
Ser 
TH1 
N2lr 2 
no. 209 
c. 2 

ANALYZED 
NATIONAL RESEARCH COUNC IL 

CANADA 

D I V I S I O N  OF BUILDING RESEARCH 
BLDG 

THE CALCULATION OF SURFACE TEMPERATURE AND HEAT FLLJX 

FROM SUBSURFACE TEMPERATURE MEASUREMENTS 

BY 

D. G. STEPHENSON AND G .P  . MITALAS 

( ~~~i~~~~~ t..;;ir.ii+ c ~ ~ i + c ~ ~  

REPRINTED FROM 
i 

TRANSACTIONS OF THE ENGINEERING INSTITUTE OF CANADA 

VOL. 6 ,  NO. B-4,  JULY 1963, 

PAPER NO. E I C - 6 3 - M ~ c H  4 

RESEARCH PAPER NO. 2 0 9  

OF THE 

D I V I S I O N  OF BUILDING RESEARCH 

P R I C E  50 CENTS 

-! t-y yrr -) 
- - a  u d l 3  

OTTAWA 

DECEMBER 1963 

NRC 7 4 1 5  



This publication is being distributed by the Division 
of Building Research of the National Research Council. It 
should not be reproduced in whole or in part, without permis- 
sion of the original publisher. The Division would be glad to 
be of assistance in obtaining such permission, 

Publications of the Division of Building Research may 
be obtained by mailing the appropriate remittance, ( a Bank, 
Express, or Post Office Money Order or a cheque made payable 
at par in Ottawa, to the Receiver General of Canada, credit 
National Research Council) to the National Research Council, 
Ottawa. Stamps are not acceptable. 

A coupon system has been introduced to make payments 
for publications relatively simple. Coupons are available in 
denominations of 5, 25 and 50 cents, and may be obtained by 
making a remittance as indicated above. These coupons may be 
used for the purchase of all National Research Council publi- 
cations including specifications of the Canadian Government 
Specifications Board. 



THE CALCULATION OF SURFACE TEMPERATURE AND HEAT FLUX 

FROM SUBSURFACE TEMPERATURE MEASUREMENTS 

D. G. Stephenson and G. P. Mitalasq 

SUMMARY 

This paper presents an analogue and a numerical method of computing 
surface temperature and heat flux from subsurface temperature data. 
The basic equations used by both methods are: 

ee . m e   TAX + T A + ....I 
surface - - 2Tax - T2 A x  + 2 4 !  6! 

lsurface = - W L  T L surface A x  
2 

where =  AX)^ 
rx 

k, oc are thermal conductivity and diffusivity respectively. These 
calculations differ from the usual finite difference heat conduction 
calculations in that they require the data to be differentiated rather 
than integrated. Methods are presented for differentiating data that 
have been recorded in either analogue or numerical form. The advantages 
of each method of recording the data are discussed. The errors inherent 
in the calculation of surface conditions are discussed and illustrated 
by examples. 

The direct measurement of the temperature of a surface is difficult 
in many cases for one or both of the following reasons: 

1. A temperature sensing element attached to the surface may affect 
the heat transfer processes and consequently change the surface 
temperature. 

Building Services Secti.on, Division of Building Research, National 
Research Council, Ottawa, Canada. 



2. T h e r e  may be some a c t i v i t y  a t  t h e  s u r f a c e  t h a t  would q u i c k l y  damage 
any  thermometer .  

