Ser THL N2lr2 no. 173 c. 2 BEDG

NATIONAL RESEARCH COUNCIL DIVISION OF BUILDING RESEARCH

ANALYZED

ABSORPTION AND TRANSMISSION OF THERMAL RADIATION BY SINGLE AND DOUBLE GLAZED WINDOWS

BY

G. P. MITALAS AND D. G. STEPHENSON

RESEARCH PAPER NO. 173

OF THE

DIVISION OF BUILDING RESEARCH

OTTAWA

PRICE 50 CENTS

DECEMBER 1962

NRC 7104

699-13-600

NATIONAL RESEARCH COUNCIL

CANADA

DIVISION OF BUILDING RESEARCH

ERRATA SHEET

for

NRC 7104

Absorption and Transmission of Thermal Radiation

by Single and Double Glazed Windows

by

G. P. Mitalas and D. G. Stephenson

The absorption and transmission factors for diffuse radiation given in these tables are just the simple averages of the values for incident angles between 0° and 90°. It has been brought to our attention that the values for diffuse radiation should be evaluated by the formula $\pi/2$

$$\Gamma_{\text{Diffuse}} = \int_{0}^{1} T(\Theta) \cdot \text{Sin } 2\Theta \, d\Theta ,$$

and similarly for the absorption factor.

The following table gives the transmission and absorption factors for diffuse radiation for single and double windows (n = 1.52). The integration has been performed by fitting a 5th degree polynomial of $\cos \theta$ to the tabulated values of transmission and absorption factors and integrating this polynomial multiplied by Sin 2 θ term by term.

Diffuse Radiation n = 1.52

KL	KL Single Glazed Window		Double Glazed Window KL of Inside Pane = .05				
	А	Т	A * 1	A [*] ₂	Τ*		
.,05	.0544	. 7990	. 0600	,0451	. 6797		
. 10	.1051	.7542	.1151	.0425	.6413		
.15	.1524	. 7121	,1659	. 0400	.6052		
. 20	. 1966	. 6724	. 2128	.0377	.5713		
. 30	.2768	. 5998	. 2967	.0335	. 5094		
. 4 0	. 3473	. 5353	. 3690	. 0299	.4545		
. 60	.4641	. 4268	. 4866	,0237	.3623		
. 80	.5555	. 3406	. 5765	.0189	.2892		
1.00	.6273	.2720	.6459	.0150	. 2311		
1.50	.7477	. 1553	. 7600	.0085	. 1322		
2.00	.8153	.0889	. 8228	.0049	.0758		

ANALYZED

NATIONAL RESEARCH COUNCIL CANADA DIVISION OF BUILDING RESEARCH

ABSORPTION AND TRANSMISSION OF THERMAL RADIATION BY SINGLE AND DOUBLE GLAZED WINDOWS

by

G. P. Mitalas and D. G. Stephenson

Research Paper No. 173

of the

Division of Building Research

OTTAWA December 1962

ABSORPTION AND TRANSMISSION OF THERMAL

RADIATION BY SINGLE AND DOUBLE

GLAZED WINDOWS

by

G. P. Mitalas and D. G. Stephenson

SUMMAR Y

Tables have been prepared for the transmission and absorption of radiant energy by various types of windows. The tables cover the following range of the independent variables:

> Incident angle = 0(10) 40(5) 70(2) 88 degrees KL = 0.05 to 2.00 with increasing increments Index of refraction = 1.52 and 1.62Single and double glazed windows.

For a single sheet of glass the parallel and perpendicular polarized beams are tabulated separately, as are the combined values for a non-polarized incident beam.

Introduction

In the calculation of the heating or cooling load for a room, it is necessary to know the fraction of the radiation incident on the outside of the window that is absorbed by the glass and the fraction that is transmitted to the interior of the room. The absorptivity and transmissivity of a window depend on the type and thickness of the glass; on whether the window is single or double glazed; on the angle that the incident beam of light makes with the normal to the surface; and on the degree of polarization of the incident beam. The tables presented in this report either give directly, or allow the simple calculation of, the absorptivity and transmissivity of windows made of common glass.

When a beam of radiant energy strikes an interface between air and glass some of the energy is reflected. The ratio of the intensity of the reflected beam to the incident beam is given by Fresnel's formulae

$$\mathbf{r}_{\prime\prime\prime} = \frac{\tan^2 (\theta_1 - \theta_2)}{\tan^2 (\theta_1 + \theta_2)}$$

$$\mathbf{F}_{\perp} = \frac{\sin^2 (\theta_1 - \theta_2)}{\sin^2 (\theta_1 + \theta_2)}$$

where $r_{\prime\prime\prime}$ and $r_{\prime\prime}$ are the reflectivity of the interface for radiation that is polarized with the electric vector parallel and perpendicular respectively to the plane that contains the incident beam and a normal to the interface, and θ_1 and θ_2 are the angles that the beam makes with the normal to the interface in the air and in the glass respectively. They are related with the index of refraction of the glass n by Snell's law

$$\sin \theta_1 = n \sin \theta_2$$

- 3 -

For normal incidence $\theta_1 = \theta_2 = 0$ and $r_{//} = r_{/} = \left(\frac{n-1}{n+1}\right)^2$

The energy that is not reflected at the air-glass interface enters the glass, where it is partially absorbed as it passes through. The absorption may be described by

$$\frac{\mathrm{dI}}{\mathrm{dX}} = -\mathrm{KI}$$

where

I is the intensity of the beam,

X is distance measured in the direction of the beam, and

K is an absorption coefficient,

Thus if the intensity of a beam incident on the surface of a sheet of glass is unity, the intensity of the beam that penetrates to a depth L measured along a normal to the surface is

$$I_{L} = (1 - r)e^{-nKL}/\sqrt{n^2 - sin^2\theta_1}$$

The fraction of the energy that is absorbed is

a =
$$(1 - r)$$
 $\left(1 - e^{-nKL}/\sqrt{n^2 - \sin^2\theta_1}\right)$

Since r depends on the polarization a does also.

The beam that reaches the second glass-air interface has the intensity I_{L^*} . A fraction r of this is reflected back into the glass and the rest passes out of the glass into the room. The internally reflected beam is again partially absorbed before reaching the outside glass-air interface where it is again partially reflected. The transmitted portion of this beam goes into the outside air and adds to the beam that was reflected back into the air initially at that interface.

The over-all effect of the multiple reflections in the glass is that the over-all reflectivity, absorptivity and transmissivity are related to the parameters defined above by

$$R = r + \frac{r(1 - r)^{2} (1 - a)^{2}}{1 - r^{2} (1 - a)^{2}}$$

$$A = \frac{a(1 - r)}{1 - r^{2} (1 - a)^{2}}$$

$$T = \frac{(1 - r)^{2} (1 - a)}{1 - r^{2} (1 - a)^{2}}$$

and

Each of these quantities has a different value for parallel and perpendicular polarization.

Tables I and II contain values of $A_{//}$, $T_{//}$, A_{\perp} , T_{\perp} , A and T for incident angles from 0 to 88 degrees for glasses with indices of refraction of 1.52 and 1.62 and values of the absorption parameter KL ranging from 0.05 to 2.00. If the incident beam is polarized it can be represented by parallel and perpendicular polarized components. The transmission and absorption of each component can be evaluated separately and then combined to give the over-all effect for the polarized beam. When the incident beam is not polarized (i.e. the parallel and perpendicular components are equal) the over-all absorption and transmission are given by the T and A values without subscripts.

Double Glazing

For a double glazed window the radiation incident on the inner pane (i.e. the radiation transmitted by the outer pane) is partially polarized, even though the original incident beam was not. The parallel and perpendicular components, therefore, are treated separately and only combined for the over-all value for the complete window.

The total absorption (considering reflections between the panes as well as multiple reflections in each pane) by the outer pane of a double window is

$$A_{1}^{*} = A_{1} \left\{ 1 + R_{2}T_{1} \left(\frac{1}{1 - R_{1}R_{2}} \right) \right\}$$

and the total absorption by the inner sheet of a double window is

$$A_{2}^{*} = \frac{A_{2}T_{1}}{1 - R_{1}R_{2}}$$

where the quantities without superscripts apply to the panes considered separately, subscript 1 meaning the outer pane and subscript 2 meaning the inner one.

