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THE CALCULATION OF SURFACE TEMPERATURE AND HEAT FLUX
FROM SUBSURFACE TEMPERATURE MEASUREMENTS
by
D. G. Stephenson and G. P. Mitalas*
SUMMARY
This paper presents an analogue and a numerical method of computing

surface temperature and heat flux from subsurface temperature data.
The basic equations used by both methods are:

r b ce ec e |
T TTax i?TAx + 1 Ax + ...
surface = 2T - T + 2 2! 41 6!
- 94 2AX _
Ssurface = k [ 3Tsurface } 4TAx * TZLSX;}
A X 5

where T = (Ax)2
o<

k, o< are thermal conductivity and diffusivity respectively. These
calculations differ from the usual finite difference heat conduction
calculations in that they require the data to be differentiated rather
than integrated. Methods are presented for differentiating data that
have been recorded in either analogue or numerical form. The advantages
of each method of recording the data are discussed. The errors inherent
in the calculation of surface conditions are discussed and illustrated
by examples.

The direct measurement of the temperature of a surface is difficult
in many cases for one or both of the following reasons:

1. A temperature sensing element attached to the surface may affect
the heat transfer processes and consequently change the surface
temperature.

* Building Services Section, Division of Building Research, National

Research Council, Ottawa, Canada.
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2. There may be some activity at the surface that would quickly damage
any thermometer.

For example, a thermocouple attached to the outside surface of a wall
may have a different absorptivity for solar radiation from that of
the wall surface; it will reach a temperature different from that of
the rest of the wall surface when solar radiation is a significant
term in the energy balance at the surface. A sensing element on a
surface can also alter the convection and long wave radiation at the
surface. The direct measurement of the surface temperature of an
asphalt pavement or a cultivated field would be difficult for the
second reason. Surface pyrometers avoid these difficulties but they
are unable to discriminate between emitted and reflected radiation.

Approximate numerical methods have been developed recently for cal-
culating the surface conditions from measured values at points below

the surface. Stolz (1) calls this the solution of an inverse problem

of heat conduction. Shumakov (2) has studied the same problem and
reported on it in the Russian literature. The present paper presents
another numerical method that has some advantages over those previously
reported, and an electronic analogue computer circuit that is particularly
useful when surface conditions change rapidly.

NUMERICAL METHODS OF CALCULATING SURFACE TEMPERATURE

The methods of Stolz and Shumakov are essentially the same: they

use the known relationship between a unit pulse variation of the
surface temperature and the resulting change in the temperature at

the depths where the temperatures are measured. The following derivat-
ion of a formula for Ty uses this approach, but is in the same termin-
ology as the rest of this paper rather than in that used by the original
authars.

Figure 1 shows the temperature response at the centre of a slab, of
thickness 2a x that results from the square pulse variation of the
temperature at the surfaces. The temperature Ty can be computed from
the measured temperatures at depths A x and 2Ax by the formula.

— +
Tz‘.~.1><,o = T, (To,o * TZAX,O) * 1 ( To,-fSt TZAX,-ISt)

T (To,-zﬁt * T2Ax,—26t)+
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where the factors r , r T etc. are the ordinates of the response

?
curve shown in Fig. 1. 2

1’

By rearranging, this becomes

[ - / -
To,o * T2L§x,o = 1 [}Tzkx,o 1 ¢ To,-bt * T2£ux,-6t) )
r
(o]
1
! ;
( To,-26t * Tonx,-26t | weee
Similarly
T + 1 - - =
0,=-6t T2Ax,-6t: = = I:TAx,-ét. rl(To,-26t+T2£§x,-26t) J
[o]
etc.
Thus
T _ =T +1 T -1 T +r12-r2ro
©° = 28x,0 ¢ ax,0  — - bx,-6t —_T—'_TAX,-ZSt....
(o] ro ro

This expression for the surface temperature uses the data at t < O but
does not use the values at t >0 that also have a strong correlation with

0,0

It is shown in Appendix A that the surface temperature is related to

the subsurface temperatures TAx and T2Ax by the following exact equation:
2 3
T T + 2 |T +T7T T® + 1° 1°° eve
o = "2Ax [ Ax YR A X Al A X -5 Tl&x L S a)
2
where T= (&%) >
X

°

T = 2_ (T etc.

AX It A X)

and e _ thermal diffusivity.
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The method of Stolz and Shumakov is equivalent to using backward
difference approximations for the time derivatives of szx in express-
jon A.

