
UHVC_A_643752 hvcxml-v3.cls August 8, 2012 19:57

Predictive pre-cooling of thermo-active building systems
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This article describes the development and experimental validation of a data-driven model predictive
control algorithm that optimizes the operation of a low-lift chiller, a variable-capacity chiller run at
low pressure ratios, serving a single zone with a thermo-active building system. The predictive control
algorithm incorporates new elements lacking in previous chiller pre-cooling control optimization methods,
including a model of temperature and load-dependent chiller performance extending to low-pressure
and part-load ratios and a data-driven zone temperature response model that accounts for the transient
thermal response of a concrete-core radiant floor thermo-active building system. Data-driven models of
zone and concrete-core thermal response are identified from monitored zone temperature and thermal load
data and combined with an empirical model of a low-lift chiller to implement model predictive control.
The energy consumption of the cooling system, including the chiller compressor, condenser fan, and
chilled-water pump energy, is minimized over a 24-h look-ahead moving horizon using the thermo-active
building system for thermal storage and radiant distribution. A generalized pattern-search optimization
over compressor speed is performed to identify optimal chiller control schedules at every hour, thereby
accomplishing load shifting, efficient part-load operation, and cooling energy savings. Results from testing
the system’s sensible cooling efficiency in an experimental test chamber subject to the typical summer week
of two climates, Atlanta, GA, and Phoenix, AZ, show sensible cooling energy savings of 25% and 19%,
respectively, relative to a high efficiency, variable-speed split-system air conditioner.
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Introduction30

A low-lift cooling system combines a low-lift
chiller (a variable-capacity chiller that operates ef-
ficiently at low pressure ratios and over a wide ca-
pacity range), radiant cooling with variable-speed
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distribution, predictive pre-cooling of thermal en- 35
ergy storage (TES), and a dedicated outdoor air
system (DOAS) for ventilation and dehumidica-
tion to achieve low-energy cooling (Jiang et al.
2007; Armstrong et al. 2009a, 2009b; Katipamula
et al. 2010). Efficient operation of a low-lift chiller 40
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is enabled through predictive pre-cooling of TES,
such as a thermo-active building system (TABS).
The chiller operates at lower average lift condi-
tions through lower part-load operation overnight
and higher chilled-water temperatures for radiant45
TABS distribution, and thus higher average chiller
efficiencies (Gayeski et al. 2010). Extensive simu-
lation of low-lift cooling systems has shown sig-
nificant potential annual cooling energy savings in
a range of climates and building types relative to50
conventional variable air volume (VAV) systems
(Armstrong et al. 2009a, 2009b; Katipamula et al.
2010). For typical buildings, Katipamula et al.
(2010) found that simulated annual cooling energy
savings relative to VAV systems with conventional55
two-speed chillers ranged from 37% to 84%, de-
pending on the climate and building type. These
simulations assume ideal thermal storage, not real
thermal storage such as TABSs.

This article describes the development of a data-60
driven model predictive control algorithm that ac-
counts rigorously for the TABS transient response
and optimizes control of a low-lift chiller used to
pre-cool TABS-TES. The pre-cooling control algo-
rithm has been applied to a low-lift chiller serving an65
experimental test chamber with a TABS radiant floor
subjected to two typical summer week climate con-
ditions. The algorithm integrates for the first time
a temperature- and load-dependent low-lift chiller
performance model with data-driven temperature70
response models of zone and a TABS to optimize
sensible cooling system performance through pre-
dictive pre-cooling control. The performance and
optimization of the DOAS component of a low-lift
cooling system can be treated separately, assuming75
that the DOAS includes its own efficient variable-
capacity direct expansion (DX) cooling or other ef-
ficient dehumidification separate from the low-lift
chiller plant serving the TABS.

The sensible cooling energy performance of the80
low-lift cooling system with optimized pre-cooling
of TABSs is compared to that of a high-efficiency,
variable-capacity split-system air conditioner serv-
ing the same experimental chamber. These two sys-
tems have been chosen for experimental compari-85
son as a subset of the eight system configurations
simulated by Armstrong et al. (2009a, 2009b) and
Katipamula et al. (2010) comprising all combina-
tions of the following subsystem alternatives:

� a two-speed chiller or variable speed chiller,90
� a VAV system or a radiant cooling system with a

DOAS, and

� TES with predictive pre-cooling control or no
TES and no pre-cooling control.

The variable-capacity split-system air conditioner 95
serving the experimental test chamber is similar to
the radiant system with variable-speed chiller and
passive TES simulated in this previous research be-
cause the fan power of the ductless indoor unit is
very small (0.1076 W/L/s [0.05 W/CFM] at high 100
speed).

The research presented here advances the state
of the art in two important ways. First, a predictive
TABS pre-cooling control algorithm is developed
to control a low-lift chiller that accounts for the 105
TABS temperature response and its effect on chiller
efficiency. Second, a low-lift cooling system is tested
experimentally for the first time.

Literature review 110

Predictive control to pre-cool TES has been stud-
ied with a variety of system configurations and
operating modes. Topics addressed in the litera-
ture include pre-cooling of discrete-active TES,
such as ice-storage or stratified chilled-water tanks; 115
instrinsic-passive storage, such as building thermal
mass; and intrinsic thermo-active TES, such as a
TABS.

Traditional, intrinsic-passive TES applications
use conventional cooling equipment such as VAV 120
systems to sub-cool zones and thereby pre-cool
building thermal mass from zone air (Eto 1984;
Brandemuehl et al. 1990; Conniff 1991). TABS ther-
mal storage utililizes pipe embedded in the building
structure to actively charge building thermal mass, 125
which then passively absorbs heat from occupied
zones over the day subject to the temperature re-
sponse of both the zone system and TABS.