The over-all transmission of the double window is given by

$$\Gamma^* = \frac{T_1 T_2}{1 - R_1 R_2}$$

For a polarized incident beam the A_1^* , A_2^* and T^* can be evaluated separately for the parallel and perpendicular components using these formulae and the data given in Tables I or II. Table III gives the

- 5 -

average of the values for the two components, and hence is directly applicable when the incident beam is not polarized, for the very common case of a double window with an inner pane KL = 0.05 (i.e. ordinary window glass). This table covers the same range of incident angle and KL for the outer pane as Tables I and II.

Diffuse Radiation

The radiation incident on a window consists of the direct solar beam and diffuse radiation from the sky and reflected from the ground. It is usually assumed that the radiation other than the direct solar beam has equal intensity at all incident angles, so that the absorptivity and transmissivity for this radiation is the average for all angles of incidence. The data for each value of KL in Tables I, II and III have been averaged over incident angles from 0 to 90 degrees. These values for diffuse radiation are given in the last section of Tables I, II and III.

Sample Application of Tables

Problem I:

Find the absorption and transmission of a double window for a non-polarized incident beam with an incident angle of 65 degrees. The KL for the inner pane is 0.05; KL for outer pane is 1.00 and the index of refraction for both panes is 1.52.

- 6 -

Solution:

The answers for this situation can be taken directly from Table III, but to illustrate the use of the tables the answers are obtained using the data in Table I.

- (a) For the parallel polarized beam
 - $A_{1} = 0.7059$ $T_{1} = 0.2808$ $R_{1} = 1 A_{1} T_{1} = 0.0133$ $A_{2} = 0.0603$ $T_{2} = 0.9168$ $R_{2} = 1 A_{2} T_{2} = 0.0229$ $A_{1}^{*} = A_{1} \left\{ 1 + \frac{R_{2}T_{1}}{1 R_{1}R_{2}} \right\} = 0.7104$ $A_{2}^{*} = \frac{A_{2}T_{1}}{1 R_{1}R_{2}} = 0.0169$ $T^{*} = \frac{T_{1}T_{2}}{1 R_{1}R_{2}} = 0.2576$
- (b) For the perpendicular polarized beam
 - $A_{1} = 0.5837$ $T_{1} = 0.1688$ $R_{1} = 1 A_{1} T_{1} = 0.2475$ $A_{2} = 0.0593$

$$T_{2} = 0.5768$$

$$R_{2} = 1 - A_{2} - T_{2} = 0.3639$$
Hence
$$A_{1}^{*} = 0.6231$$

$$A_{2}^{*} = 0.0110$$

$$T_{1}^{*} = 0.1070$$

Since the incident beam is non polarized (i.e. the perpendicular and parallel components are equal) the total absorptivity and transmissivity of the window is the average of the values for the two components.

Therefore

$$A_1^* = 0.6668$$

 $A_2^* = 0.0140$
 $T^* = 0.1823$

These are the values given in Table III.

Application of Tables to Solar Radiation

The radiation from the sun that reaches the surface of the earth is almost all in the wavelength region between 0.3 and 3 microns. The absorption coefficient K of normal window glass varies greatly with wavelength, so that there is not a single value of KL that can be applied for solar radiation. Instead the solar spectrum must be subdivided into relatively narrow wavelength bands and the appropriate K value of the glass determined for each band. The over-all transmissivity and absorptivity of a window for solar radiation is the average of the values appropriate for the KL of each band, weighted in accordance with the energy content in each wavelength band.

The solar spectrum can be divided into ten bands, each of which contains 10 per cent of the energy in the total solar spectrum. The boundary wavelengths of these bands are: 0.30, 0.46, 0.52, 0.58, 0.65, 0.72, 0.80, 0.90, 1.05, 1.27 and 3.00 microns. These values by integrating the data contained in were obtained/from Table 815 of the Smithsonian Physical Tables, 1954, "Solar Irradiation at Sea Level with Surface Perpendicular to Sun's Rays, m = 2." Thus if the transmissivity and absorptivity of glass are known at these wavelength bands the simple average of the 10 values gives the value that is appropriate for solar radiation.

The information that is generally available for window glasses is a curve of transmissivity for monochromatic radiation at normal incidence. In addition the refractive index of the glass is usually known. (The variation of n with wavelength is small for wavelengths between 0.3 and 3.00 microns.) Values of transmissivity for normal incidence and corresponding values of KL can be extracted from Tables I and II. These data and the transmissivity curve for the glass indicate the wavelengths that correspond to the tabulated KL values. Table I or II can then be used to indicate the transmissivity and absorptivity

- 9 -

of a window for any angle of incidence. These results can be used to construct a graph of absorptivity and transmissivity versus wavelength. Values of the absorptivity and transmissivity can then be read from this graph for the ten 10 per cent bands of the solar spectrum, and the average of these is the value for the window that is appropriate for solar radiation.

This procedure is illustrated by the following sample problem: Problem II:

Find the over-all absorptivity (A_s) and transmissivity (T_s) of a single pane of heat absorbing glass for direct solar radiation at an incident angle of 70 degrees. The glass has an index of refraction n = 1.52 and a transmissivity for monochromatic light at normal incidence as given in Fig. 1.

Solution:

The transmissivity data (Fig. 1) and Table I indicate that the glass has the tabulated values of KL at the following values of wavelength:

	From Table I	From Fig. 1				
KL	$T (\Theta = 0^{\circ})$	$T (\theta = 0^{\circ})$	Wavelength micron			
0.40	0.6150	0.615	0.40, 0.59			
0.60	0,5034	0.503	0 .33, 0.87			
0.80	0.4120	0.412	1,08			
1.00	0.3373	0.337	1.35			
1.50	0.2046	0.205	2. 20			

	The transmissivity and	absorptivity for	these wavelengths
and 0 = 70	degrees are (from Table	e I)	
Wavelengt	h KL	A	т

0.33,	0.87	0.60	0.4765	0 .3 282
	1.08	0.80	0.5592	0.2537
	1.35	1.00	0.6214	0.1964
	2.20	1.50	0.7193	0.1038

0.40

0.3653

0.4254

A graphical interpolation of these values gives the following results for the ten solar bands:

Sola	ar e	energy band	А	T
0.30	-	0.46 micron	0,363	0,382
0.46	20	0.52 micron	0,353	0.498
0.52	-	0.58 micron	0.360	0.435
0,58	-	0.65 micron	0.376	0,415
0.65	-	0.72 micron	0,396	0 .3 96
0.72	-	0.80 micron	0.427	0 .3 68
0.80	-	0.90 micron	0.465	0,335
0.90	-	1.05 micron	0.510	0.290
1.05	~	1.27 micron	0.572	0.233
1,27	-	3.00 micron	0.705	0.115
			$A_{s} = 0.453$	$T_{s} = 0.347$

These are the values for this window that are appropriate for solar radiation.

()

micron

0.40, 0.59

For a double window it is only necessary to obtain the values appropriate for solar radiation for each pane and each polarization component separately in the manner indicated in example problems I and II and then to combine parallel and perpendicular components.

- 13 -TABLE 1

SINGLE GLAZED WINDOW n=1.52

KI.=.05 6	A	Τ⊥	A _{ii}	т _и	А	Т
00.	.0487	.8734	.0487	.8734	.0487	.8734
10.	.0490	.8698	.0490	.8759	.0490	.8728
20.	.0499	.8590	.0499	.8842	.0499	.8716
30.	.0514	.8384	.0515	.8982	.0514	.8683
40.	.0534	.8031	.0536	.9172	.0535	.8601
45.	.0546	.7772	.0549	.9275	.0547	.8524
50.	.0558	.7439	.0562	.9366	.0560	.8403
55.	.0571	.7011	.0576	.9418	.0573	.8215
60.	.0582	.6463	.0590	.9381	.0586	.7922
65.	.0593	.5768	.0603	.9168	.0598	.7468
70.	.0600	. 4900	.0614	.8635	.0607	.6767
72.	.0601	. 4501	.0618	.8287	.0610	.6394
74.	.0601	. 4072	.0621	.7839	.0611	.5956
76.	.0600	. 3612	.0623	.7277	.0612	.5444
78.	.0596	. 3123	.0624	.6585	.0610	.4854
80.	.0590	.2608	.0623	.5754	.0606	.4181
82.	.0578	.2069	.0619	.4779	.0599	.3424
84.	.0558	.1512	.0611	.3667	.0584	.2590
86.	.0520	.0946	.0591	.2436	.0556	.1691
88.	.0429	.0392	.0536	.1127	.0483	.0760
KL=.10						
00.	.0948	.8307	.0948	.8307	.0948	.8307
10.	.0953	.8270	.0954	.8328	.0954	.8299
20.	.0970	.8159	.0972	.8399	.0971	.8279
30.	.0998	.7949	.1002	.8518	.1000	.8234
40.	.1035	.7595	.1043	.8680	.1039	.8137
45.	.1056	.7339	.1067	.8766	.1061	.8052
50.	.1077	.7012	.1093	.8839	.1085	.7925
55.	.1098	.6593	.1119	.8876	.1109	.7734
60.	.1117	.6060	.1145	.8828	.1131	.7444
65.	.1130	.5387	.1169	.8615	.1150	.7001
70.	.1134	.4549	.1188	.8101	.1161	.6325
72.	.1131	.4164	.1193	.7769	.1162	.5967
74.	.1125	.3749	.1197	.7343	.1161	.5546
76.	.1114	.3306	.1197	.6808	.1156	.5057
78.	.1097	.2835	.1194	.6149	.1146	.4493
80.	.1071	.2344	.1185	.5355	.1128	.3847
82.	.1031	.1825	.1167	.4421	.1099	.3123
84.	.0966	.1298	.1134	.3354	.1050	.2326
86.	.0856	.0773	.1067	.2174	.0961	.1474
88.	.0634	.0289	.0900	.0939	.0767	.0614

