

f (Q)δ(k− k1 − k2) dθ1 dθ2, (2.2)

where θi is the angle of ki (i=1,2) measured clockwise from k and f (Q) is a function
depending on Q= (k, k1, k2,k1 ·k2,k ·k1,k ·k2). Our purpose is to evaluate this integral
for given k, k1 and k2 (where k> k1, k> k2 and k< k1+ k2). In particular, the key is
to find θ1 and θ2 that make the argument of the delta function in (2.2) vanish.

There are, however, always two ways to choose θ1 and θ2 (along the integration
path) in a two-dimensional space to form a triangle k − k1 − k2 = 0, due to the
possibilities that θ1 can be either positive or negative. With consideration of this
fact, which is missed in the original derivation by Pushkarev & Zakharov (2000), the
evaluation of (2.2) yields

I = f (Q|k−k1−k2=0)/T∆, (2.3)

where T∆ is the area of the triangle formed by k, k1 and k2. This is followed
by the KE for isotropic turbulence, where the right-hand side is twice that of the
original work. Seeking a power-law solution of this equation, we obtain (1.1) with
the (corrected) value of the Kolmogorov constant

C0 = 6.97. (2.4)

This correction is important as the Kolmogorov constant characterizes the capacity
of a power-law spectrum to transfer energy. The result (2.4) thus provides a correct
quantitative measure of this mechanism. The values of both α0 and C0 serve as
references to be compared with those in the case of discrete capillary-wave turbulence
in § 5.

3. Nonlinear resonance broadening (NRB) in discrete wave turbulence

In a finite domain of dimension L × L, the KE (2.1) predicts zero energy
transfer since the resonance condition (1.2b) cannot be satisfied under wavenumber
discreteness 1k = 2π/L. An elucidation of the dynamics on discrete wavenumbers
is thus essential before the development of appropriate modification of the KE for
this scenario. It is known that, under this constraint, the NRB plays an important
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FIGURE 1. Plots of B(k1) for fixed k = (25, 0) at (a) a higher level of nonlinearity
(with P̂ ≈ 9.5 × 10−7 and α ≈ −4.25) and (b) a lower level of nonlinearity (P̂ ≈
2.8 × 10−7 and α ≈ −4.6), where P̂ is a non-dimensionalized energy flux (Pan & Yue
2014). The time average is obtained over 200Tp, with Tp being the modal period at the
spectral peak k = 16. The vectors k1 corresponding to the exact resonance condition are
indicated by – – –. The middle ellipse represents the triads of 〈η∗(k, t)η(k1, t)η(k2, t)〉t
(ωk − ω1 − ω2 = 0), and the left and right branches represent, due to conjugation and
isotropy, 〈η∗(k, t)η∗(−k1, t)η(k2, t)〉t (ω2 − ωk − ω1 = 0) and 〈η∗(k, t)η(k1, t)η∗(−k2, t)〉t
(ω1 −ωk −ω2 = 0).

physical role in exciting the quasi-resonant interactions (e.g. Pushkarev & Zakharov
2000; Connaughton et al. 2001). We seek to quantify this mechanism of NRB in a
realistic wavefield, as well as its relation with the nonlinearity level and the resultant
stationary spectral properties.

For this purpose, we consider a stationary wavefield described by the time-varying
surface elevation, given by its spatial Fourier component η(k, t), with t being the time.
A bi-coherence of η(k, t) can be constructed as

B(k, k1)= |〈η
∗(k, t)η(k1, t)η(k2 = k− k1, t)〉t|

〈|η(k, t)||η(k1, t)||η(k2 = k− k1, t)|〉t , (3.1)

with 〈〉t denoting the time average and ∗ the complex conjugate. Measuring the phase
coupling of the three wavevectors k, k1 and k2 = k− k1, B ranges from 0 to 1, with
B= 0, 1 representing respectively zero and perfect triad coupling. Practically, within a
wavefield with discrete wavenumbers, B obtains high values for quasi-resonant triads
and low values for non-resonant triads.