Pre-cooling strategies for intrinsic-passive TES
often involve a schedule of zone temperature set- 130
points and/or pre-cooling rates for conventional
VAV or other air handling systems. The schedules
attempt to reduce peak power demand or minimize
energy cost or consumption. Peak load reduction
by passive pre-cooling of TES through schedul- 135
ing zone set-points has been extensively studied
(Snyder and Newell 1990; Rabl and Norford 1991;
Keeney and Braun 1996; Braun and Chaturvedi
2002; Braun and Lee 2006; Roth et al. 2009) but the
impact of pre-cooling on chiller performance has 140
not. Henze et al. (1997, 2004) optimized zone set-
points and a discrete-active TES pre-cooling control
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schedule based on two constant coefficients of per-
formance (COPs) to account for the difference in
chiller COP during chilled-water and ice-making145
operation. Then studies appeared regarding the im-
pact of forecasting uncertainty (Henze et al. 1999),
adaptive thermal comfort criteria (Henze et al.
2007), energy and demand charges and other util-
ity rate structures (Braun 2007; Henze et al. 2008),150
and simplified optimization methods (Henze et al.
2010). However, none of the research above ac-
counts rigorously for the temperature- and load-
dependent performance of variable-speed chillers
that are highly efficient at part load, which may155
greatly enhance the energy efficiency of pre-cooling
strategies (Jiang et al. 2007; Armstrong et al. 2009a,
2009b; Katipamula et al. 2010).

Braun (1990) and Kintner-Meyer and Emery
(1995) presented pre-cooling control optimization160
methods in which the temperature and part-load-
dependent performance of conventional chillers
were taken into account. Chiller performance is
a function of condensing, evaporating, and part-
load conditions; however, the modeled chiller165
performance did not reflect more efficient part-
load and low-pressure-ratio operation now possi-
ble with high-efficiency variable-capacity chillers.
Armstrong et al. (2009a, 2009b) presented an ap-
proach in which semi-empirical component-based170
models of low-lift variable-capacity chillers are used
to optimize the control of a low-lift chiller serv-
ing idealized TES in simulation. Armstrong et al.
(2009a) simulated low-lift cooling systems in five
climates and reported significantly more potential175
cooling energy savings than previous pre-cooling
strategies. largely because of improved low-lift part-
load chiller performance. However, those authors
did not fully account for the transient response of
intrinsic-active TES, such as a TABS, and its impact180
on the performance of the low-lift chiller.

Effective control of cooling through TABSs
and its potential for cooling energy savings are
an open area of investigation (Doebbler et al.
2010). TABSs are most effective in buildings with185
high-performance envelopes and moderate loads
(Brunello et al. 2003; Lehmann et al. 2007) and
require careful humidity control, such as through a
DOAS (Adlam 1948; Mumma and Shank 2001), and
concrete surface or chilled-water temperature con-190
trol to prevent condensation. Olesen et al. (2002)
presented a study of control concepts for TABSs
that focused primarily on the timing and duration of
cooling the concrete core relative to thermal comfort

and pumping energy consumption. Recent develop- 195
ments in TABS control have focused on room tem-
perature feedback and pulse-width modulated pump
operation to further reduce pumping energy and im-
prove comfort (Güntensperger et al. 2005; Gwerder
et al. 2009). None of the foregoing TABS control 200
strategies accounts for the performance of the chiller
serving the TABS, and only recently has simplified
zone temperature feedback been incorporated into
the control (Gwerder et al. 2009).

Low-lift predictive pre-cooling 205

control for TABS

This article presents a model-based predictive
control algorithm for a TABS served by low-lift
chillers that incorporates zone and TABS thermal
response models as well as a low-lift chiller per- 210
formance model into the control. TABSs are partic-
ularly appropriate for low-lift cooling systems be-
cause of the following:

� TABSs require only moderate temperature chilled
water; 215

� TABSs have high thermal storage efficiency, de-
fined as the magnitude of stored cooling energy
extracted for cooling relative to the magnitude of
cooling energy delivered to storage; and

� TABSs operate with very low transport energy 220
costs.

A framework for optimal control of low-lift
chillers to pre-cool TABS is presented that deter-
mines an optimal control schedule at each hour,
looking ahead 24 hours. A 24-h look ahead is com- 225
mon in pre-cooling control algorithms, because av-
erage chiller efficiency can be enhanced by load
shifting relative to the diurnal cycle of outdoor tem-
perature and cooling loads (Krarti et al. 1999). In
some cases, especially in the case of discrete TES 230
where charging and discharging rates can be con-
trolled and when demand charges are taken into
account, longer prediction horizons may be appro-
priate. However, when TES consists only of a TABS,
the prediction horizon is limited in practice by the 235
capacity of TABS-TES and limited control over dis-
charge rates for stored cooling energy.

The control algorithm presented here minimizes
cooling energy consumption (or cost) over 24 hours
by controlling chiller compressor speed and con- 240
denser fan speed in a near-optimal way. The objec-
tive function includes a model of a variable-capacity
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chiller, presented in Gayeski et al. (2010), that
accounts for the temperature- and load-dependent
chiller power consumption and cooling rate. It also245
includes transfer function models of concrete-core
temperature response and zone temperature reponse
(Seem 1987; Armstrong et al. 2006a, 2006b). The
objective function for the model predictive control
optimization can be described mathematically as250
follows:

arg minω J =
24∑

N=1

(rN PN + ϕPON + PEN ), (1)

where J is the sum over 24 hours of the cooling
system energy consumption (or cost), a penalty for
operative temperatures outside of a comfort range,
and a penalty for chiller evaporating temperatures255
below a low temperature threshold. The variables
are as follows:

� rN is a weighting factor set to one to minimize
energy consumption or a utility rate to minimize
cost;260

� PN is the average power input to the cooling
system during hour N , which is a function of
outdoor temperature, evaporating temperature
(which is a function of concrete-core tempera-
ture), and the optimal compressor and condenser265
fan speeds at N ;

� ϕ is a weighting factor to penalize excursions
from an allowable operative temperature region;

� PON is a penalty function of zone operative tem-
peratures To,N at time N , which is a function of270
current and past thermal loads and temperatures
as described below; and

� PEN is a penalty function of chiller evaporating
temperature relative to a low temperature thresh-
old, which prevents predicted controls that would275
cause freezing.