KL=.15 θ	А _г	TL	А _П	T ₁₁	А	Т
00.	.1384	.7900	.1384	.7900	.1384	.7900
10.	.1392	.7863	.1393	.7918	.1393	.7890
20.	.1416	.7749	.1419	.7978	.1418	.7863
30.	.1455	.7537	.1463	.8079	.1459	.7808
40.	.1505	.7183	.1522	.8214	.1513	.7698
45.	.1533	.6930	.1556	.8284	.1545	.7607
50.	.1560	.6609	.1593	.8342	.1577	.7476
55.	.1587	.6201	.1631	.8364	.1609	.7283
60.	.1608	.5685	.1668	.8307	.1638	.6996
65.	.1619	.5035	.1700	.8094	.1659	.6565
70.	.1612	.4229	.1724	.7601	.1668	.5915
72.	.1602	.3858	.1729	.7285	.1665	.5571
74.	.1585	.3461	.1730	.6879	.1658	.5170
76.	.1560	.3036	.1726	.6370	.1643	.4703
78.	.1523	.2586	.1715	.5743	.1619	.4165
80.	.1470	.2114	.1694	. 4987	.1582	.3531
82.	.1393	.1626	.1655	. 4097	.1524	.2861
84.	.1276	.1132	.1587	. 3078	.1432	.2105
86.	.1090	.0652	.1457	. 1955	.1273	.1303
88.	.0754	.0227	.1161	. 0801	.0958	.0514
KL=.20						
00.	.1798	.7514	.1798	.7514	.1798	.7514
10.	.1808	.7476	.1809	.7528	.1809	.7502
20.	.1838	.7360	.1843	.7578	.1840	.7469
30.	.1885	.7146	.1898	.7672	.1892	.7404
40.	.1946	.6794	.1974	.7773	.1960	.7283
45.	.1979	.6545	.2018	.7829	.1999	.7187
50.	.2011	.6231	.2065	.7873	.2038	.7052
55.	.2040	.5834	.2113	.7882	.2076	.6858
60.	.2060	.5335	.2159	.7817	.2109	.6576
65.	.2064	.4709	.2199	.7606	.2131	.6157
70.	.2042	.3935	.2224	.7131	.2133	.5532
72.	.2021	.3581	.2228	.6830	.2124	.5206
74.	.1991	.3201	.2225	.6445	.2108	.4823
76.	.1948	.2796	.2215	.5962	.2083	.4379
78.	.1888	.2367	.2193	.5367	.2041	.3867
80.	.1806	.1920	.2155	.4648	.1980	.3284
82.	.1689	.1461	.2091	.3801	.1890	.2631
84.	.1520	.1000	.1981	.2832	.1751	.1916
86.	.1262	.0561	.1783	.1769	.1522	.1165
88.	.0833	.0177	.1359	.0696	.1096	.0442

.

KL=.30						
θ	AL	$^{\mathrm{T}}$ L	A II	т _п	А	T
00.	.2562	.6798	.2562	.6798	.2562	.6798
10.	.2575	.6758	.2578	.6806	.2577	.6782
20.	.2613	.6640	.2634	.6838	.2619	.6739
30.	.2674	.6425	.2701	.6891	.2687	.6658
40.	.2749	.6079	.2806	.6960	.2777	.6520
45.	.2788	.5839	.2866	.6993	.2827	.6416
50.	.2823	.5540	.2931	.7012	.2877	.6276
55.	.2850	.5167	.2995	.7000	.2923	.6083
60.	.2861	.4702	.3056	.6921	.2959	.5812
65.	.2843	.4126	.3105	.6715	.2974	.5420
70.	.2779	.3419	.3129	.6278	.2954	.4849
72.	.2733	.3097	.3126	.6006	.2930	.4551
74.	.2672	.2752	.3113	.5659	.2892	.4206
76.	.2590	.2387	.3085	.5225	.2837	.3806
78.	.2481	.2003	.3036	.4690	.2759	.3346
80.	.2337	.1604	.2958	.4045	.2648	.2825
82.	.2143	.1200	.2834	.3284	.2488	.2242
84.	.1876	.0802	.2634	.2414	.2255	.1608
86.	.1497	.0434	.2292	.1469	.1895	.0952
88.	.0929	.0137	.1636	.0546	.1282	.0341
KI.=. 40						
00.	.3249	.6150	.3249	.6150	.3249	.6150
10.	.3264	.6110	.3268	.6153	.3266	.6132
20.	.3308	.5991	.3325	.6170	.3317	.6081
30.	.3377	.5778	.3420	.6198	.3398	.5988
40.	.3459	.5440	.3548	.6233	.3504	.5837
45.	.3499	.5210	.3623	.6246	.3561	.5728
50.	.3532	.4927	.3701	.6246	.3616	.5587
55.	.3551	.4578	.3779	.6217	.3665	.5398
60.	.3545	.4149	.3851	.6129	.3698	.5139
65.	.3499	.3621	.3904	.5929	.3702	.4775
70.	.3386	.2980	.3920	.5528	.3653	.4254
72.	.3313	.2689	.3908	.5281	.3610	.3985
74.	.3218	.2379	.3880	.4970	.3549	.3675
76.	.3096	.2052	.3830	.4581	.3463	.3317
78.	.2939	.1710	.3751	.4103	.3345	.2907
80.	.2736	.1358	.3628	.3526	.3182	.2442
82.	.2472	.1004	.3440	.2846	.2956	.1925
84.	.2123	.0660	.3147	.2072	.2635	.1366
86.	.1650	.0349	.2670	.1238	.2160	.0793
88.	.0985	.0106	.1819	.0443	.1402	.0274