Data of η(k, t) for the calculation of B are drawn from the direct simulation
of the primitive Euler equations (see Pan & Yue 2014, for simulation details). At
stationary stages of power-law spectra with different nonlinearity levels (measured
by the energy flux P), the discrete function B(k, k1) is evaluated using (3.1). To
facilitate visualization, we fix the vector k without loss of generality, and plot B as
a function of k1 = (k1x, k1y) only. This is shown for two typical cases with higher
and lower nonlinearity levels in figure 1(a,b) in the same finite domain, i.e. same 1k.
The discrete B values in the k1 plane are characterized by high values in the vicinity
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FIGURE 2. The spectral slope α ( ) and the NRB L̂b ( ) as functions of the
nonlinearity level measured by the non-dimensionalized energy flux P̂.

of (but not on) curves of k1 corresponding to the exact resonance condition such as
(1.2b). Generally, these curves are given by

Ω ≡min(|ωk −ω1 −ω2|, |ω1 −ωk −ω2|, |ω2 −ωk −ω1|)= 0. (3.2)

The finite width of the concentration of high values of B(k1) around the resonance
curves provides a measure of the NRB. It is now evident from figure 1 that the
NRB associated with higher nonlinearity level (measured by larger P) is appreciably
wider than that of lower nonlinearity level (smaller P). We further define a quantitative
measure of NRB as

L̂b =

∑
k1

|Ω̂(k1)|B(k1)∑
k1

B(k1)
, (3.3)

where we have normalized (3.2) by Ω̂≡Ω/(1kk1/2), with k=|k|. As the denominator
1kk1/2 estimates the frequency discreteness associated with 1k, Ω̂ calculates the
distance of a point in the domain from the resonance curve (which can be understood
as a level-set function obtaining zero on the resonance curve), measured by the
number of grid spacings. With

∑
k1

summing all grid points of k1, the parameter L̂b

measures the characteristic width of NRB by the first moment of B(k1) centred at
the resonance curve.

We plot in figure 2 the variations of L̂b and the resultant power-law spectral slope
α over a range of nonlinearity levels, measured by the energy flux P. The range
of nonlinearity considered here corresponds to the weak turbulence regime, where
both L̂b and α increase with increase in P. In particular, the steepened spectral slope
α < α0 in this range of nonlinearity is consistent with other existing experimental
measurements (e.g. Wright, Budakian & Putterman 1996; Brazhnikov et al. 2002;
Denissenko et al. 2007; Xia et al. 2010). This clearly marks the discrete spectrum
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with slope α0, associated with maximum L̂b, as an upper limit in the range of
weak turbulence. Physically, this is an illustration of the NRB reaching a limit with
sufficient level of nonlinearity, for which the dynamics governed by quasi-resonance
approximates that of exact resonance in a theoretically infinite domain. The dynamics
above this limit remains elusive (e.g. Denissenko et al. 2007) and is beyond our
current consideration on weak turbulence.

While this study shows evidence and features of NRB, it is still desirable to
develop a simple model incorporating this mechanism. We show that this can be
accomplished in the framework of the KE describing the modal energy transfer due
to triad interactions.

4. Quasi-resonant kinetic equation for discrete turbulence

Motivated by the insights from § 3, we develop a quasi-resonant kinetic equation
(QKE) that incorporates NRB in the triad interactions. To represent such quasi-
resonance, we broaden the generalized delta function (e.g. Lighthill 1958) such as
δ(Ωk12 ≡ ωk − ω1 − ω2) in (2.1c) as a finite-width delta function of the specific form

δ(Ωk12)∼ δg(Ωk12)= β
π

1
β2 +Ω2

k12
, (4.1)

where β is a small parameter introduced to characterize the NRB in frequency.
The physical significance of using (4.1) can be traced back in the derivation of

the KE from the Euler equations. Rigourously speaking, the delta function δ(Ωk12) in
(2.1c) is a result of the closure for the third-order cumulant Jk12 (∼ensemble average
of multiplication of modal amplitudes at k, k1 and k2), which renders Jk12 non-zero
only when Ωk12 = 0. The treatment of (4.1) broadens the non-zero region of Jk12,
and, in the framework of the QKE, effectively allows the triads in quasi-resonance
to be excited for nonlinear energy transfer. The specific form (4.1) of the finite-width
delta function is used as it is mathematically a direct result in the derivation of the
closure, by relaxing the limit of zero-approaching small parameter (to account for
the discrete wavenumbers) in the application of the Sokhotski–Plemelj theorem (cf.
Zakharov et al. 1992). Therefore, this form of (4.1) is more than an approximation,
but also a theoretical model for discrete turbulence.