The following expression for To is based on central difference approx-
imations for the time derivatives of T, x and consequently is more
accurate than the Stolz or Shumakov formulae.

b T +

T =T

+
0,0 = A x, =356t * Ax,-26t *c TAx,-Bt d TAx,o

+ £ h T

+
eT TAX,26t+ & TAx,36t 24X, 0

Ax,8t

The coefficients a ... g are functions of the dimensionless number

The exact relationships are derived in Appendix Bj and h = - 1.000.
This equation takes account of all the differences of TAx up to the

sixth, i.e. it approximates the first six derivatives of TA x and
neglects all the higher differences. The first neglected term is

9 AoVn ) M . 7 M3 ) MS . M7
140(2¢) 120(6!) 3(C107) 1(143)

* >
where Axg' is the central seventh difference of T A x at time O.

The error in the computed value of T, is caused partly by neglecting
the higher difference terms for Ta xs and partly by errors in the measured
values of TAx and Toa x+ The maximum possible error caused by errors

in the data is the possible error in any measured value times the sum of
the absolute value of the coefficients a ...h. It is desirable, there-
fore, to choose A x and 8t so that the coefficients are as small as
possible, i.e. small values of Ax and large values of 6t. However,

as Ot increases so do the difference terms and consequently the error
associated with the neglected high order differences ircreases. Thus
the optimum &t from this point of view is a compromise that makes the
total error a minimum.

The choice of &t must also be based on the frequency spectrum of the
data. It is well known in communications work that a sampled signal
has an upper frequency limit of 1/2 &t. Thus, &t must be less than
half the period of the highest frequency component that has to be
considered.
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If there is high frequency noise present in the data signal, the data
can be improved by averaging. It is shown in Appendix -° that an aver-
aging (i.e. integration) process acts as a low pass filter with the
factor

F= SinY
Y

where Y = 7 (Averaging interval)
Cycle Period

Figure 2 shows log F as ordinate and log (Y /1) as abscissa. For

small values of Y the filter factor is essentially one, but whenY equals
T or any whole number times 7t the filter factor is zero. The dotted

line is the upper limit of the filter factor in the higher frequency

region.

The following example demonstrates the magnitude of the errors that
occur when M=2 and wmaxét = 1 radian. TIf the temperature at the

surface of a semi-infinite slab is

Ty = Sinfwt) + Sin (3wt) + Sin (Sat)

the temperature at depth Ax is shown in Ref. 3 to be

TAx =e-¢Sin (et - @) +
e _5¢Sin 3G t - + e -ad Sin 4 Qut-40 +
e-S¢ISin 5 (et - ¢)
5 &
Where (;S :( w_(AX) )2
2 X
The temperature at depth 2Ax is
-2¢ ' 6¢ .. ..
TZAX = e Sin (et - 29) + e Sin 3(Art-2§[~) +
-8¢ , -
e ¢Sin4(wt-2¢)+e10¢51n5(wt-2¢)
Values of T and T were calculated according to these formulae

Ax 2AX

for ¢ = 1.0000. This corresponds to the situation for ground temper-
atures measured at depths of 6 inches and 1 foot where the fundamental
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frequency is 1 cycle per day; or for temperatures at depths of 10 feet
and 20 feet for a fundamental frequency of 1 cycle per year. These
values were used to compute Ty by equation A and the resulting values
are compared in Table I with the exact values obtained by evaluating
the initial sine series.

Table I contains a sample of the results of the computations. The
second column of values for T 5, Were obtained by averaging 11 values
of Tpx that had been rounded to three decimal places. The individual
values were at 0.1 deg intervals over the range of wt - 0.5 deg. tot
+ 0.5 deg. The differences between the averaged values and the exact*
values show that the averaging process usually gives a result with an
error of the order of one unit in the fourth decimal place. The value
for wt = 106.2 deg shows, however, that it is possible for the average
to have an error of the same magnitude as the original data. In this
particular case the fourth digit to the right of the decimal in each
of the 11 accurate values of Tpox wWas a 4 - a very unusual coincidence
that accounts for the unusually large error. A comparison of the exact
values of Tp with those computed from the exact values of Tax a8nd Toa x
shows that the errors are of the order of 10 units in the third decimal
place. These errors are due to the neglected high order differences.
The values of Ty based on the averages of rounded values of TAa x have,
in general, larger errors than in the previous case. This extra error
is due to the errors in the data. Finally, the values of T, based on
individual values of Ta x and Ty aAx rounded to three decimal places
have the greatest error of all. The differences between the Ty values
in the last two columns show the effects of reduced round-off error
resulting from averaging the raw data before computing the surface
temperature. The effect is small. The principal advantage of aver-
aging is that it reduces the effects of high frequency noise. Ty was
computed for 24 values of «t at 15 deg intervals using the averaged
3-place data. These results were analysed for the harmonic components
and gave the following Fourier series:

T, = 0.99987 Sin(wt + 0.007°) + 0.99974 Sin (3wt + 0.0117 ) +
1.0007 Sin(4wt + 0.101° )+ 1.0017 Sin(Set + 0.402°)

These terms are all in excellent agreement with the initially assumed
sine series for Tg-

* 'exact'! means accurate to 5 decimal places
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AN ANALOGUE METHOD OF COMPUTING SURFACE TEMPERATURE

An analogue computer can be used to compute T, if the temperature at
depths Ax and 2Ax are available as continuous electrical signals.

A computer could be operated at real time with the data supplied
directly from the measuring equipment. In some cases it may be more
practical, however, to record Thoy T2Ax and subsequently play them
back as the input to a computer. If the recorder has a range of record
and play back speeds the time scale of the computer need not be the
same as the time scale of the original experiment,

The basic equation for an analogue computation is the same as for the
digital, i.e. equation A. The difficulty in using this equation comes
from the differentiation of TAy, » The circuit shown in Fig. 3 has

the transfer function
e
L l: out]= -5
€in 1 + s/G

whereas an ideal differentiator would be simply s. The output of
this circuit is a good approximation of the time derivative of the
input for low frequencies, but the approximation gets progressively
worse as the frequency increases.

The Laplace transformation of equation A is

T + T :
L( ; - 2AX >= 1+ Ts+ 122 4+ 33 4 ... = cosh (Ts) 2
A x 21 41 6!

The computer circuit shown in Fig. 4 has a transfer function

1
T + T -
L ( o 2A X ) that approximates cosh (Ts) 2. The frequency

2 Tl&x

response diagram for the analogue circuit is shown in Fig. 5. The
transfer function is a better approximation for cosh (Ts) % the

larger the value of GT. Unfortunately, the signal to noise ratio is
reduced by the factoruw/G at each differentiation so that the choice
of G must be a compromise between transfer function accuracy and noise.

Figure 6 shows the contribution to the final output of each different-
iator unit for WT = 8 radians and GT = 25, The vector OP represents

the ideal frequency response, cosh (iyT) % 3 and the vector 0Q
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represents the frequency response of a circuit with an infinite number

of approximate differentiators, i.e. cosh ( . T 1
i w . -
1 +i£:.‘;G )2 )

This shows that the fifth and all higher derivatives are negligible

at this frequency. The vector 0Q is a poor approximation for OP but

it is possible to make the frequency response of a four differentiator

circuit match the ideal response at any two values of T .

Let X = 17T
£ = 1.L.T
1+1.7G

L 2 3 4

cosh (X)2 =1+ /gé_ tm& 4z 4 p 2

2¢ ! 6! BT

This equation is satisfied for the values of wTand GTand the corres-
ponding values of the coefficients 4, m, n, p given in Table II. The
vector AB is equal to /2! whereas AB' is 4Z/2!; BC is equal to 2%/41
and B'C' is m 22/4!, etc. The primed vectors show the magnitude of the
voltages from the various differentiators that makes the circuit response
ideal at this frequency. Thus it is possible to obtain a very good
approximation of the ideal frequency response over a specific range of

- Tby adjusting the magnitude of the voltages from the four different-
iator units.

Figure 6 also shows the frequency response of the various adjusted
circuits compared with the ideal response curve. This shows that a
circuit with GT= 10 closely matches the ideal curve up to T = 5
radians. The higher values of GTenable the circuits to handle data
where Tir,. is somewhat larger than 5.

The range of :»T that a circuit must accommodate is determined by the
position of the thermometers, the thermal diffusivity of the material
and the spectrum of the temperature signals. The condition that (3T £ 5

requires that
5 1
Ax < i )‘Z
max e
() *
max

In fact, the smaller the value of A x, the more accurate will be the
computed surface temperature. When the data are recorded and played
back to the computer at different speeds the value of T for the computer
must be adjusted inversely as the time scale has been changed. The
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following example illustrates the application of this type of circuit
to a wall temperature computation:

Problem -

It is required to find the surface temperature of

a plaster wall (o< = 0,04 ftz/hr) allowing for
frequencies up to 100 cycles per hour. What is

the. maximum depth at which the thermometers can be
placed, and what time scale should the computer use?