- 15 -

		-	16 -			
KI=.60 e	L ^A	LLL	A II	T_{11}	Λ	'T
00.	.4423	.5034	. 4423	.5034	.4423	.5034
10.	.4440	.4994	. 4448	.5030	.4444	.5012
20.	.4489	.4878	. 4521	.5024	.4505	.4951
30.	.4562	.4672	. 4641	.5015	.4602	.4844
40.	.4642	.4359	. 4805	.4999	.4724	.4679
45.	.4675	. 41 51	.4899	.4983	. 4787	.4567
50.	.4694	. 3901	.4997	.4955	. 4845	.4428
55.	.4687	. 3600	.5093	.4903	. 4890	.4251
60.	.4639	. 3237	.5176	.4805	. 4908	.4021
65.	.4527	. 2800	.5229	.4622	. 4878	.3711
70.	.4312	.2278	.5217	.4285	.4765	.3282
72.	.4185	.2045	.5182	.4085	.4684	.3065
74.	.4028	.1798	.5121	.3835	.4574	.2816
76.	.3832	.1539	.5024	.3525	.4428	.2532
78.	.3590	.1270	.4879	.3146	.4234	.2208
80.	.3288	.0997	.4666	.2691	.3977	.1844
82.	.2912	.0726	.4355	.2155	.3634	.1440
84.	.2438	.0468	.3893	.1548	.3166	.1008
86.	.1834	.0241	.3187	.0903	.2511	.0572
86.	.1048	.0071	.2045	.0308	.1537	.0189
KI.=.80						
00.	.5375	.4120	.5375	. 4120	.5375	.4120
10.	.5392	.4083	.5403	. 4112	.5397	.4097
20.	.5439	.3971	.5486	. 4091	.5463	.4031
30.	.5508	.3779	.5624	. 4057	.5566	.3918
40.	.5573	.3493	.5809	. 4009	.5691	.3751
45.	.5592	.3309	.5916	.3975	.5754	.3642
50.	.5589	.3091	.6025	.3931	.5807	.3511
55.	.5551	.2834	.6129	.3867	.5840	.3350
60.	.5457	.2530	.6215	.3767	.5836	.3149
65.	.5279	.2172	.6258	.3603	.5768	.2887
70.	. 4971	.1752	.6213	.3322	.5592	.2537
72.	. 4797	.1566	.6154	.3160	.5475	.2363
74.	. 4586	.1371	.6059	.2961	.5322	.2166
76.	. 4330	.1167	.5916	.2715	.5123	.1941
78.	. 4020	.0958	.5710	.2417	.4865	.1688
80.	.3644	.0747	.5416	.2060	.4530	.1403
82.	.3186	.0539	.4998	.1641	.4092	.1090
84.	.2626	.0344	.4396	.1169	.3511	.0757
86.	.1938	.0175	.3516	.0673	.2727	.0424
88.	.1081	.0050	.2175	.0224	.1628	.0137

- 16 -

KL=1.00 θ T, L A \mathbf{T}_{\perp} T_{H} А An 00. .3373 .6148 .3373 .6148 .3373 .6148 10. .6163 .3338 .3362 .6171 .3350 .6178 20. .6206 .3234 .6267 .3332 .6237 .3283 30. .6264 .3057 .6415 .3283 .6339 .3170 40. .6308 .2801 .3215 .6460 .3008 .6613 45. .6310 .3172 .2638 .6725 .2905 .6517 50. .2450 .6840 .2784 .6283 .3119 .6561 55. .6213 .2232 .3050 .6947 .6580 .2641 60. .6075 .1980 .7030 .2954 .6552 .2467 65. .5837 .1688 .7059 .2808 .6448 .2248 70. .5449 .1352 .2576 .6214 .1964 .6979 72. .5237 .1204 .2445 .1825 .6897 .6067 74. .4983 .1051 .6771 .2286 .5877 .1669 76. .4679 .0892 .2093 .5633 .1492 .6588 78. .1294 .4317 .0729 .6328 .1859 .5323 80. .3885 .0565 .1580 .4925 .1073 .5965 82. .5459 .3368 .0406 .1255 .4413 .0830 64. .2748 .0257 :3748 .4748 .0890 .0573 86. .2003 .0130 .3737 .0508 .2870 .0319 88. .1101 .0037 ,2258 .0167 .1679 .0102 KL=1.50 00. .7509 .2046 .2046 .2046 .7509 .7509 10. .2018 .2025 .7518 .7540 .2032 .7529 20. .7542 .1936 .1994 .7632 .7587 .1965 .1867 30. .7564 .1800 .7784 .1933 .7674 40. .7547 .1612 .7987 .1852 .1732 .7767 45. .7505 .1499 .8100 .1803 .7802 .1651 50. .7818 .7423 .1372 .8212 .1748 .1560 55. .1231 .7282 .8312 .1685 .7798 .1458 60. .7055 .1075 .8377 .1608 .7716 .1342 65. .6704 .0903 .8367 .1507 .1205 .7536 70. .0712 .1038 .6173 .8213 .1364 .7193 72. .5894 .0630 .1288 .8084 .6989 .0959 74. .5568 .0547 .1199 .7899 .6733 .0873 76. .5186 .0461 .1092 .7640 .6413 .0777 78. .4741 ,0375 .7284 .0966 .6013 .0670 80. .4222 .0289 .6801 .0817 .5512 .0553 82. .3617 .0206 .6146 .0646 .4882 .0426 84. .2911 .0130 .5257 .0455 .4084 .0292 86. .2088 .4044 ...3066 .0065 .0258 .0161

88.

.1126

.0018

.2366

.0083

.1746r

,0051

- 18 -

			10 -			
KL=2.00 0	AL	T	A _{II}	T	А	Т
CO.	.8327	.1241	.8327	.1241	.8327	.1241
10.	.8329	.1220	.8355	.1228	.8342	.1224
20.	.8333	.1159	.8443	.1194	.8388	.1176
30.	.8318	.1060	.8586	.1139	.8452	.1099
40.	.8248	.0928	.8776	.1067	.8512	.0997
45.	.8170	.0852	.8880	.1025	.8525	.0938
50.	.8046	.0769	.8981	.0980	.8514	.0875
55.	.7855	.0680	.9066	.0931	.8460	.0805
60.	.7568	.0585	.9110	.0875	.8339	.0730
65.	.7146	.0484	.9068	.0808	.8107	.0646
70.	.6532	.0376	.8861	.0722	.7697	.0549
72.	.6216	.0332	.8702	.0679	.7459	.0505
74.	.5850	.0286	.8480	.0629	.7165	.0457
76.	.5428	.0240	.8176	.0570	.6802	.0405
78.	.4940	.0194	.7765	.0503	.6353	.0348
60.	.4378	.0149	.7214	.0424	.5796	.0286
82.	.3730	.0106	.6479	.0334	.5105	.0220
84.	.2983	.0066	.5497	.0234	.4240	.0150
86.	.2125	.0033	.4184	.0132	.3155	.0083
86.	.1137	.0009	.2413	.0043	.1775	.0026
DIFFUSE	RADIATION			-		
KL	${}^{A}{}_{\bot}$	$^{\mathrm{T}}$	A ₁₁	T _{II}	А	T
.05	.0534	.6626	.0546	.8193	.0540	.7409
.10	.1014	.6244	.1052	.7732	.1033	.6988
.15	.1452	.5888	.1523	.7300	.1487	.6594
.20	.1854	.5556	.1962	.6895	.1908	.6225
.30	.2570	.4956	.2760	.6151	.2665	.5553
.40	.3188	.4426	.3461	.5491	.3324	.4958
.60	.4196	.3538	.4628	.4381	.4412	.3959
.80	.4973	.2835	.5545	.3498	.5259	.3166
1.00	.5578	.2274	.6269	.2795	.5924	.2535
1.50	.6589	.1315	.7489	.1600	.7039	.1458
2.00	.7157	.0763	.8179	.0918	. 7668	.0840

TABLE 2

SINGLE	GLAZED	WINDOW
n=	1.62	

КL=.05 Ө	AL	$^{\mathrm{T}}$ L		A 11	T _{II}	A	T
00. 10. 20. 30. 40.	.0486 .0489 .0497 .0510 .0527	.8501 .8459 .8334 .8097 .7699		.0486 .0489 .0497 .0511 .0529	.8501 .8532 .8635 .8811 .9053	.0486 .0489 .0497 .0510 .0528	.8501 .8496 .8495 .8454 .8376
45. 50. 55. 60. 65.	.0537 .0546 .0556 .0565 .0573	.7415 .7055 .6603 .6037 .5340	ŗ	.0540 .0551 .0563 .0574 .0585	.9189 .9317 .9411 .9417 .9246	.0538 .0549 .0560 .0570 .0579	.8302 .8186 .8007 .7727 .7293
70. 72. 74. 76. 78.	.0577 .0577 .0577 .0574 .0570	.4494 .4112 .3705 .3274 .2821		.0594 .0597 .0599 .0600 .0601	.8747 .8409 .7968 .7408 .6714	.0585 .0587 .0588 .0587 .0585	.6620 .6260 .5837 .5341 .4767
80. 82. 84. 86. 88.	.0562 .0550 .0530 .0491 .0402	.2346 .1854 .1349 .0839 .0345		.0599 .0596 .0588 .0570 .0520	.5875 .4887 .3756 .2502 .1163	.0581 .0573 .0559 .0530 .0461	.4111 .3371 .2553 .1671 .0754
KL=.10							
00. 10. 20. 30. 40.	.0946 .0951 .0966 .0989 .1020	.8084 .8042 .7915 .7678 .7284		.0946 .0952 .0968 .0994 .1030	.8084 .8112 .8203 .8359 .8573	.0946 .0951 .0967 .0992 .1025	.8084 .8077 .8059 .8018 .7928
45. 50. 55. 60. 65.	.1037 .1054 .1069 .1082 .1090	.7004 .6653 .6212 .5663 .4988		.1050 .1072 .1094 .1116 .1135	.8692 .8804 .8881 .8876 .8705	.1044 .1063 .1082 .1099 .1113	.7848 .7728 .7546 .7270 .6846
70. 72. 74. 76. 78.	.1088 .1084 .1075 .1063 .1044	.4169 .3800 .3407 .2991 .2554		.1150 .1154 .1156 .1156 .1152	.8225 .7903 .7483 .6950 .6288	.1119 .1119 .1116 .1109 .1098	.6197 .5851 .5445 .4970 .4421
80. 82. 84. 86. 88.	.1016 .0975 .0910 .0801 .0587	.2098 .1628 .1151 .0681 .0251		.1143 .1127 .1096 .1034 .0879	.5485 .4538 .3451 .2245 .0977	.1080 .1051 .1003 .0917 .0733	.3792 .3083 .2301 .1463 .0614