Models for chiller performance and zone and
concrete-core temperature response implicit in
Equation 1 are described in the following sections.

Chiller performance model280

The cooling system energy consumption Pn in-
cludes the energy consumption of the water circula-
tion pump and the low-lift chiller serving the TABS
and is given by the following equation:

PN = Ppump,N + Pchiller,N (Tx,N , Te,N , ωN ,

f (Tx,N , Te,N , ωN )), (2)

where Ppump,N is the energy consumption of the 285
chilled-water pump over the hour N , and Pchiller,N

is a regression-based curve-fit model of the power
consumption of a low-lift chiller.

The chiller power consumption at hour N ,
Pchiller,N , is shown in Equation 3. It is a tri-cubic 290
in evaporating temperature Te, outdoor air tempera-
ture Tx, and compressor speed ω, with five additional
terms involving condenser fan speed f .

Pchiller,N

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 + c2Te + c3Tx + c4ω + c5T 2
e

+ c6T 2
x + c7ω

2 + c8TzTe + c9Teω

+ c10Txω + c11T 3
e + c12T 3

x + c13ω
3

+ c14T 2
e Tx + c15T 2

e ω + c16T 2
x Te

+ c17T 2
x ω + c18ω

2Te + c19ω
2Tx

+ c20TeTxω + c21 f + c22 f 2

+ c23 f Te + c24 f Tx + c25 f ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

N

(3)

The coefficients of this model can be determined
for variable-capacity chillers through regression 295
based on physics-based performance simulations
or measurements of actual chiller performance.
Models of the same form as Equation 3, but with
different coefficients, can be identified to represent
cooling capacity QCchiller,n and electric input ratio 300
(EIR) EIRchiller,n as functions of Te, Tx, ω, and f .
These models have been identified in a calibrated
test stand for the same manufacturer and model
of variable-capacity chiller/heat pump used in the
following described experiments. The identified 305
models for Equation 3 fit measured power, cooling
rate, and EIR with model accuracies of 5.5% or less
down to pressure ratios of 1.2 (Gayeski et al. 2010).
Models identified from measured data should not
be assumed to be valid outside of the range of 310
conditions tested experimentally. Curve-fit models,
suitable for integration in a predictive control al-
gorithm, can also be identified from physics-based
models of chillers (Zakula 2010) that may be gener-
ated by simulating a particular system configuration 315
given the capacity and configuration of each com-
ponent and a suitable range of operating conditions.

Zone and concrete-core temperature
response models

The presence of Te in Equations 2 and 3 requires 320
that evaporating temperature be estimated at each
time step of the 24-h optimization. The prediction
of Te may be based on engineering calculations
or data-driven models relating the chilled-water
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supply or return temperatures and the chilled-water325
flow rate to chiller evaporating temperature at spe-
cific operating conditions. For a given chiller with a
given evaporator water flow rate, a given compressor
speed, and a given closed-loop superheat control al-
gorithm, Te is directly related to chilled-water return330
temperature Tchwr (Armstrong et al. 2009b).

Gayeski (2010) showed that Tchwr can be pre-
dicted based on past cooling rates, return water
temperatures, and concrete-core temperature Tcc us-
ing a simple second-order transfer function model335
for Tchwr, equivalent to a second-order thermal RCQ1

model, as a function of cooling rate QCchiller and
concrete-core temperature Tcc measured at top-of-
tube elevation. This model is shown in Equation 4:

Tchwr,N =
N−1∑

n=N−2

anTchwr,n +
N∑

n=N−2

bnTcc,n

+
N∑

n=N−2

cnQCchiller,n. (4)

An application of comprehensive room transfer340
function (CRTF) models (Seem 1987; Armstrong
et al. 2006b) can be used to predict zone operative
temperature and concrete-core temperature Tcc in
Equation 4 (Gayeski 2010). A CRTF is a combina-
tion of two or more conduction transfer functions345
(Stephenson and Mitalas 1967, 1971) that predicts
cooling loads from zone temperatures, outdoor tem-
peratures, and thermal loads (Armstrong et al 2006a;
Seem 1987). Temperature CRTFs are complemen-
tary to CRTFs and predict zone temperatures from350
cooling rates, outdoor temperatures, and thermal
loads, rather than predicting cooling loads. Physical
constraints on the coefficients of temperature CRTF
models have been presented by Armstrong et al.
(2006b) that resulted in causal, stable, and gener-355
ally more reliable models than black-box models.