Fo r  example, a  t he rmocoup le  a t t a c h e d  t o  t h e  o u t s i d e  s u r f a c e  o f  a w a l l  
may have  a  d i f f e r e n t  a b s o r p t i v i t y  f o r  s o l a r  r a d i a t i o n  from t h a t  o f  
t h e  w a l l  s u r f a c e ;  i t  w i l l  r e a c h  a t e m p e r a t u r e  d i f f e r e n t  from t h a t  o f  
t h e  r e s t  o f  t h e  w a l l  s u r f a c e  when s o l a r  r a d i a t i o n  i s  a s i g n i f i c a n t  
t e r m  i n  t h e  ene rgy  b a l a n c e  a t  t h e  s u r f a c e .  A s e n s i n g  e l emen t  on a 
s u r f a c e  c a n  a l s o  a l t e r  t h e  c o n v e c t i o n  and l o n g  wave r a d i a t i o n  a t  t h e  
s u r f a c e .  The d i r e c t  measurement o f  t h e  s u r f a c e  t e m p e r a t u r e  o f  a n  
a s p h a l t  pavement o r  a  c u l t i v a t e d  f i e l d  would b e  d i f f i c u l t  f o r  t h e  
second r e a s o n .  S u r f a c e  p y r o m e t e r s  a v o i d  t h e s e  d i f f i c u l t i e s  b u t  t h e y  
a r e  u n a b l e  t o  d i s c r i m i n a t e  be tween e m i t t e d  a n d  r e f l e c t e d  r a d i a t i o n .  

Approximate  n u m e r i c a l  methods  h a v e  been  d e v e l o p e d  r e c e n t l y  f o r  c a l -  
c u l a t i n g  t h e  s u r f a c e  c o n d i t i o n s  from measured  v a l u e s  a t  p o i n t s  below 
t h e  s u r f a c e .  S t o l z  ( 1 )  c a l l s  t h i s  t h e  s o l u t i o n  o f  a n  i n v e r s e  problem 
o f  h e a t  c o n d u c t i o n .  Shumakov ( 2 )  h a s  s t u d i e d  t h e  same problem and  
r e p o r t e d  on  i t  i n  t h e  R u s s i a n  l i t e r a t u r e .  The p r e s e n t  p a p e r  p r e s e n t s  
a n o t h e r  numer i ca l  method t h a t  h a s  some a d v a n t a g e s  o v e r  t h o s e  p r e v i o u s l y  
r e p o r t e d ,  and  a n  e l e c t r o n i c  a n a l o g u e  computer  c i r c u i t  t h a t  is p a r t i c u l a r l y  
u s e f u l  when s u r f a c e  c o n d i t i o n s  change  r a p i d l y .  

NUMERICAL METHODS OF CALCULATING SURFACE TEMPERATURE 

The methods o f  S t o l z  and  Shumakov a r e  e s s e n t i a l l y  t h e  same: t h e y  
u s e  t h e  known r e l a t i o n s h i p  be tween a  u n i t  p u l s e  v a r i a t i o n  o f  t h e  
s u r f a c e  t e m p e r a t u r e  and  t h e  r e s u l t i n g  change  i n  t h e  t e m p e r a t u r e  a t  
t h e  d e p t h s  where  t h e  t e m p e r a t u r e s  a r e  measured .  The f o l l o w i n g  d e r i v a t -  
i o n  o f  a fo rmula  f o r  To u s e s  t h i s  a p p r o a c h ,  b u t  is  i n  t h e  same t e r m i n -  
o l o g y  as  t h e  r e s t  o f  t h i s  p a p e r  r a t h e r  t h a n  i n  t h a t  used  by t h e  o r i g i n a l  
a u t h a r s .  

F i g u r e  1 shows t h e  t e m p e r a t u r e  r e s p o n s e  a t  t h e  c e n t r e  o f  a  s l a b ,  o f  
t h i c k n e s s  2 a x  t h a t  r e s u l t s  f rom t h e  s q u a r e  p u l s e  v a r i a t i o n  o f  t h e  
t e m p e r a t u r e  a t  t h e  s u r f a c e s .  The t e m p e r a t u r e  To c a n  be computed f rom 
t h e  measured t e m p e r a t u r e s  a t  d e p t h s  A x  and 2 A x  by t h e  fo rmula .  



where the factors r rl, r2, etc. are the ordinates of the response 
0 curve shown in Fig. 1. 

By rearranging, this becomes 

Similarly 

etc. 

Thus 

T 
r - 1 

2 
O,O - - - T 2 ~ x , ~  + I  - T ~ ~ , ~  - AX, -6t + rl - q r O  

r 
o r r T~x,-26t . . . . 2 

0 0 

This expression for the surface temperature uses the data at t < 0 but 
does not use the values at t > 0 that also have a strong correlation with 
To,o* 

It is shown in Appendix A that the surface temperature is related to 
the subsurface temperatures T 

and T2 AX by the following exact equation: A x  

where (ax>L T =  

- d T~~ - - (TAX) etc. 
dt 

and oc - thermal diffusivity. - 



The method of Stolz and Shumakov is equivalent to using backward 
difference approximations for the time derivatives of T in express- 

A x  
ion A. 