- 19 -

لا⊥⊶.15 €	AL	Τ⊥	A tt	T _{II} .	A	Т
00.	.1382	.7688	.1382	.7688	.1382	.7688
10.	.1388	.7645	.1389	.7712	.1389	.7679
20.	.1409	.7518	.1413	.7793	.1411	.7655
30.	.1441	.7281	.1451	.7930	.1446	.7605
40.	.1482	.6891	.1502	.8118	.1492	.7505
45.	.1504	.6618	.1532	.8222	.1518	.7420
50.	.1525	.6274	.1563	.8318	.1544	.7296
55.	.1543	.5846	.1595	.8381	.1569	.7114
60.	.1556	.5315	.1626	.8367	.1591	.6841
65.	.1559	.4663	.1653	.8195	.1606	.6429
70.	.1544	.3875	.1671	.7735	.1607	.5805
72.	.1530	.3520	.1674	.7428	.1602	.5474
74.	.1511	.3142	.1674	.7028	.1592	.5085
76.	.1483	.2743	.1670	.6521	.1576	.4632
78.	.1444	.2324	.1659	.5890	.1551	.4107
80.	.1389	.1890	.1638	.5125	.1514	.3508
82.	.1311	.1446	.1602	.4220	.1457	.2833
84.	.1196	.1000	.1539	.3180	.1367	.2090
86.	.1014	.0571	.1419	.2029	.1216	.1300
88.	.0694	.0197	.1141	.0840	.0918	.0518
KI.=.20						
00.	.1793	.7311	.1793	.7311	.1793	.7311
10.	.1802	.7269	.1803	.7332	.1803	.7300
20.	.1827	.7141	.1833	.7403	.1830	.7272
30.	.1866	.6905	.1883	.7523	.1874	.7214
40.	.1915	.6521	.1949	.7688	.1932	.7104
45.	.1940	.6253	.1987	.7778	.1964	.7015
50.	.1963	.5919	.2027	.7859	.1995	.6889
55.	.1982	.5504	.2068	.7909	.2025	.6707
60.	.1991	.4991	.2107	.7886	.2049	.6439
65.	.1985	.4363	.2139	.7716	.2062	.6039
70.	.1951	.3606	.2159	.7274	.2055	.5440
72.	.1927	.3266	.2161	.6981	.2044	.5124
74.	.1893	.2905	.2157	.6602	.2025	.4753
76.	.1847	.2524	.2146	.6119	.1997	.4322
78.	.1785	.2125	.2125	.5520	.1955	.3823
80.	.1701	.1714	.2089	.4792	.1895	.3253
82.	.1584	.1295	.2029	.3929	.1807	.2612
84.	.1418	.0881	.1928	.2937	.1673	.1909
86.	.1169	.0490	.1742	.1844	.1456	.1167
88.	.0763	.0161	.1341	.0734	.1052	.0447

- 20 -

KI = -30

KL=.30						
θ	AL	$^{\mathrm{T}}$ L	Α _{II}	T _{II}	А	Т
· CO.	.2553	.6613	.2553	.6613	.2553	:6613
10.	.2563	.6570	.2567	.6628	.2565	.6599
20.	.2595	.6443	.2608	.6681	.2602	·.6562
30.	.2644	.6211	.2677	.6771		
40.	.2702				.2660	.6491
-0 <i>-</i>	• 4 102	.5840	.2770	.6894	.2736	.6367
45.	.2729	.5585	.2823	.6959	.2776	.6272
50.	.2752	.5270	.2879	.7016	.2816	.6143
55.	.2764	.4882	.2935	.7044	.2850	. 5963
60.	.2760	.4406	.2987	.7006	.2873	.5706
65.	.2727	.3828	.3028	.6839	.2877	.5333
70.	.2648	.3136	.3045	.6432	.2846	.4784
72.	.2597	.2826	.3041	.6168	.2819	.4497
74.	.2531	.2498	.3027	.5825	.2779	.4162
76.	.2445	.2154	.2999	.5391	.2722	.3772
78.	.2334	.1796	.2953	.4852	.2644	.3324
		. 150	• 2 9 5 5	. 1002	• 2044	• 00Z-r
80.	.2190	.1430	.2879	.4195	.2535	.2812
82.	.1999	.1062	.2763	.3416	.2381	.2239
84.	.1741	.0704	.2576	.2521	.2158	.1613
86.	.1379	.0377	.2254	.1543	.1816	.0960
88.	.0847	.0117	.1625	.0580	.1236	.0349
KL=.40						
00.	.3234	.5982	.3234	.5982	.3234	.5982
10.	.3246	.5940	.3251	.5992	.3248	.5966
20.	.3281	.5814	. 3303	.6030	.3292	.5922
30.	.3335	.5588	.3388	.6095	.3362	.5841
40.	.3395	.5232	.3504	.6182	.3449	.5707
45.	2421	4000	2570	000 7		5000
	.3421	.4990	.3570	.6227	.3495	.5609
50.	.3438	.4694	.3639	.6263	.3538	.5479
55.	.3439	.4334	.3708	.6273	.3573	.5303
60.	.3414	.3895	.3769	.6225	.3592	.5060
65.	.3349	.3366	.3814	.6062	.3581	.4714
70.	.3218	.2737	.3824	.5689	.3521	.4213
72.	.3139	.2457	.3811	.5449	.3475	.3953
74.	.3039	.2162	.3783	.5141	.3411	.3652
76.	.2913	.1853	.3735	. 4752	.3324	.3302
78.						
10.	.2755	.1534	.3660	.4267	.3208	.2901
80.	.2554	.1210	.3544	•3678 [.]	.3049	.2444
82.	.2297	.0887	. 3367	.2979	.2832	.1933
84.	.1962	.0579	.3091	.2178	. 2526	.1379
86.	.1514	.0303	.2638	.1305	.2076	.0806
88.	.0896	.0091	.1816	.0473	.1 356	.0282

		-	22 -			
KI=.60 0	AL	$^{\mathrm{T}}$ L	A _{II}	T _{II}	А	T
00.	. 4394	4895	. 4394	. 4895	.4394	. 4895
10.	. 4407	4855	. 4417	. 4898	.4412	. 4877
20.	. 4445	4735	. 4484	. 4913	.4465	. 4824
30.	. 4498	4524	. 4596	. 4938	.4547	. 4731
40.	. 4549	4201	. 4746	. 4971	.4647	. 4586
45.	.4562	.3987	. 4832	.4986	.4697	.4487
50.	.4560	.3730	. 4921	.4992	.4740	.4361
55.	.4529	.3422	. 5007	.4975	.4768	.4198
60.	.4457	.3053	. 5081	.4913	.4769	.3983
65.	.4319	.2616	. 5126	.4762	.4723	.3669
70.	.4083	.2103	.5112	.4450	·. 4597	.3276
72.	.3950	.1877	.5077	.4255	. 451 4	.3066
74.	.3788	.1641	.5018	.4007	. 4403	.2824
76.	.3590	.1395	.4926	.3694	. 4258	.2545
78.	.3350	.1144	.4789	.3308	. 4069	.2226
80.	.3055	.0891	. 4588	.2838	.3821	.1864
82.	.2692	.0643	. 4291	.2282	.3492	.1462
84.	.2242	.0411	. 3850	.1646	.3046	.1029
86.	.1675	.0210	. 3170	.0966	.2422	.0588
88.	.0950	.0061	. 2052	.0333	.1501	.0197
KL=.80						
00.	.5333	.4007	.5333	. 4007	.5333	.4007
10.	.5345	.3969	.5358	. 4005	.5351	.3987
20.	.5379	.3857	.5437	. 4003	.5408	.3930
30.	.5423	.3664	.5566	. 4001	.5495	.3833
40.	.5454	.3375	.5740	. 3998	.5597	.3687
45.	.5450	.3188	.5839	.3992	.5645	.3590
50.	.5422	.2967	.5941	.3978	.5681	.3472
55.	.5356	.2706	.6038	.3946	.5697	.3326
60.	.5234	.2400	.6117	.3878	.5675	.3139
65.	.5027	.2041	.6155	.3742	.5592	.2891
70.	.4697	.1627	.6110	.3481	.5403	.2554
72.	.4517	.1447	.6053	.3323	.5285	.2385
74.	.4302	.1259	.5962	.3124	.5132	.2191
76.	.4046	.1065	.5827	.2875	.4936	.1970
78.	.3741	.0868	.5630	.2568	.4865	.1718***
80.	.3375	.0671	.5349	.2196	.4362	.1434
82.	.2937	.0480	.4948	.1757	.3943	.1119
84.	.2409	.0304	.4369	.1258	.3389	.0781
86.	.1767	.0153	.3513	.0728	.2640	.0440
88.	.0979	.0043	.2191	.0245	.1585	.0144