We further define the normalized NRB,

κ = β

1kk1/2
. (4.2)

With 1kk1/2 measuring the frequency discreteness associated with 1k at wavenumber
k, the non-dimensional parameter κ characterizes the ratio between NRB and grid
spacing, i.e. the number of grid points underneath the broadening. In a single
simulation corresponding to a certain nonlinearity level, κ is set as a constant, and
β is calculated accordingly as a function of k and 1k. This ensures that the NRB
scales with the discreteness, and is evenly applied, at all wavenumbers. (Specifically,
near the resonance manifold defined by (1.2), a similar number of discrete modes is
excited at each wavenumber scale.)

The wavenumber in the simulation spans a discrete two-dimensional space of
kx × ky ∈ [1k, kmax] × [1k, kmax], with increment 1k in both kx and ky. We assume
that all energy transfer to k> kmax is dissipated. This can be accomplished by adding
an additional term to the quasi-resonant form of (2.1a), given by

Γ (nk)=−
∫∫

kmax<k1<kd

8π|Vk1kk2 |2δ(k1 − k− k2)δg(ωk1 −ωk −ωk2)nknk2 dk1 dk2, (4.3)
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which selects all triads transferring energy from k ∈ [1k, kmax] to [kmax, kd]. While
n(k > kmax) is set to be zero and not updated in the simulation, [kmax, kd] serves as
an energy sink regime, which physically absorbs energy transferred from [1k, kmax].
In theory, kd = 2kmax accounts for all such triads, and (4.3) provides a parameter-free
dissipation model, with Γ (nk) representing the decreasing rate of nk due to energy
transfer to the dissipation regime above kmax. The energy flux can be directly evaluated
as the energy transfer across kmax,

P=− 1
2π

∫ kmax

k=0
k5/2Γ (nk) dk. (4.4)

To obtain a stationary spectrum, a large-scale forcing is required. Instead of adding
an extra forcing term (e.g. Pushkarev, Resio & Zakharov 2003), we assume that the
forcing exactly compensates for the decrease of n(k) at large forcing scales due to
energy transfer to small scales, i.e. we numerically keep n(k) in the forcing regime
unchanged in the simulation. This approach is found to be effective in obtaining the
converged stationary spectrum.

The configuration of the QKE to study discrete capillary-wave turbulence is now
complete. Starting with a somewhat arbitrary initial spectrum nI(k), we numerically
evolve the spectrum in time according to (2.1) and (4.1)–(4.3) (with all integrals
calculated as summations on discrete grid points), with a second-order Runge–Kutta
scheme. The simulations are run for sufficient time until a stationary spectrum is
established.

5. Predictions of the QKE

We perform systematic numerical simulations of the QKE by varying the values of
κ and 1k. In each simulation, without loss of generality, we use an initial spectrum
nI(k)= exp(−k2/5), maximum wavenumber kmax= 32, and forcing on the fundamental
wavenumber kf =1k.

We first consider the evolutions of the spectra governed by the QKE with different
values of κ for fixed 1k (= 1). After sufficient time, the initial spectrum evolves to
a stationary state corresponding to power-law solutions with different spectral slopes
α for different values of κ . These are plotted in figure 3(a) for select values of κ .
The evolutions of the total spectral energy E≡ ∫k n(k)k5/2 dk/(2π) for these cases are
plotted in figure 3(b), showing that the stationary state is reached as the power-law
spectrum is formed.

The evaluation of the spectral slope α is straightforward at the stationary state.
With α obtained, the Kolmogorov constant C = 〈n(k)/(2πP1/2kα)〉k is calculated,
where P is from (4.4) and 〈〉k denotes the average over the range of k. We note
that this calculation of C provides a measure of the energy cascade capacity of a
spectrum with uncertain slope α. (In specificity, a spectrum associated with larger C
has smaller energy flux scaled by the spectral amplitude n(k)/kα, i.e. weaker capacity
of transferring energy.)