In low-lift predictive pre-cooling of the TABS,
the operative temperature To is predicted from the
following M th-order temperature CRTF model:

To,N =
N−1∑

n=N−M

onTo,n +
N∑

n=N−M

pnTx,n +
N∑

n=N−M

qnTa,n

+
N∑

n=N−M

rnQIn +
N∑

n=N−M

snQCchiller,n. (5)

The temperature of the concrete-core Tcc is pre- 360
dicted from a similar temperature-CRTF model:

Tcc,N =
N−1∑

n=N−M

dnTcc,n +
N∑

n=N−M

enTx,n

+
N∑

n=N−M

fnTa,n +
N∑

n=N−M

gnQIn

+
N∑

n=N−M

hnQCchiller,n. (6)

In Equations 5 and 6, To is the zone operative tem-
perature, Tcc is the concrete-core temperature, Tx is
the outdoor air temperature, Ta is an adjacent zone
temperature (multiple zones in general but in the ex- 365
periment only one), QI is the internal heat load, and
QCchiller is the cooling rate delivered by the low-lift
chiller. The lowercase letters are CRTF coefficients
for each variable at each time step n into the past.

The operative temperature To,N and concrete- 370
core temperature Tcc,N at the next time step N are
predicted from measurements of each variable at the
previous timesteps N – M to N – 1 and forecasts of
exogenous variables at timestep N . A number, Z –
1, of adjacent zones may be incorporated by creat- 375
ing Z CRTF models and solving for Z zone opera-
tive temperatures. The choice of chiller compressor
speed at each hour of the 24-h look-ahead control
schedule determines the cooling rate and, thus, zone
operative temperature, concrete-core temperature, 380
chilled-water temperature, evaporating temperature,
chiller power consumption, and chiller cooling rate
at each hour of the next day.

Operative temperature comfort penalty

The second term in Equation 1 accounts for zone 385
operative temperature comfort constraints. The op-
erative temperature penalty is given by the following
equation:

ϕPON

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ((To,min + 0.5)
−To,N )2 To,n ≤ To,min + 0.5

0 To,min + 0.5 < To,n

< To,max − 0.5

ϕ((To,N − (To,max

−0.5))2 To,nTo,max − 0.5

;

(7)
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To,min and To,max are the minimum and maximum
allowable operative temperatures, and To,N is the390
operative temperature at the current timestep N .
Operative temperatures outside of and within 0.5◦C
(0.9◦F) of the comfort bounds based on ASHRAE
Standard 55 (ASHRAE 2007) are penalized, with a
quadratically increasing penalty moving away from395
the comfort bounds so that the derivatives are contin-
uous at the boundaries. The weight ϕ penalizes op-
erative temperature excursion relative to power con-
sumption. A choice for ϕ greater than the minimum
chiller power consumption at a given speed will400
cause an operative temperature penalty greater than
the cost of running the chiller during that hour when
operative temperature exceeds comfort bounds by
0.5◦C (0.9◦F). The relative humidity of the zone
is not included in the pre-cooling objective func-405
tion because humidity is controlled separately by
a DOAS and does not take part in the pre-cooling
optimization.

Chiller operational constraint penalty

The last term in the objective function, PEn, is a410
constraint on the evaporating temperature Te of the
refrigerant to prevent control actions (cooling rates)
at future time steps that would cause the chiller to
freeze. The constraint Te,min can be chosen conser-
vatively to prevent Te below 1◦C (1.8◦F). The evap-415
orating temperature penalty function is as follows:

PEn =
{

0 Te(Tchwr,n) > Te,min

INF Te(Tchwr,n) ≤ Te,min

. (8)

Predictive pre-cooling control
optimization method

In the previous section, an objective function
was defined for the pre-cooling control algorithm,420
which contains penalties for energy consumed by
the cooling system, operative temperatures outside
of a defined comfort region, and low evaporating
temperatures. This section describes how the objec-
tive function in Equation 1 is minimized to optimize425
the chiller control over a 24-h look-ahead schedule.

Each hourly cost component of the objective
function is evaluated sequentially from hour 1 to
24. At a given timestep, the choice of compressor
speed will determine the cooling rates QCchiller and430
Pchiller and, along with exogenous variable forecasts,
will determine To, Tcc, Tchwr, and Te at the next time

step. The power consumption and cooling rate of the
chiller are non-linear functions of Tx, Te, ω, and f ,
where Te depends on previous choices of compres- 435
sor speed.

The chiller capacity and power consumption are
discontinuous at the minimal compressor speed, at
which they drop to zero. This discontinuity in power
consumption, representing the finite minimum ca- 440
pacity of the chiller and its auxiliary equipment,
precludes the use of gradient-based optimization
methods. Optimization methods that do not require
calculation of a gradient, such as direct search, gen-
eralized pattern search (GPS), genetic algorithms, 445
and simulated annealing, were considered for appli-
cation to this problem. In practice, GPS (Torczon
1997; Lewis and Torczon 1999, 2000, Audit and
Dennis 2003) was found to identify near-optimal
solutions within a few minutes on a standard per- 450
sonal computer.

The GPS seeks optimal compressor speeds for
every timestep N in the 24-h-ahead schedule of
chiller operation, resulting in a 24-dimensional
search space. The compressor speed at each hour 455
can take the values of ω = 0 Hz (off), and anywhere
within its range of operation, ωmin < ω < ωmax and
the resulting sequence of current and past ωN deter-
mine the evolution of Pchiller, QCchiller, To, Te, and
Tcc at the next timestep. Beginning with a guess at an 460
initial point in the 24-dimensional grid of compres-
sor speeds, the GPS evaluates, or polls, the objective
function at a grid of points created with a given grid
step size surrounding the initial guess for a more
optimal solution. If a more optimal solution is iden- 465
tified, the grid is polled again around that new point.
The grid step size is increased, up to the maximum
step size; each time a more optimal point in the grid
is identified to ensure that basins of convergence far
from the current point are tested. If a more optimal 470
grid point is not found at the largest grid step size,
the GPS continues around the current point with a
smaller grid step size, down to a minimum step size
to find the most optimal solution in that region of
convergence. The GPS stops when no more optimal 475
points can be found at the smallest grid step size.