KL=1.00 θ T_{\perp} Т AL Α_{II} Τ_{II} А 00. .6093 .3280 .3280 .3280 .6093 .6093 10. .6103 .3245 .3260 .6121 .3274 .6112 20. .6131 .3143 .3262 .6169 .3202 .6206 30. .2968 .3105 .6162 .6254 .6347 .3242 40. .6168 .2713 .6536 .3215 .6352 .2964 .2550 45. .6144 .6643 .3197 .6394 .2874 50. .2361 .2766 .6090 .3171 .6753 .6421 55. .2124 .2636 .5990 .3130 .6855 .6422 60. .5821 .1889 .6934 .3061 .6378 .2475 65. .5553 .1597 .6962 .2940 .6257 .2268 70. .5142 .1265 .6014 .1994 .6886 .2723 72. .4924 .1121 .6808 .2595 .5866 .1858 74. .0972 .1704 .4667 .6667 .2436 .5677 .1529 76. .4365 .0820 .6512 .2238 .5439 78. .4010 .0665 .6264 .1995 .5137 1330 80. .0512 .3592 .5915 .4754 .1107 .1703 82. .3099 .0365 .5426 .1358 .4263 .0861 84. .2516 .0229 .4737 .0968 .3626 .0598 86. .1824 .3746 .0114 .0555 .2785 .0335 88. .0996 .0032 .2279 .0184 .1638 .0108 KI_=1.50 .1989 00. .7427 .7427 .1989 .1989 .7427 10. .7430 .1962 .1980 .7456 .7443 .1971 20. .7437 .1884 .7548 .1955 .7493 .1920 30. .1754 .7430 .7700 .1917 .7565 .1835 40. .7370 .1572 .7902 .1865 .1719 .7636 45. .7301 .1462 .8016 .1834 .7659 .1648 50. .7189 .1337 .7660 .1567 .8130 .1798 55. .7015 .1198 .8232 .1753 .1476 .7624 60. .6754 .1042 .8301 .1694 .7528 .1368 65. .6372 .0870 .8299 .1608 .7335 .1239 70. .5818 .0680 .8156 .1474 .6987 .1077 .5535 72. .0599 .8033 .1399 .0999 .6784 74. .5208 .0517 .7856 .1308 .6532 .0913 78. .4831 .0433 .7606 .1198 .6219 .0816 .0350 78. .4397 .7262 .1064 .5830 .0707 80. .3898 .0268 .0586 .6792 .0905 .5345 82. .3323 .0189 .0718 .6152 .0454 .4737 84. .2661 .0118 .5278 .0509 .0313 .3970 86. .1898 .0058 .4075 .0289 .2987 .0174 83. .1018 .0016

.2397

.0094

.1704

.0055

KL=2.00							
0	AL	$^{\mathrm{T}}$ L	A II	Τ _{II}	А	Т	
00.	.8225	.1206	.8225	.1206	.8225	.1206	
10.	.8221	.1186	.8254	.1197	.8238	.1192	
20.	.8209	.1129	.8344	.1172	.8276	.1152	
30.	.8165	.1037	.8493	.1133	.8329	.1085	
40.	.8052	.0912	.8691	.1082	.8371	.0997	
45.	.7947	.0838	.8801	.1052	.8374	.0945	
50.	•7792	.0758	.8910	.1019	.8351	.0889	
55.	.7568	.0671	.9004	.0982	.8286	.0826	
60.	.7247	.0576	.9058	.0938	.8152	.0757	
65.	.6793	.0475	.9029	.0880	.7911	.0678	
70.	.6157	.0367	.8838	.0798	.7497	.0583	
72.	.5837	.0322	.8686	.0755	.7262	.0539	
74.	.5472	.0277	.8473	.0703	.6972	.0490	
76.	.5055	.0231	.8178	.0642	.6617	.0436	
78.	.4581	.0186	•7777	.0568	.6179	.0377	
80.	. 4040	.0142	.7237	.0482	.5639	.0312	
82.	.3426	.0010	.6513	.0381	.4969	.0241	
84.	.2726	.0062	.5540	.0269	.4133	.0166	
86.	.1931	.0031	.4229	.0153	.3080	.0092	
88.	.1027	.0009	.2429	.0050	.1738	.0029	
DIFFUSE	RADIATION						
KL.	AL	T_{\perp}	A _{II}	т ₁₁	А	Т	
.05	.0522	.6323	.0536	.8126	.0529	.7225	
.10	.0990	.5959	.1033	.7676	.1012	.6818	
.15	.1417	.5622	.1497	.7254	.1457	.6438	
.20	.1808	.5308	1930	.6856	1869	.6082	
.30	.2503	.4738	.2717	.6128	.2610	• 5433	
.40	.3102	.4236	.3411	.5480	.3256	.4858	
.60	.4076	.3394	.4568	.4386	. 4322	.3890	
.80	.4826	.2727	.5480	.3514	.5154	.3120	
1.00	. 54 1 1	.2192	.6202	.2817	.5807	.2505	
1.50	.6388	.1277	.7424	.1623	.6906	.1 450	
2.00	.6939	.0744	.8119	.0938	.7529	.0842	