Solution -

&z = 2mx frequency
W = 27 x 100 = 628 radians/hour
I3 1 —e
ax < ( 5 \2 = \JE_>L9;_9£*_ = 0.0178 ft = 0.214 in,
, 628
v /
max
Tuﬁax 5
- 5
T T e— = 0.00796 hour = 28.66 sec
628
computer = 10
so that T

computer == 1 sec
G =10 sec

The computer could, therefore, operate at up to 28 times as fast as

real time. The tape speed ratios of magnetic tape analogue recorders
are commonly in powers of 2, i.e. ratios of 2, 4, 8, 16, 32 are possible.
In this case the computer should operate 16 times as fast as real time

so that

T

computer - Z%ééé = 1,791 sec

and G = 10 = 10 = 5,58 sec -
Tcomputer 1.791
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CALCULATION OF SURFACE HEAT FLUX

The surface flux is given by

“ ()
o X

o
and -( AT) . o m4Tax t Toax
dx =
o ¢ 245X

Thus when the surface temperature T has been calculated it is very

simple to substitute it into the abdve expression and obtain q AX ).
° k
The analogue circuit in Fig. 4 includes a summing amplifier that gives

an output proportional to q, as well as a T, signal.

For the numerical calculation

q &X =133 T + 3b + 3¢ + 3d-4

° % T A%-38t T Tax,i26t T3 TAx,- 8t =5 Tayt

e T + 3f
= ©ax, 6t, _ZTAx, 26t+§-§TAx,36t'T2Ax

where the coefficients a ... g are the functions of T/ &t given in
Appendix B. Thus, the same computer program can be used to evaluate

9, £X as for To' only the coefficients need to be changed.
k ’ ’

PRACTICAL CONSIDERATIONS RELATING TO CHOICE OF METHOD

The choice between the analogue and digital methods of calculating
surface conditions depends largely on the data recording apparatus,
Analogue recorders generally have a larger frequency band width and
larger noise to signal ratios than digital recorders do. Thus the
analogue method has to be used whenever the data contain frequencies
that cannot be adequately recorded by a digital recorder. The maximum
frequency that a digital system can record accurately depends on the
interval between readings. The%pax 1in radians per unit time is
approximately equal to the number of measurements that are made in unit
time. The digital method is preferable when a digital recorder can
cope with the highest frequencies in the data, because the digital
recorders introduce very little noise.
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CONCLUSION

The temperature and heat flux at the surface of a slab of homogeneous
material can be computed from measured values of the temperature at

two known depths below the surface and the values of thermal conductiv-
ity and diffusivity of the material. The accuracy of the computed
surface conditions depends on the depth at which the temperatures are
measured; the accuracy is best when the thermometers are close to the
surface.

The computation can be made with an analogue computer or by an all-
numerical technique that is suitable for programming on a digital
computer. It has been shown that the numerical technique is satis-
factory for values of 6t = T/2 and WpaxT = 2 radians. No other values
of these parameters were tested. The analogue method has been shown to
be accurate from W ,,T up to 5 radians for GT= 10 and the unusable
band width can be increased by increasing the value of GTand accept-
ing higher noise to signal ratios.
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TABLE II

COEFFICIENTS FOR MODIFIED ANALOGUE CIRCUIT

1

!
For ideal !

GT £ n n P response at |

10 .9514 2.4034 4.6525 112.25 T = 2.0
and

25 . 9948 1.4849 3.4549 17.474 wT = 4.5

PR |

10 0.8493 2.7317 -5.3612 142.67 rxT= 2.0
and

25 0.9849 1.4960 2.5563 18.182 wT= 8.0

50 0.9967 1.2417 2.0066 6.5540

100 0.9989 1.1202 1.5258 3.1738
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data over an interval of 2 ¥

Analogue circuit for differentiation

Analogue circuit to compute surface temperature and heat
flux

Frequency response of four-differentiator circuit

Frequency response of modified four-differentiator circuits
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APPENDIX A

Relationship between surface temperature and

subsurface temperatures

Let the temperature at the surface of a semi-infinite slab be Ty; at a
depth &Ax be T, , and at a depth 2Ax be Ty x- The temperature every-
where in the material is described by

3T .
3t = =2

where o< = thermal diffusivity.

The Laplace transform of this equation gives

d2

dx

< t
where @ = j[ St LT adt .
0

The initial conditions have been assumed to be

e

N|©
1
Xl
"
O

T(x,0) = O

BT(XZO) = 0
ot

This simplifies the solution without any loss of generality since the
solution of interest in this case is the one that depends on the boundary
condition rather than the initial condition.