The following expression for To is based on central difference approx- 
imations for the time derivatives of TAX and consequently is more 
accurate than the Stolz or Shumakov formulae. 

The coefficients a ... g are functions of the dimensionless number 

The exact relationships are derived in Appendix B; and h = - 1.000. 
This equation takes account of all the differences of T up to the n x  
sixth, i.e. it approximates the first six derivatives of T a x  and 
neglects all the higher differences. The first neglected term is 

where A:n is the central seventh difference of T ax at time 0. 

The error in the computed value of To is caused partly by neglecting 
the higher difference terms for TL\ x, and partly by errors in the measured 
values af T h x  and T2nx. The maximum possible error caused by errors 
in the data is the possible error in any measured value times the sum of 
the absolute value of the coefficients a ... h. It is desirable, there- 
fore, to choose A x  and 6t so that the coefficients are as small as 
possible, i.e. small values of A x  and large values of bt. However, 
as 6t increases so do the difference terms and consequently the error 
associated with the neglected high order differences increases. Thus 
the optimum 6t from this point of view is a compromise that makes the 
total error a minimum. 

The choice of 6t must also be based on the frequency spectrum of the 
data. It is well known in communications work that a sampled signal 
has an upper frequency limit of 112 6t. Thus, dt must be less than 
half the period of the highest frequency component that has to be 
considered. 



I f  t h e r e  is h igh  f requency n o i s e  p r e s e n t  i n  t h e  d a t a  s i g n a l ,  t h e  d a t a  
can be improved by averag ing .  It is shown i n  Appendix t h a t  a n  aver -  
ag ing  ( i . e .  i n t e g r a t i o n )  p roce s s  a c t s  a s  a  low pas s  f i l t e r  w i th  t h e  
f a c t o r  

F = S i n  Y 
Y 

where Y = (Averaging i n t e r v a l )  
Cycle Pe r i od  

F igu re  2  shows l og  F a s  o r d i n a t e  and l o g  (7 /n ) a s  a b s c i s s a .  For 
smal l  va lue s  of  Y t h e  f i l t e r  f a c t o r  i s  e s s e n t i a l l y  one, bu t  w h e n y  e q u a l s  

X o r  any whole number t imes  n t h e  f i l t e r  f a c t o r  is  zero.  The d o t t e d  
l i n e  is  t h e  upper l i m i t  of  t h e  f i l t e r  f a c t o r  i n  t h e  h igher  f requency 
r eg ion .  

The fo l lowing  example demons t ra tes  t h e  magnitude of t h e  e r r o r s  t h a t  
occur  when M S ~  and wmax6t  + 1 r ad i an .  I f  t h e  t empera ture  a t  t h e  
s u r f a c e  of a  s e m i - i n f i n i t e  s l a b  is 

To = S i n ( ~ , c t )  + S i n  ( W )  + S i n  ( 5 d )  

t h e  t empera ture  a t  dep th  A x  is shown i n  Ref.  3  t o  be 

- 4 = e S i n  ( ~ t  - 4 )  + 

e - 3 ' ~ i n  3 ( u t  -4) + e 
-4 & 

S i n  4  (G-t - $) + 
- 5 4.. 

e S i n  5 ( w t  - ;/.) 

m e r e  c-$ = ( w ( A X ) '  )' 
2 o< 

The tempera ture  a t  dep th  2 A x  is 

-8  4 
e S i n  4 ( w t  - 2 6 )  + e - l 0 9 s i n  5 ( w t  - 2 4 )  