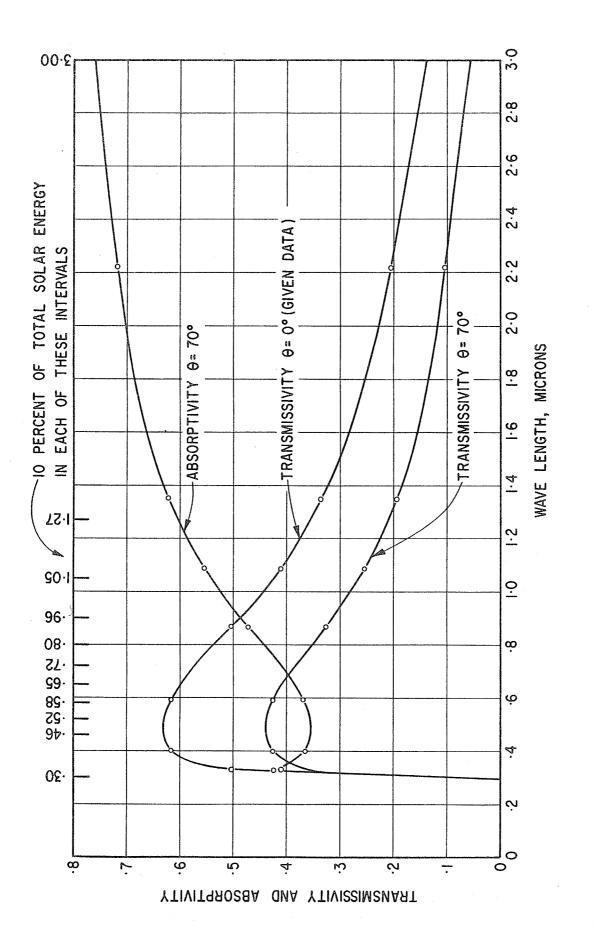
- 24 -

TABLE 3 - 25 -

DOUBLE GLAZED WINDOW

KL of Inside Pane = .05

КL=.05 Ө	A* l	n=1. A*2	52 T*		A* 1	n=1.62 A* 2	T*
00.	.0520	.0428	.7675		.0529	.0418	.7301
10.	.0523	.0430	.7666		.0532	.0419	.7293
20.	.0533	.0438	.7646		.0540	.0426	.7277
30.	.0550	.0450	.7602		.0555	.0437	.7242
40.	.0574	.0465	.7502		.0575	.0449	.7165
45.	.0589	.0473	.7411		.0588	.0456	.7094
50.	.0605	.0480	.7269		.0601	.0461	.6982
55.	.0625	.0484	.7046		.0617	.0465	.6799
60.	.0648	.0483	.6689		.0636	.0463	.6495
65.	.0676	.0474	.6122		.0658	.0454	.5987
70.	.0710	.0451	.5254		.0687	.0432	.5176
72.	.0725	.0437	.4808		.0700	.0419	.4748
74.	.0741	.0420	.4305		.0713	.0403	.4261
76.	.0756	.0400	.3751		.0726	.0383	.3720
78.	.0769	.0377	.3157		.0738	.0360	.3135
80.	.0779	.0349	.2538		.0746	.0334	.2524
82.	.0781	.0318	.1915		.0747	.0303	.1907
84.	.0770	.0280	.1308		.0736	.0267	.1305
86.	.0731.	.0231	.0742		.0697	.0220	.0744
88.	.0614	.0153	.0257		.0587	.0146	.0261
KL=.10							
00.	.1009	.0407	.7297		.1025	.0397	.6940
10.	.1016	.0409	.7286		.1030	.0399	.6930
20.	.1035	.0416	.7261		.1047	.0405	.6909
30.	.1066	.0426	.7206		.1074	.0414	.6866
40.	.1110	.0440	.7094		.1111	.0425	.6778
45.	.1137	.0446	.6997		.1133	.0431	.6702
50.	.1167	.0452	.6851		.1158	.0435	.6585
55.	.1202	.0455	.6627		.1185	.0437	.6401
60.	.1241	.0453	.6277		.1217	.0435	.6102
65.	.1288	.0443	.5730		.1253	.0425	.5611
70.	.1341	.0419	.4900		.1296	.0402	.4835
72.	.1364	.0405	.4474		.1315	.0389	.4427
74.	.1385	.0388	.3995		.1332	.0372	.3963
76.	.1403	.0368	.3467		.1346	.0352	.3447
78.	.1414	.0343	.2902		.1355	.0329	.2891
80.	.1414	.0316	.2314	· ·	.1353	.0302	.2310
82.	.1394	.0283	.1723		.1332	.0270	.1723
84.	.1377	.0243	.1152		.1277	.0232	.1156
86.	.1213	.0192	.0629		.1158	.0184	.0635
88.	.0927	.0116	.0199		.0888	.0112	.0205


КІ=.15 Ә	A ∛	n≕l.5 A∻ 2	52 T*		A* 1	n=1.62 A*: 2	Ţr*
00.	.1470	.0387	.6939		.1490	.0377	.6598
10.	.1479	.0389	.6926		.1498	.0379	.6586
20.	.1506	.0395	.6895		.1521	.0384	.6560
30.	.1549	.0404	.6832		.1559	.0392	.6509
40.	.1611	.0416	.6709		.1611	.0402	.6412
45.	.1648	.0422	.6608		.1641	.0407	.6332
50.	.1689	.0426	.6459		.1674	.0410	.6212
55.	.1735	.0428	.6236		.1710	.0412	.6028
60.	.1786	.0425	.5893		.1749	.0408	.5735
65.	.1844	.0414	.5366		.1793	.0398	.5262
70.	.1906	.0391	.4573		.1841	.0375	.4521
72.	.1930	.0377	.4168		.1859	.0361	.4133
74.	.1949	.0360	.3713		.1874	.0345	.3692
76.	.1963	.0339	.3212		.1883	.0325	.3202
78.	.1963	.0315	.2676		.1880	.0302	.2674
80.	.1943	.0287	.2120		.1859	.0275	.2123
82.	.1889	.0254	.1562		.1805	.0243	.1569
84.	.1777	.0215	.1027		.1697	.0205	.1036
86.	.1560	.0164	.0545		.1492	.0158	.0553
88.	.1121	.0093	.0163		.1077	.0091	.0168
Ki=.20							
00.	.1904	.0368	.6598		.1927	.0359	.6272
10.	.1915	.0369	.6584		.1937	.0360	.6259
20.	.1949	.0375	.6548		.1966	.0365	.6229
30.	.2003	.0383	.6476		.2014	.0372	.6172
40.	.2079	.0393	.6345		.2077	.0381	.6067
45.	.2124	.0398	.6240	·	.2114	.0384	.5983
50.	.2174	.0402	.6089		.2153	.0387	.5862
55.	.2228	.0403	.5868		.2194	.0387	.5678
60.	.2287	.0399	.5534		.2238	.0384	.5392
65.	.2351	.0388	.5027		.2284	.0373	.4937
70.	.2414	.0364	.4271		.2329	.0350	.4230
72.	.2434	.0350	.3887		.2344	.0337	.3862
74.	.2449	.0333	.3455		.2353	.0320	.3444
76.	.2452	.0314	.2981		.2351	.0301	.2980
78.	.2437	.0290	.2475		.2333	.0278	.2480
80.	.2391	.0262	.1949		.2287	.0252	.1959
82.	.2298	.0230	.1424		.2197	.0221	.1436
84.	.2127	.0192	.0924		.2034	.0184	.0936
86.	.1822	.0143	.0479		.1745	.0138	.0489
88.	.1253	.0078	.0137		.1208	.0076	.0143

		•	-0		1	
KI=.30 θ	A*	n=1.5 A* 2	72 T*	A¥ Î	n=1.62 A* 2	T^*
00.	.2699	.0332	.5967	.2725	.0324	.5670
10.	.2714	.0334	.5950	.2738	.0325	.5655
20.	.2758	.0338	.5905	.2777	.0329	.5618
30.	.2830	.0345	.5822	.2838	.0335	.5549
40.	.2928	.0352	.5877	.2919	.0341	.5433
45.	.2985	.0355	.5567	.2964	.0343	.5344
50.	.3046	.0357	.5414	.3011	.0345	.5221
55.	.3110	.0357	.5199	.3058	.0344	.5042
60.	.3176	.0352	.4884	.3103	.0339	.4771
65.	.3238	.0340	.4417	.3143	.0328	.4352
70.	.3286	.0314	.3733	.3169	.0306	.3712
72.	.3294	.0304	.3388	.3170	.0293	.3381
74.	.3290	.0288	.3002	.3159	.0278	.3006
76.	.3265	.0270	.2579	.3131	.0260	.2591
78.	.3210	.0247	.2127	.3075	.0238	.2145
80.	.3108	.0222	.1661	.2975	.0214	.1680
82.	.2934	.0192	.1199	.2809	.0185	.1217
84.	.2651	.0156	.0762	.2541	.0151	.0778
86.	.2192	.0113	.0383	.2107	.0110	.0394
88.	.1422	.0058	.0103	.1376	.0057	.0108
KL=.40	و					
00.	.3406	.0301	.5396	.3431	.0293	.5126
10.	.3423	.0302	.5377	.3447	.0294	.5109
20.	.3475	.0305	.5327	.3492	.0297	.5067
30.	.3560	.0309	.5234	.3564	.0301	.4991
40.	.3673	.0315	.5080	.3656	.0305	.4866
45.	.3737	.0317	.4967	.3706	.0307	.4775
50.	.3804	.0317	.4816	.3756	.0307	.4652
55.	.3872	.0316	.4609	.3802	.0305	.4479
60.	.3935	.0310	.4313	.3841	.0300	.4225
65.	.3986	.0299	.3885	.3867	.0289	.3841
70.	. 4006	.0277	.3269	.3864	.0268	.3264
72.	. 3996	.0265	.2960	.3846	.0256	.2967
74.	. 3966	.0251	.2616	.3811	.0242	.2632
76.	. 3909	.0233	.2240	.3752	.0226	.2262
78.	. 3811	.0213	.1839	.3654	.0206	.1865
80.	.3651	.0189	.1427	.3501	.0183	.1452
82.	.3403	.0162	.1020	.3264	.0157	.1042
84.	.3022	.0130	.0640	.2903	.0126	.0658
86.	.2438	.0092	.0314	.2350	.0090	.0326
88.	.1523	.0046	.0082	.1478	.0045	.0086