A detailed explanation of the GPS algorithm
is included Matlab’s Global Optimization Toolbox:
User’s Guide (Mathworks 2010), and more infor-
mation can be found in Torczon (1997), Lewis and 480
Torczon (1999, 2000), and Audit and Dennis (2003).
Unlike the gradient-based method, GPS can search
different basins of convergence from an initial guess
within, for example, a basin of a local optimum.
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Figure 1. Closed-loop optimization of compressor speed for low-lift cooling of the TABS with pattern search.

However, GPS does not guarantee convergence to a485
global optimum.

A flowchart of the GPS algorithm implemented
for optimizing the daily schedule of compressor
speeds is shown in Figure 1. An initial guess of 24
compressor speeds

⇀
ωn is made at each hour, which490

may be based on the previous hour’s result. The
GPS algorithm is run to identify an optimal sched-
ule of compressor speeds

⇀
ωopt for the next 24 hours.

At each iteration of the pattern search, Equations 2
through 8 are applied to calculate Pchiller, QCchiller,495
To, Tcc, and Tchwr. The pattern search may be re-
peated at each hour in a closed-loop optimization
(Henze et al. 2004) with updated forecasts of out-
door air temperature Tx, adjacent zone air temper-
ature Ta, and internal loads QI at each hour. The500
optimal compressor speed for the first hour of the
optimization, computed by the GPS, determines
the chiller compressor speed for the next hour, after
which the process is repeated.

Experimental implementation of505

low-lift predictive pre-cooling of
TABS

The predictive control algorithm described above
has been implemented on a low-lift chiller serving a
concrete-core TABS in an experimental test cham-510
ber. The primary objective of these experiments was
to experimentally test the effectiveness of the pre-
dictive pre-cooling control algorithm. A secondary
objective was to compare the sensible cooling en-
ergy performance of the pre-cooled TABS radiant515

cooling system with a case similar to one of the
simulated basecase systems studied by Katipamula
et al. (2010). Of the eight other cases simulated,
the radiant system with a variable-capacity chiller
is closest to the variable-capacity, split-system air 520
conditioner used as the experimental base case. The
simulation and experimental base cases are simi-
lar in the lack of pre-cooling TES, transport energy
costs, and chiller performance.

Experimental facilities 525

An existing experimental test facility (Yang
1999; Kobayashi 2001) was adapted for testing low-
lift cooling experimentally. The lab includes two
chambers, one test chamber representing a typical
office zone with one exterior wall and another cli- 530
mate chamber used to simulate climate conditions
outside the exterior wall. The test chamber has di-
mensions of roughly 3.66 m by 5.18 m by 2.44 m
(12 ft by 17 ft by 8 ft). The walls of both chambers
are heavily insulated with a thermal resistance of 535
about 5.3 m2-K/W (30 ft2-F-hr/BTU). A partition
wall separates the test and climate chambers, which
contains three large double-pane windows with a
thermal resistance of approximately 0.27 m2-K/W
(1.53 ft2-F-hr/BTU). The surrounding environment 540
is a 6 m by 12 m (20 ft by 40 ft) high-bay laboratory
space maintained at 20◦C to 24◦C (68◦F to 75.2◦F).

The climate chamber temperature is controlled
by a constant-volume air handling unit with the
return air temperature set-point adjusted at every 545
hour to follow the typical summer week of a typical
meteorological year (TMY) weather file. The test
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Figure 2. Schematic elevation of the experimental test chamber and cooling system.

chamber has a modular floor constructed to mimic a
TABS using an aluminum-faced subfloor, polyethy-
lene (PEX) pipe, and 14.6-cm (5.75-in.) concrete550
pavers. Chilled water supplied by the low-lift chiller
cools the bottom of the concrete pavers via the
aluminum-faced subfloor, resulting in a thermal lag
between the time cooling is delivered and heat is
absorbed from the test chamber. The air-cooled555
variable-capacity low-lift chiller is installed in the
climate chamber. The chiller was constructed using
an off-the-shelf variable capacity split-system air
conditioner condensing unit, described in Gayeski
et al. (2010), with a rated seasonal energy efficiency560
ratio (SEER) of 16 BTU/Wh (4.69 Wth/We). To
convert this condensing unit to a low-lift chiller, a re-
frigerant loop through a brazed-plate heat exchanger
(BPHX) was added along with means to control the
compressor at low speeds to enable low-lift oper-565
ation. A schematic of the variable capacity chiller,
the climate and office test chamber, and associated
instrumentation is shown in Figure 2. Lighting and
electrical resistance heating elements simulate typ-
ical office internal gains.570

There are six parallel water loops in the radiant
floor, each made of 12.7-mm (0.5-in.) PEX pipe,

designed to minimize pressure drop in the TABS
radiant floor. The pipe spacing of 30.5 cm (12 in.) is
large and results in unnecessarily low chilled-water 575
temperatures and will be modified in future work.
The chilled-water pump serving the radiant floor
was operated at a constant speed of 0.13 L/s (2.1
GPM) with a power consumption of approximately
145 W/L/s (9.1 W/GPM). A variable-speed pump 580
may further improve the low-lift cooling system ef-
ficiency but will also increase model and optimiza-
tion complexity.