Values  of Tax and T 
2 A x  

were  c a l c u l a t e d  acco rd ing  t o  t h e s e  formulae' 

f o r  4 = 1.0000. Th i s  cor responds  t o  t h e  s i t u a t i o n  f o r  ground temper- 
a t u r e s  measured a t  dep th s  of  6 inches  and 1 f o o t  where t h e  fundamental 



f requency  is 1 c y c l e  p e r  day;  o r  f o r  t e m p e r a t u r e s  a t  d e p t h s  of 10  f e e t  
and 20 f e e t  f o r  a  fundamental  f r equency  o f  1 c y c l e  p e r  y e a r .  These  
v a l u e s  were used t o  compute To by e q u a t i o n  A and t h e  r e s u l t i n g  v a l u e s  
a r e  compared i n  T a b l e  I w i t h  t h e  e x a c t  v a l u e s  o b t a i n e d  by e v a l u a t i n g  
t h e  i n i t i a l  s i n e  s e r i e s .  

Table  I c o n t a i n s  a  sample of  t h e  r e s u l t s  of t h e  computat ions .  The 
second column of v a l u e s  f o r  T ~ ,  were o b t a i n e d  by a v e r a g i n g  11 v a l u e s  
o f  T A ~  t h a t  had been rounded t o  t h r e e  decimal  p l a c e s .  The i n d i v i d u a l  
v a l u e s  were  a t  0.1 deg i n t e r v a l s  o v e r  t h e  r a n g e  of  c ~ t  - 0 .5  deg. t o w t  
+ 0 .5  deg. The d i f f e r e n c e s  between t h e  averaged  v a l u e s  and t h e  exact:k 
v a l u e s  show t h a t  t h e  a v e r a g i n g  p r o c e s s  u s u a l l y  g i v e s  a  r e s u l t  w i t h  a n  
e r r o r  of t h e  o r d e r  o f  one u n i t  i n  t h e  f o u r t h  decimal  p l a c e .  The v a l u e  
f o r w t  - 106.2 deg shows, however, t h a t  i t  is p o s s i b l e  f o r  t h e  a v e r a g e  
t o  have  a n  e r r o r  of  t h e  same magni tude a s  t h e  o r i g i n a l  d a t a .  I n  t h i s  
p a r t i c u l a r  c a s e  t h e  f o u r t h  d i g i t  t o  t h e  r i g h t  of t h e  decimal i n  each 
o f  t h e  11 a c c u r a t e  v a l u e s  o f  TA,  was a  4  - a  v e r y  unusual  c o i n c i d e n c e  
t h a t  a c c o u n t s  f o r  t h e  u n u s u a l l y  l a r g e  e r r o r .  A comparison of  t h e  e x a c t  
v a l u e s  o f  To w i t h  t h o s e  computed from t h e  e x a c t  v a l u e s  of T A X  and T z A x  
shows t h a t  t h e  e r r o r s  a r e  of  t h e  o r d e r  o f  1 0  u n i t s  i n  t h e  t h i r d  decimal  
p l a c e .  These  e r r o r s  a r e  due t o  t h e  n e g l e c t e d  h i g h  o r d e r  d i f f e r e n c e s .  
The v a l u e s  o f  To based on t h e  a v e r a g e s  of  rounded v a l u e s  of  T a x  have,  
i n  g e n e r a l ,  l a r g e r  e r r o r s  t h a n  i n  t h e  p r e v i o u s  case .  Th i s  e x t r a  e r r o r  
i s  due t o  t h e  e r r o r s  i n  t h e  d a t a .  F i n a l l y ,  t h e  v a l u e s  o f  To based on 
i n d i v i d u a l  v a l u e s  of  T A k  and T2A, rounded t o  t h r e e  decimal  p l a c e s  
have t h e  g r e a t e s t  e r r o r  of  a l l .  The d i f f e r e n c e s  b e t w e m  t h e  ro v a l u e s  
i n  t h e  l a s t  two columns shot7 t h e  e f f e c t s  3f reduced round-off  e r r o r  
r e s u l t i n g  from a v e r a g i n g  t h e  raw d a t a  b e f o r e  computing t h e  s u r f a c e  
t empera tu re .  The e f f e c t  is smal l .  The p r i n c i p a l  advan tage  of a v e r -  
a g i n g  is  t h a t  i t  r e d u c e s  t h e  e f f e c t s  of  h i g h  f requency  n o i s e .  To was 
computed f o r  24 v a l u e s  of ~ - t  a t  1 5  deg i n t e r v a l s  u s i n g  t h e  averaged  
3 - p l a c e  d a t a .  These  r e s u l t s  were  a n a l y s e d  f o r  t h e  harmonic components 
and gave t h e  f o l l o w i n g  F o u r i e r  s e r i e s :  

To 
= 0.99987 Sin(.wt + 0.007") + 0.99974 S i n  ( 3 w t  + 0.011" ) + 

These t e rms  a r e  a l l  i n  e x c e l l e n t  agreement w i t h  t h e  i n i t i a l l y  assumed 
s i n e  s e r i e s  f o r  To. 