The solution of this simple second order differential equation is

2 2

| 2. 5x
e = Ae o’ + B e L
X
Let (ax)?
e = X
s =
= Ts
e = A+ B



Since the heat conduction equation is linear 8, can be thought of as the
sum of two parts: the first depending on @9 ., for © Ax = 0, and the
second depending on @ A x When OZ/_\,x = 0. For the first case OaAx = 0, so
that

A - - B e2’)"
) = B (1 - ezﬂ)
o
2.
Oax = B (-1+e
Therefore 0 = -0
° 2 Ax

For the second case GZc,x = 0, so that

A = _pe™M
Qo z 2 (1 - elﬂ’\)
3
- n_ N
Ql&x = B (e e )
Therefore
% . Q- ™M + e’
gAx e‘n(l - ezﬂ)
- e1]+ e-n
= 2 cosh m

= 2 [} + 'nz + -né + 11? + .....]
2! 4 6!

2[11-"[’3 + ("['s)2 + (’L"s)3 + e
2! 4! 6!




Thus reverting to the time domain and combining the two parts gives:

2 _ee 3 000
T° T
o~ AX TZ/AX + 2 .—é_x. + T TAX + AX L




APPENDIX B

Finite Difference Expressions for Surface Temperature

The time derivatives of T ,, can be approximated by expressions invelv-
ing the differences between successive values of T , . This allows T,
to be expressed in terms of TpAx and values of T . x measured at several
different times. When T, , is measured at regular intervals of b6t the
various derivatives are given by:

T T® - M L | "e 1 v _1_ v
AX,0 _Ao s Ao + 3'O'Ao 140 A T eece
2 20" 1 ' 1 ' Vit -
T °® M | A - = AV vt o1 cen
A%, 0 | Zo 17 “o 50 26 " 5605
3 3_ "e 1 -
T Tcoo - M - L v 4 7 VAR I
AX,O Ao 4 AO m AO o--oo-l
4 o200 - 47, v _ 1 v viee a
T Tax,o - MlA0 g o L |
5 o) 240 o socee |
5 ce®ce _ ,,0 v o1 vie 7
T Lo =M |ag AR +|
6
16  *eeeee_ M vi 1
Ax,0 ~ A vreer o o« o o o
> —o A A ")
where Mz T/6t . T = (Ax)2/0<
o< = thermal diffusivity
and the differencesare given by:
' 1
L, = > [TA x,6t " TAx,-Gt:]
A "
= T -
o Ax,6t 2 TAx,o * TAx,-St
A" LT 2T +2
o = 2 [: Ax,26t T “TAx,6t TAx,-&t - TAx,—Zét ]
' - -
A o'V = TAx,ZBt ATAX,& + GTAX,O ATAX’_& + TAx,-ZGt



B-2

A= LT - - -
o = 3 I_T./i\x,36t 4TAx,26t * STAx,ét STAX,-St * 4TAx,-28t TAx,-36t]
ve _ - -
Dol = TAx,36t 6TAx,zét * 15TAx,5t 2OTAx,o * 15TAx,-6t
- 6TAx,-26t * T43:(,-3151: .

When the seventh and all higher difference terms are neglected, the
expression for the surface temperature derived in Appendix A becomes:

T -
0,0 =3TAx, 36t *hb TAX,-ZE)t te TAx,-ét td TAx,o te TAx,&t
*ET k25t T 8 Tax, 36t T Taax,o
where a = - M + 2M2 + M3 - 2M4 - 4M5 + 8M6
15 5 45 945 14,175 467,775
2 3 4
bs M - M _8M , 8M 4 16M° . 48M6
1 5 45 315 14,175 407,775
5 6
c o= -3M + oMP 4 13M° 26M” _ _aM +  _26M
45 315 2835 93,555
d=- 2 - 98M2 + 112M4 - 32M6
27 945 93,555
R I 1 _2eMt _ a  _oad®
45 315 2835 93,555
P VRS VG- A A U- VY- Vi
15~ 5 45 315 14,175 ~ 467,775
g L2l w0 o ad e
15 135 ~ 45 945 14,175 467,775

The first neglected term in the expression for the surface temperature is

3 5 7
veel o M + ™ _ M . M
28, 120 (20) 120 (61) ~ 3 (101) T (1a8)



APPENDIX C

The Filtering Factor for an Averaging Process

To reduce the. errors in numerical data due to 'round-off' and high
frequency 'noise' it is desirable to smooth or average the data. The
average value of a sine wave for angles between « - ( and ¢« + ¢is

A+Y
Y = L f sin ¢ d ¢
2% | x-x '

- Qi Sin
Sin X . —_=

Thus the filter factor

Feot = S + ¢
Sin X X 31 TmToteeee

where X = &5(Averag;ng interval)