Data-driven temperature response model
identification 585

The coefficients of Equations 4 through 6, which
predict zone operative temperature, TABS concrete-
core temperature, and chiller evaporating tempera-
ture, must be identified from monitored data. In the
case of the experimental test chamber, the temper- 590
atures and loads in Equations 4 through 6 refer to
measured variables from sensors installed in the of-
fice test chamber and climate chamber shown in
Figure 3. To, Tx, Ta, and Tcc are calculated from sur- Q2

face and air temperatures measured using 24-gauge 595
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Figure 3. Left: Test office chamber with concrete radiant floor, simulated internal loads, and a conventional split-system air conditioner
indoor unit. Right: Low-lift chiller in the climate chamber.

special-limits thermocouples. Thermocouples con-
nected to a given multiplexer agree with each other
to within 0.01 K (0.018◦F) + 0.4%. Terminal ref-
erence sensors are accurate to 0.4 K over −25◦C to
50◦C (0.7◦F over −13◦F to 122◦F) and have been600
found to agree within 0.1 K (0.2 F) at room temper-
ature. QI , the internal heat rate to the zone, is mea-
sured using Wattnode power meters with a rated
accuracy of 0.5%. The cooling rate delivered by
the chiller, QCchiller, is calculated from chilled-water605
flow rate measured with an Omega FTB8007B flow
meter with an acurracy of 1.5%, and supply and
return temperatures, Tchws and Tchwr, are measured

using special-limits 1/16′′ sheathed thermocouple
probes. 610

M th-order models of zone operative tempera-
ture and concrete-core temperature can be iden-
tified from at least 4 days of training data using
multi-variable regression. A specific sample train-
ing dataset used to estimate the parameters of the 615
models given by Equations 4 through 6 for the
experimental test chamber is shown in Figure 4.
For this test chamber, an eighth-order model, with
30-min sampling intervals, provided the best 24-h-
ahead prediction accuracy (Gayeski 2010) when ap- 620
plied to separate validation datasets. For a variety of

Figure 4. Sample temperature response model training data.
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Figure 5. Twenty-four-hour-ahead forecasts relative to measured data of test chamber operative temperature (left) and concrete core
and return water temperature (right).

validation datasets spanning different cooling rates,
internal load schedules, and climate conditions, op-
erative temperature and concrete-core temperature
could be predicted over a 24-h look ahead with625
root-mean-square error (RMSE) of less than 0.5◦C
(0.9◦F) (Gayeski 2010). A second-order model for
chilled-water return temperature was identified from
the same training data based on measured cooling
rates and the TABS concrete-core temperature Tcc.630
This model had an RMSE of less than 1◦C (1.8◦F)
across all validation datasets. From the prediction
of chilled-water return temperature, the evaporating
temperature at the chiller can be calculated using the
approach temperature of the BPHX. The 24-h-ahead635
forecasts of operative temperature, concrete-core
temperature, and chilled-water return temperature
are compared to measured values in Figure 5. Using
logged data from a building automation system, the
coefficients of these models could be updated con-640
tinuously in a full-scale building. The model order
and sampling intervals that lead to the most accurate
data-driven temperature response models will differ
for different buildings and can be selected based on
validation data prediction accuracy.645

Experimental test procedure

The sensible cooling performance of the low-
lift cooling system with predictive pre-cooling of a
TABS was compared to that of a variable-capacity
split-system air conditioner in the test chamber. The650
split system represents one of the cases with no

pre-cooling simulated by Katipamula et al. (2010).
Two pairs of experiments were performed where
these systems were subjected to the typical sum-
mer week of the TMY weather for Atlanta, GA, at 655
Hartsfield-Jackson airport and for Phoenix, AZ, at
Deer Valley airport, August 24–30 in both cases.
The internal heat rate for the Atlanta tests repre-
sented standard performance loads for lighting and
internal equipment gains (Gayeski 2010; Katipa- 660
mula et al. 2010), but high occupant loads, for a
total of 36.6 W/m2 (11.6 BTU/hr-ft2) at peak load
and a load schedule representative of a small com-
mercial office. High-performance loads for lighting
and internal equipment gains (Gayeski 2010; Kati- 665
pamula et al. 2010), but again high occupant loads,
were applied in the Phoenix tests at a heat rate of
21.5 W/m2 (6.8 BTU/hr-ft2) at peak load. The total
loads, including high occupant loads, are oversized
to better match the chiller capacity and allow a suit- 670
able range for chiller operation.These loads were
measured with electric power meters as denoted in
Figure 2. The adjacent zone temperature Ta in Equa-
tions 4 and 5, represents the external lab temperature
and was held nearly constant. In these experiments 675
QI , Tx, and Ta are controlled and are thus predictable
inputs to the models and optimization algorithms. In
practice, these variables will have error and uncer-
tainty in prediction that must be taken into account
(Henze and Krarti 1999). 680

Because the TABS radiant floor provides only
sensible cooling, the relative humidity of the cham-
ber was kept as low as possible to avoid latent
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Figure 6. Typical low-lift pre-cooling optimization for TABS from an experimental test chamber (color figure available online).

cooling. As discussed above, latent cooling would
be performed separately by a DOAS with separate685
DX cooling or efficient dehumidification. Any con-
densed water produced during testing with the con-
ventional indoor unit was collected and weighed in
order to adjust cooling energy to the sensible cooling
basis.690

The following process was employed to evalu-
ate energy and thermal performance of the low-
lift cooling system relative to the variable-capacity
split-system air conditioner.

� The climate chamber was controlled at each hour695
to achieve typical summer week temperatures.

� The internal loads were controlled to deliver the
load schedules defined above to the test chamber.

� The low-lift cooling system with the TABS was
operated for one week, including one week-700
end, maintaining operative temperature between
19.5◦C and 25◦C (67◦F and 78◦F) (ASHRAE
2007) while occupied.

� The variable-capacity split-system air conditioner
was operated for one week, including one week-705
end, using conventional thermostatic control to

achieve the same daily average temperature as
the low-lift cooling system.