* ' e x a c t '  means a c c u r a t e  t o  5  decimal  p l a c e s  



AN ANALOGUE METHOD OF COMPUTING SURFACE TEMPERATURE 

An analogue computer can be used to compute To if the temperature at 
depths A x  and 2 A x  are available as continuous electrical signals. 
A computer could be operated at real time with the data supplied 
directly from the measuring equipment. In some cases it may be more 
practical, however, to record TAX T2nx and subsequently play them 
back as the input to a computer. If the recorder has a range of record 
and play back speeds the time scale of the computer need not be the 
same as the time scale of the original experiment. 

The basic equation for an analogue computation is the same as for the 
digital, i.e. equation A. The difficulty in using this equation comes 
from the differentiation of TA, . The circuit shown in Fig. 3 has 
the transfer function 

whereas an ideal differentiator would be simply s. The output of 
this circuit is a good approximation of the time derivative of the 
input for low frequencies, but the approximation gets progressively 
worse as the frequency increases. 

The Laplace transformation of equation A is 

1 
= cosh (fs) 2 

2! 4! 6! 

The computer circuit shown in Fig. 4 has a transfer function 

1 - ( T 0 2 + T ~ ~ X  ) that approximates cosh (7s) 2 . The frequency 

response diagram for the analogue circuit is shown in Fig. 5. The 
transfer function is a better approximation for cosh (Ts) 1 the 

7 
larger the value of GT. Unfortunately, the signal to noise ratio is 
reduced by the factor L- /G at each differentiation so that the choice 
of G must be a compromise between transfer function accuracy and noise. 

Figure 6 shows the contribution to the final output of each different- 
iator unit for WT = 8 radians and GT = 25. The vector OP represents 
the ideal frequency response, C O S ~  ( iwT) $- ; and the vector OQ 



represents the frequency response of a circuit with an infinite number 
of approximate differentiators, i.e. cosh 

i r,r I , 
1 + i .:::/G )+ . 

This shows that the fifth and all higher derivatives are negligible 
at this frequency. The vector OQ is a poor approximation for OP but 
it is possible to make the frequency response of a four differentiator 
circuit match the ideal response at any two values of 7 ~ - 7  . 

Let X = i.:? 

This equation is satisfied for the values of iiryand Grand the corres- 
ponding values of the coefficients 1, m, n, p given in Table 11. The 
vector AB is equal to Z/Z! whereas A B t  is IZ/Z!; BC is equal to g2/4! 
and B t C t  is m z2/4!, etc. The primed vectors show the magnitude of the 
voltages from the various differentiators that makes the circuit response 
ideal at this frequency. Thus it is possible to obtain a very good 
approximation of the ideal frequency response over a specific range of 
;,:Thy adjusting the magnitude of the voltages from the four different- 
iator units. 

Figure 6 also shows the frequency response of the various adjusted 
circuits compared with the ideal response curve. This shows that a 
circuit with GT= 10 closely matches the ideal curve up to cr c-- 5 
radians. The higher values of GTenable the circuits to handle data 
where TcmaX is somewhat larger than 5. 

The range ofzsT that a circuit must accommodate is determined by the 
position of the thermometers, the thermal diffusivity of the material 
and the spectrum of the temperature signals. The condition t h a t ~ T  5 5 
requires that 

In fact, the smaller the value of A x ,  the more accurate will be the 
computed surface temperature. When the data are recorded and played 
back to the computer at different speeds the value o f r  for the computer 
must be adjusted inversely as the time scale has been changed. The 



following example illustrates the application of this type of circuit 
to a wall temperature computation: 

Problem - 
It is required to find the surface temperature of 
a plaster wall ( d = 0.04 ft2/hr) allowing for 
frequencies up to 100 cycles per hour. What is 
the.maximum depth at which the thermometers can be 
placed, and what time scale should the computer use? 