Guided by the analysis in § 3, we are particularly interested in the existence of
a value κ = κ0 where both α and C attain their values for a continuous spectrum
of α = α0 = −17/4 and C = C0 = 6.97 associated with maximum energy transfer.
Cases with κ < κ0 then correspond to discrete turbulence with insufficient NRB, as
a manifestation of the finite box effect. With these considerations, values of α and
C are plotted in figure 4(a,b) for varying κ (again with fixed 1k). It is shown that
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FIGURE 3. (a) Converged stationary power-law spectra at t = 2500 and (b) variation of
the total energy E in the spectral evolutions for κ = 0.01 ( ), κ = 0.02 ( ), κ = 0.04
( ) and κ = 0.1 ( ). All results are obtained for wavenumber discreteness 1k= 1. In
(a), the initial spectrum (— · —) is plotted and the theoretical slope α0 =−17/4 (– – –)
is indicated. Curves with different values of κ are shifted for clarity.

the theoretical values of α0 and C0 are simultaneously achieved at κ = κ0 ≈ 0.02
by discrete turbulence. This thus physically corresponds to an upper limit, in
our consideration of NRB, for which the dynamics excited by the quasi-resonant
interactions approximates that of the exact resonance in a theoretically infinite domain.
For κ < κ0, the plots show that α < α0 and C > C0 are monotonically obtained with
the decrease of κ in the considered range. These results are clear illustrations of
physics with insufficient nonlinearity level (in a finite domain), i.e. steepened spectral
slope and reduced capacity of energy cascade. These phenomena are completely
consistent with the direct simulation of the primitive Euler equations (Pan & Yue
2014) and experiments (e.g. Denissenko et al. 2007; Deike et al. 2013).

The effects of 1k on α and C are plotted in the two insets of figure 4(a,b), using
the case with κ = κ0 as a representation. It is clear that both α and C are independent
of 1k and functions of κ only. Hence, the parameter κ , as introduced in the QKE,
is the only parameter governing the stationary spectrum of discrete turbulence. The
absence of dependence on 1k can be expected from the scale invariance of the QKE
and its associated power-law solution (as varying 1k is equivalent to extending the
same power-law spectrum, by scaling). The physical implication of the absence of
dependence on 1k is profound. It signifies that values of α and C, both reflections
of dynamics of energy transfer on a discrete grid, are solely determined by the ratio
between NRB and grid discreteness, i.e. the same dynamics can be obtained with
different NRB and grid discreteness, provided that the ratio of the two is maintained.

To corroborate the formulation of κ in the QKE using the results from the Euler
equations in § 3, we plot L̂b as a function of κ associated with the same spectral slope
α in figure 4(c). It is clear that L̂b increases monotonically with κ , with the correlation
being linear in the considered range. This result provides a direct justification of the
QKE and further confirms the point that the influence of the nonlinearity level on
the spectral properties, as observed in Euler equation simulations, can be explained
through the NRB.
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FIGURE 4. Plots of (a) α, (b) C/C0 (with C0 = 6.97) and (c) L̂b (associated with the
same α) as functions of κ for 1k= 1. Insets: (a) α and (b) C/C0 as functions of 1k for
κ = κ0. The theoretical values (– – –) of α0 = −17/4 and C/C0 = 1 are indicated in (a)
and (b), and their insets.

6. Conclusion

We study discrete capillary-wave turbulence in a finite domain. Using direct
simulations of the Euler equations, we analyse and elucidate the role of nonlinear
resonance broadening (NRB) in the stationary power-law spectrum in discrete
turbulence. Motivated by this insight, we propose a simple model describing discrete
wave turbulence in the framework of the kinetic equation (KE). Under the assumption
of a theoretically infinite domain, the KE yields a stationary solution of a continuous
power-law spectrum with slope α0 = −17/4 and Kolmogorov constant C0 = 6.97
(corrected from the original work), corresponding to an upper bound of energy flux in
the limit of continuous wavenumber. We generalize this framework to a quasi-resonant
kinetic equation (QKE) applicable to discrete wavenumber 1k in a finite domain. We
show that the QKE can be parameterized by a single parameter κ expressing the ratio
of NRB to wavenumber discreteness. At κ=κ0≈0.02, the theoretical values of α0 and
(the corrected) C0 are simultaneously recovered, corresponding physically to sufficient
NRB for a given 1k, or sufficiently small 1k for a given nonlinearity. For κ < κ0,
the simulation results replicate those with insufficient nonlinearity level, namely
steepened spectral slope α < α0 and reduced capacity of energy cascade C>C0. The
form of the parameter κ and its effect on the spectral properties corroborate results
from simulations of primitive Euler equations at different nonlinearity levels. The
elucidation of the role of NRB in discrete turbulence and the framework of the QKE
are expected to be valid for weak turbulence in other physical contexts.
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