Figure 6 illustrates a typical sequence of optimal
compressor speeds for a 24-h look-ahead schedule 710
produced by the predictive control algorithm. Com-
pressor speeds for each of the 24 hours into the
future are shown at the top left. The predicted op-
erative temperature To, concrete-core temperature
Tcc, return water temperature Tchwr, and evaporating 715
temperature Te for this schedule are shown at the
top right. The predicted chiller power consumption
Pchiller is shown at bottom left, and the cumulative
energy consumption is shown at bottom right. For
the hour following this optimization, the low-lift 720
chiller would be operated at the first predicted opti-
mal compressor speed, which is 0 Hz (or off) in the
case below, and the predictive control optimization
would be repeated at the next hour, with the previous
hour’s schedule as an initial guess for the GPS. 725

The sequences illustrated in Figure 6 demon-
strate certain aspects of predictive control for low-
lift cooling with TABS. First, the most efficient time
to perform most of the cooling is at night and during
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Figure 7. Operative temperature and system power consumption of the low-lift cooling system and a split-system air conditioner
subject to Atlanta typical summer week conditions and standard efficiency loads.

the early morning hours under low-lift conditions.730
Second, the chiller runs at low part loads more of the
time, which is also more efficient. Third, because
the efficiency of the chiller depends on evaporat-
ing temperature, the compressor cycles off at times
to avoid low evaporating temperatures and provide735
higher chiller efficiency while operating at the low
end of its capacity range.

This predictive control algorithm operates con-
tinuously during the course of each experiment,
updating chiller compressor speed, fan speed, and740
chilled-water pump availability at each hour. The
tests described here were used to measure the perfor-
mance of the algorithm under typical summer week
conditions. The data-driven temperature response
model is not guaranteed to be valid under operat-745
ing conditions not previously observed. However,
the model may be updated continuously and over
time be trained for a broad range of thermal inputs.
Non-ideal cases, such as rapid or high frequency
changes in internal gains, were not tested experi-750
mentally. These types of inputs, if the models had
not yet been trained for them, would lead to greater
error in model predictions.

Energy and thermal performance

Figure 7 shows the zone operative temperature755
response and the system power consumption for the
Atlanta test for the low-lift cooling system and the
variable-capacity split-system air conditioner span-

ning the week of occupied operation. The intial tem-
perature conditions for the split- and low-lift sys- 760
tems differ because the systems were tested under
steady-periodic behavior, operating under the same
system for the previous week and achieving a typi-
cal Monday start-up condition. Two characteristics
of low-lift cooling are apparent in the pattern of en- 765
ergy consumption: (1) the cooling rate is distributed
over time, allowing the chiller to run at lower speeds
and lower part loads and (2) cooling is delivered to
the TABS overnight when lower condensing tem-
peratures are possible. 770

The average daily mean operative temperature
difference between the low-lift cooling system tests
and the split-system tests was small: 0.3◦C (0.54◦F)
for the Atlanta tests and −0.5◦C (−0.9◦F) for the
Phoenix tests. The main difference in thermal envi- 775
ronment provided by the systems is the slow tem-
perature rise of the conditioned zone for low-lift
cooling with TABS. High convective internal loads
cause significant increases in zone operative tem-
perature relative to the radiant cooling surface. This 780
is a recognized limitation of radiant cooling system
and TABSs (Meierhans 1996; Koschenz and Dorer
1999), which may preclude the application of the
TABS, and low-lift cooling with a TABS, from low
performance buildings and buildings with high in- 785
ternal loads.

Results similar to those shown in Figure 7 were
observed for testing under Phoenix conditions with
high-performance internal loads, except that the
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Table 1. Energy performance (±0.5%) of low-lift cooling system relative to a variable-capacity split-system air conditioner.

Atlanta, August 24–30 Phoenix, August 24–30

Performance metric Split system Low lift Difference Split system Low lift Difference

Energy (Whe) 14,465 10,982 −25% 21,153 17,205 −19%
Energy consumption

(Whe)a with latent
cooling deducted

14,053 10,982 −22% 21,153 17,205 −19%

Average pressure ratio 1.91 1.70 −11% 2.12 1.99 −6%

aThe latent energy consumption can only be estimated for split-system operation based on measurement of the mass of water
condensed. The low-lift system also may have performed some latent cooling.

lower internal convective heat rate provided by high-790
performance internal loads led, despite higher out-
door temperatures, to a lower operative temperature
rise. A comparison of the energy performance of
the two cooling systems in each of the two climates
is shown in Table 1. The table shows relative per-795
formance in terms of energy consumed and average
pressure ratio, representative of internal lift, for the
period of each test.

The results show that low-lift cooling system
sensible cooling energy savings can be signifi-800
cant relative to a high-efficiency split-system air
conditioner that uses the same variable-capacity
compressor-condensing unit but with no pre-
cooling. The measured energy consumption of the
experimental low-lift cooling system was 25% less805
than the split-system under Atlanta conditions and
19% less under Phoenix conditions. Accounting,
conservatively, for latent cooling performed by
the split system reduces the savings to 22% for
Atlanta.810

The closest system configurations modeled by
Katipamula et al. (2010) are not directly compara-
ble to the systems tested experimentally; however,
it is of interest to evaluate the experimental savings
relative to the most similar simulated savings for the815
same typical summer weeks in Atlanta and Phoenix
and similar internal loads. The simulated case with
a variable-speed chiller and radiant distribution is
closest to the variable-capacity split system tested
experimentally due to its low fan power and the820
absence of latent cooling. The simulated sensible
cooling energy savings of a low-lift cooling sys-
tem with variable-speed chiller and pre-cooling of
ideal TES relative to a comparable system without
pre-cooling TES in Atlanta was 26%. For Phoenix,825
with high-performance loads, the simulated sensible
cooling energy savings for the typical summer week

were 29%. Differences between simulated savings
and experimental savings are expected for several
reasons; the simulated TABS included an ideal TES 830
(pre-cooling case), a different chiller performance
map, and a lower (per unit capacity) evaporator to
zone thermal resistance. Neither the experimental
nor the simulated savings presented above include
the additional total cooling savings relative to con- 835
ventional VAV systems, which could be provided
by efficient latent cooling by a DOAS (Katipamula
et al. 2010).