Solution - 
L: = 2TT x frequency 

umax = 2n 100 = 628 radianslhour 

1 

A x m x <  ( i d  \T = 0°04 = 0.0178 ft = 0.214 in. 
W max 

\I 628 

Tc 
max 5 

= 5 
7 - = 0.00796 hour = 28.66 sec 

628 

G T  computer = 10 

so that 
Zcomput er i 1 sec 

- 1 
G ~ 1 0  sec 

The computer could, therefore, operate at up to 28 times as fast as 
real time. The tape speed ratios of magnetic tape analogue recorders 
are commonly in powers of 2, i.e. ratios of 2, 4, 8, 16, 32 are possible. 
In this case the computer should operate 16 times as fast as real time 
so that 

- 28.66 Tcomputer - - = 1.791 sec 
16 

and 



CALCULATION OF SURFACE HEAT FLUX 

The surface flux is given by 

and - / L i z \  . 3T0 - 4T Ax + T 2 ~  x 

Thus when the surface temperature T has been calculated it is very 
0 

simple to substitute it into the above expression and obtain AX . 
qo [ T I  

The analogue circuit in Fig. 4 includes a summing amplifier that gives 
an output proportional to qo as well as a To signal. 

For the numerical calculation 

where the coefficients a ... g are the functions  of^/ 6 t given in 
Appendix B. Thus, the same computer program can be used to evaluate 

A x  as for To. only the coefficients need to be changed. qo - 
k 9 

PRACTICAL CONSIDERATIONS RELATING TO CHOICE OF METHOD 

The choice between the analogue and digital methods of calculating 
surface conditions depends largely on the data recording apparatus. 
Analogue recorders generally have a larger frequency band width and 
larger noise to signal ratios than digital recorders do. Thus the 
analogue method has to be used whenever the data contain frequencies 
that cannot be adequately recorded by a digital recorder. The maximum 
frequency that a digital system can record accurately depends on the 
interval between readings. TheV~:rnax in radians per unit time is 
approximately equal to the number of measurements that are made in unit 
time. The digital method is preferable when a digital recorder can 
cope with the highest frequencies in the data, because the digital 
recorders introduce very little noise. 



CONCLUSION 

The temperature and heat flux at the surface of a slab of homogeneous 
material can be computed from measured values of the temperature at 
two known depths below the surface and the values of thermal conductiv- 
ity and diffusi-~ity of the material. The accuracy of the computed 
surface conditions depends on the depth at which the temperatures are 
measured; the accuracy is best when the thermometers are close to the 
surface. 

The computation can be made with an analogue computer or by an all- 
numerical technique that is suitable for programming on a digital 
computer. It has been shown that the numerical technique is satis- 
factory for values of 6t =7/2 andXmaxT 5 2 radians. No other values 
of these parameters were tested. The analogue method has been shown to 
be accurate from UmxTup to 5 radians for Gf= 10 and the unusable 
band width can be increased by increasing the value of GTand accept- 
ing higher noise to signal ratios. 
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TABLE I1 

C O E F F I C I E X T S  FOR M O D I F I E D  ANALOGUE C I R C U I T  

G Z  

10 

2 5 

10 

2 5 

50 

100 

R 
.9514 

.9948 

0.8493 

0.9849 

0.9967 

0.9989 

! i ' For  i d e a l  ! 
response a t  i 

---1: 
111 n 

2.4034 

1.4849 

2.7317 

1.4960 

1.2417 

1.1202 

~ , 7 ' =  2.01 
and 1 

W Z  4.5 ] 
-- -- - -J 

i 

i 
.?*T- .-,. 2.0 

l,i'sc= 8.0 

and 1 

4.6525 1 112.25 ' 
3.4549 

-5.3612 

2.5563 

2.0066 

1.5258 

17.474 

142.67 

18.182 

6.5540 

3.1738 



THE CALCULATION OF SURFACE TEMPERATURE AND HEAT FLUX 

FROM SUBSURFACE TEMPERATURE MEASUREMENTS 

by 

D. G. Stephenson and G. P. Mitalas 

FIGURE CAPTIONS 

Figure 1 Response at centre of slab to a square pulse variation 
of surface temperature 