	KI=.60 0	A¥	n=l. ∧*	52 T*	A* 1	n=1.62	T*
	00.	.4597	.0246	.4415	.4614	.0240	.4192
	10.	.4618	.0247	. 4394	.4632	.0240	.4173
	20.	.4680	.0248	. 4335	.4685	.0242	.4124
	30.	. 4779	.0250	. 4231	.4768	.0243	.4039
	40.	.4906	.0252	. 4069	.4870	.0245	.3907
	45.	.4975	.0252	.3957	.4922	.0245	.3815
5	50.	.5043	.0251	. 3814	.4969	.0244	.3698
	55.	.5104	.0248	.3625	.5005	.0241	.3540
	60.	.5148	.0242	.3370	.5023	.0235	.3320
	65.	.5161	.0231	.3014	.5007	.0225	.3000
	70.	.5110	.0213	.2516	.4933	.0207	.2533
	72.	.5058	.0203	.2271	.4875	.0197	.2297
	74.	.4976	.0190	.1998	.4790	.0186	,2030
	76.	.4853	.0176	.1702	.4667	.0172	.1737
	78.	.4672	.0160	.1389	.4492	.0156	.1424
	80.	.4411	.0141	.1069	.4242	.0137	.1100
	82.	.4037	.0119	.0754	.3886	.0116	.0780
	84.	.3503	.0094	.0465	.3379	.0092	.0484
	86.	.2739	.0065	.0222	.2653	.0064	.0233
	88.	.1637	.0031	.0055	.1595	.0031	.0059
	KI=.80					•	
	00.	.5548	.0201	.3613	.5550	.0196	.3429
	10.	.5571	.0201	.3591	.5569	.0196	.3410
	20.	.5634	.0202	.3529	.5625	.0197	.3359
	30.	.5739	.0202	.3422	.5025	.0197	.3270
	40.	.5867	.0202	.3261	.5812	.0197	.3139
	40.	• 000 [,0202	. 5201	. JUIZ	.0151	.0105
	45.	.5933	.0201	.3154	.5859	.0196	.3051
3	50.	.5993	.0199	.3022	.5898	.0194	.2942
	53.	.6039	.0196	.2855	.5918	.0191	.2802
	60.	.6056	.0189	.2636	.5908	.0185	.2614
	65.	.6024	.0179	.2342	.5849	.0176	.2350
	70.	.5899	.0164	.1943	. 5704	.0161	.1973
	72.	.5806	.0156	.1748	.5606	.0153	.1784
	74.	.5676	.0146	.1534	.5475	.0143	.1574
	76.	.5495	.0134	.1302	.5297	.0132	.1342
	78.	.5245	.0121	.1058	.5056	.0119	.1096
	80.	.4902	.0106	.0810	.4728	.0105	.0842
		1100	.0089	.0566	.4280	.0088	.0594
	82.	.4432	• • • •				
	84.	.3789	.0070	.0346	.3668	.0069	.0364
				.0346 .0163	.3668 .2826	.0069 .0047	.0364 .0173

КІ_=1.00 Ә	A*	n=1.5 ^≫ 2	52 T**	A ×	n=1.62 A*2 2	ጥ *
00.	.6311	.0165	.2957	.6296	.0161	.2806
10.	.6333	.0165	.2935	.6315	.0160	.2787
20.	.6398	.0164	.2873	.6370	.0160	.2736
30.	.6499	.0164	.2768	.6453	.0160	.2649
40.	.6620	.0162	.2614	.6547	.0158	.2522
45.	.6679	.0160	.2515	.6588	.0157	.2441
50.	.6727	.0158	.2395	.6615	.0154	.2342
55.	.6754	.0154	.2249	.6618	.0151	.2220
60.	.6744	.0148	.2064	.6581	.0146	.2060
65.	.6668	.0140	.1823	.6480	.0138	.1842
70.	.6476	.0127	.1503	.6271	.0125	.1539
72.	.6347	.0120	.1349	.6140	.0119	.1390
74.	.6174	.0112	.1181	.5968	.0111	.1223
76.	.5945	.0103	.0999	.5744	.0102	.1041
78.	.5639	.0093	.0810	.5449	.0092	.0847
80.	.5232	.0081	.0617	.5060	.0080	.0649
82.	.4692	.0067	.0431	.4543	.0067	.0455
84.	.3972	.0052	.0261	.3855	.0052	.0278
86.	.3014	.0035	.0122	.2934	.0035	.0131
88.	.1732	.0016	.0029	.1693	.0017	.0032
KL=1.50		8				
00.	.7629	.0100	.1793	.7577	.0097	.1701
10.	.7648	.0100	.1774	.7593	.0097	.1684
20.	.7704	.0098	.1719	.7640	.0096	.1639
30.	.7787	.0096	.1629	.7706	.0094	.1565
40.	.7877	.0093	.1505	.7772	.0092	.1462
45.	.7912	.0091	.1429	.7791	.0090	.1399
50.	.7927	.0088	.1342	.7789	.0087	.1327
55.	.7910	.0085	.1241	.7751	.0084	.1242
60.	.7837	.0081	.1122	.7658	.0080	.1138
65.	.7671	.0075	.0976	.7474	.0075	.1005
70.	.7350	.0067	.0793	.7144	.0068	.0831
72.	.7156	.0063	.0708	.6951	.0064	.0747
74.	.6909	.0058	.0617	.6708	.0059	.0654
76.	.6595	.0053	.0520	.6402	.0054	.0555
78.	.6196	.0048	.0419	.6017	.0049	.0449
80.	.5688	.0041	.0317	.5526	.0042	.0343
82.	.5039	.0034	.0220	.4901	.0035	.0239
84.	.4208	.0026	.0132	.4100	.0027	.0145
86.	.3144	.0018	.0061	.3070	.0018	.0067
88.	.1773	.0008	.0015	.1737	.0008	.0016

KL=2 O	2.00 ^*	n=1. ∧* 2	52 T*	A*1	n=1.62 A* 2	′ ľ *
00. 10.	. 8407 . 8422	.0061 .0060	.1087	.8326 .8338		.1031 .1018
20.	.8465	.0080	.1029	.8374		.0983
30.	.8526	.0057	.0959	.8421	.0056	.0925
40.	.8581	.0054	.0866	.8457		.0848
45.	.8592	.0052	.0812	.8457	.0051	.0802
50.	.8580	.0050	.0752	.8430		.0752
55.	.8528	.0047	.0685	.8362		.0695
60.	.8409	.0044	.0610	.8229		.0629
65.	.8184	.0040	.0523	.7992		.0550
70.	.7785	.0035	.0420	.7588	.0036	.0449
72.	.7552	.0033	.0373	.7357		.0402
74.	.7263	.0031	.0323	.7073		.0351
76.	.6902	.0028	.0271	.6721	.0029	.0297
78.	.6453	.0025	.0218	.6284		.0240
80.	.5892	.0021	.0164	.5740	.0022	.0182
82.	. 51 90	.0018	.0114	.5060	.0019	.0127
84.	.4306	.0014	.0068	.4205	.0014	.0076
86.	.3196	.0009	.0031	.3125	.0009	.0035
58.	.1789	.0004	.0007	.1754		.0009
DIFF	USE RADIATION					
		n=1.5	52		n=1.62	
KL	A X I	A* 2	<u></u> ሞ *	A* 1	A* 2	T*
.05	.0607	.0426	.6231	.0601	.0411	.5988
.10	.1148	.0399	.5877	.1135		.5649
.15	.1637	.0374	.5546	.1618		.5333
. 20	.2084	.0352	.5236	.2060		.5037
. 30	.2874	.0312	.4672	.2839	.0302	.4499
	.3550	.0277	.4172	.3504	.0269	.4022
.60	. 4640	.0220	.3334	.4575	.0212	.3222
. 80	.5470	.0175	.2669	.5389	.0171	.2585
1.00		.0140	.2139	.6016	.0137	.2076
1.50	.7161	.0080	.1233	.7046	.0079	.1204
2.00	.7742	.0046	.0713	.7616	.0045	.0700
				н - страна - страна		

ABSORPTIVITY VERSUS WAVE LENGTH MONOCHROMATIC TRANSMISSIVITY & SINGLE PANE WINDOW FIGURE

BR. 2687

FOR