The limitations of the experimental facility
should be considered when interpreting the experi- 840
mental results. The following factors caused lower
low-lift cooling system performance than possible
in theory:

� an oversized chiller is used because a compressor
small enough to match the small test chamber was 845
not available;

� the internal loads are oversized to better match
the chiller capacity but cause a greater operative
temperature rise and zone temperatures closely
coupled to convective loads and, consequently, 850
less load shifting;

� the single-story test chamber allows cooling en-
ergy losses through the floor, which would not
occur in a multi-story building; and

� the chilled-water pipe spacing of 30 cm (12 in.) 855
dictated by standard radiant heating components
is, in retrospect, too large for low-lift cooling
applications with a TABS. A smaller pitch of
10–15 cm (4–6 in.) typical of radiant cooling
applications would result in higher chilled-water 860
temperatures, higher evaporating temperatures,
and more efficient low-lift cooling system opera-
tion.
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Although the results presented above reflect a
comparison of a low-lift cooling system with only865
one other system configuration in two climates,
they are a useful benchmark against simulations
conducted in previous research (Armstrong et al.
2009a, 2009b; Katipamula et al. 2010). Further re-
search is required to adapt and implement this con-870
trol scheme in alternative low-lift cooling system
configurations, incorporate DOAS control of latent
loads, and compare performance to other systems.
These comparisons, however, are not trivial. Build-
ing simulation tools are still not fully capable of sim-875
ulating receding horizon model-predictive control
algorithms that include deteailed models of cooling
system performance and building temperature re-
sponse, especially with thermally massive TABSs.
Experimental comparisons are possible but expen-880
sive, time-consuming, and subject to uncertainties
that simulations neglect.

Summary

This article presents a data-driven, model-
based predictive control algorithm for low-lift885
chillers serving a concrete-core TABS and its
implementation in an experimental test cham-
ber. Temperature- and load-dependent curve-fit
chiller performance models and zone operative
temperature and concrete-core temperature CRTF890
models are incorporated into a predictive control
optimization algorithm. The algorithm determines
optimal sequences of compressor and condenser
fan speeds for each 24-h period to minimize low-lift
cooling system energy consumption while main-895
taining thermal comfort. Closed-loop optimization
has been successfully implemented in which the
optimal chiller control schedule is determined
at every hour based on the latest measured zone
temperatures and internal loads. In practice, these900
hourly updates would also consider new forecasts
of weather and internal loads.

An experimental implementation of the predic-
tive control algorithm for low-lift cooling with a
TABS demonstrated significant sensible cooling905
energy savings, consistent with previous simulation
results for low-lift cooling systems (Katipamula
et al. 2010). The experimental base system was
a high-efficiency split system served by the same
outdoor unit (compressor, condenser, EXV, andQ3910
power electronics) employed by the low-lift chiller.
The experiments for low-lift cooling with the
TABS under Atlanta conditions with standard

performance loads showed 25% sensible cooling
energy savings, and under Phoenix summer 915
conditions with high-performance internal loads,
it was 19%. Latent cooling energy has not been
included because low-lift cooling systems utilize a
separate DOAS for dehumidification, as described
by Armstrong et al. (2009a, 2009b). 920

Discussion

The predictive control strategy presented here
has been developed primarily for single-zone
low-lift predictive pre-cooling of TABS with
predictable loads. A number of important additions 925
and revisions must be made to this control strategy
for implementation in a broader context. First,
the algorithm should be revised to include solar
loads, measured or estimated occupant behaviors,
and multi-zone control and supply of the TABS. 930
The inclusion of a variable-speed chilled-water
pump serving the TABS and the chiller will also be
important, as it may allow for further improvements
in chiller efficiency and control.

A strategy that combines pre-cooling of TABS 935
with direct cooling of zones is likely to achieve the
best balance of system efficiency and comfort con-
trol. This will also ameliorate the effects of errors in
forecasts of exogenous variables, such as internal or
solar gains and outdoor temperature, and errors in 940
predictions of zone temperatures by the data-driven
models. Therefore, another important advance will
be to incorporate the option for direct cooling of the
zone, not through TABS but through conventional
air-side evaporators, large heat exchanger fan coil 945
units, or radiant cooling panels.

It is worth reiterating that the objective in this
work has been to minimize the energy needed to run
the cooling system. To minimize cost, one needs to
modify the rate function rN in Equation 1 using real- 950
time or time-of-use rates and add demand charges to
the objective function. Experience has shown con-
sistently that the resulting percent savings in oper-
ating cost are substantially larger than the energy
savings percentages (minimum based on flat rate) 955
for most utility customers.

Improvements to the experimental implementa-
tion of low-lift cooling with TABS presented in this
article will improve both the energy and thermal
performance of the system. These improvements in- 960
clude better load matching, decreased chilled-water
pipe pitch, additional under-slab insulation to better



UHVC_A_643752 hvcxml-v3.cls August 8, 2012 19:57

HVAC&R RESEARCH 15

mimic multi-story performance, and optimization
of the BPHX.
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