Figure 2 Frequency response of numerical filter that averages 
data over an interval of 2 Z 

Figure 3 Analogue circuit for differentiation 

Figure 4 Analogue circuit to compute surface temperature and heat 
f 1 ux 

Figure 5 Frequency response of four-differentiator circuit 

Figure 6 Frequency response of modified four-differentiator circuits 
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FIGURE I 

RESPONSE AT CENTRE OF SLAB TO A SQUARE PULSE 
VARIATION OF SURFACE TEMPERATURE 
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FIGURE 3 

ANALOG CIRCUIT FOR DIFFERENTIATION 



FIGURE 4 
ANALOG CIRCUIT TO COMPUTE SURFACE TEMPERATURE 
AND HEAT FLUX 
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APPENDIX A 

Relationship between surface temperature and 

subsurface temperatures 

Let the temperature at the surface of a semi-infinite slab be To; at a 
depthax be T A X  and at a depth 2 A x  be T2nx. The temperature every- 
where in the material is described by 

3T - d2, - 
at - bx' 

where o(= thermal diffusivity. 

The Laplace transform of this equation gives 

where Q = Lrne-" . T dt . 
The initial conditions have been assumed to be 

This simplifies the solution without any loss of generality since the 
solution of interest in this case is the one that depends on the boundary 
condition rather than the initial condition. 

The solution of this simple second order differential equation is 

2 
Let 3 = 2 

(ax) = Is 
d 



S i n c e  t h e  h e a t  conduc t ion  e q u a t i o n  is  l i n e a r  Q0 c a n  be  though t  of a s  t h e  
sum of two p a r t s :  t h e  f i r s t  depending on Q2p-x f o r  Q, ,x  -- = 0 ,  and t h e  
second depending on 8~~ when Q 2 A x  = 0 .  For t h e  f i r s t  c a s e  Q A x  = 0 ,  s o  
t h a t  

A = - B e  2rl 

Q = B ( 1 - e  
291 ) 

0 

O z A x  = B ( -1  + e 2.'') 

T h e r e f o r e  

For  t h e  second c a s e  0 2 A x  = 0 , so t h a t  

T h e r e f o r e  

= 2 cosh 7 



Thus reverting to the time domain and combining the two parts gives: 



APPENDIX B 

Finite Difference Expressions for Surface Temperature - 

The time derivati 
ing the dif f erenc 
to be expressed i 
different times. 

ves of TAX can be approximated by expressions involv- 
:cs between successive values of T A x- This allows To 

terms of T ~ A ~  and values of T,&, measured at several 
When T A X  is measured at regular intervals of 6t the 

various derivatives are given by: 

where M = </tit 9 2  T =  (AX) /o( 

d = thermal diffusivity 

and the differencesare given by: 



When the seventh and all higher difference terms are neglected, the 
expression for the surface temperature derived in Appendix A becomes: 

2 
where a a - M + 2C1 + M3 - 2M4 - 4M 5 + 8M 6 - 

15 43'5 945 14,175 467,775 

The first neglected term in the expression for the surface temperature is 



The F i l t e r i n g  F a c t o r  f o r  a n  Averaging P r o c e s s  

To reduce  t h e .  e r r o r s  i n  numerical  d a t a  due t o  ' round-of f '  and h igh  
f requency  ' n o i s e '  i t  is d e s i r a b l e  t o  smooth o r  a v e r a g e  t h e  d a t a .  The 
a v e r a g e  v a l u e  o f  a s i n e  wave f o r  a n g l e s  between - C and ( + .( is 

1 X +'Y Y=-1  s i n  4 d d  
2-u: x-y 

S i n  Y - S i n  X . 
Thus t h e  f i l t e r  f a c t o r  

- S i n  Y -< 4 
F =  - = 1 -  + Y 

S i n  X Y 3: =.... . 
where y = (Averaging i n t e r v a l )  

2 


