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a b s t r a c t

Estimates of daily electrical cooling load for a city of 800,000 are developed based on the relationship
between weather variables and daily-average electricity consumption over 1 year. The relationship is
found to be nearly linear above a threshold temperature. Temperature and humidity were found to be
the largest, at 59%, and second largest, at 21%, contributors to electrical cooling load. Direct normal irra-
diation intercepted by a vertical cylinder, DNI sin �, was found to be a useful explanatory variable when
modeling aggregates of buildings without a known or dominant orientation. The best study case model
umidity
ooling load
nergy signature
quivalent thermal parameters
ultivariate regression

used DNI sin � and diffuse horizontal irradiation (DHI) as distinct explanatory variables with annual elec-
trical cooling load contributions of 9% and 11% respectively. Although the seasonal variation in electrical
cooling load is large – on peak summer days more than 1.5 times the winter base load – the combined
direct and diffuse solar contribution is essentially flat through the year, a condition at odds with the
common assumption that solar cooling always provides a good match between supply and demand. The
final model gives an electrical cooling load estimate for Abu Dhabi Island that corresponds to 40% of the
total annual electrical load and 61% on the peak day.
. Introduction

Models that predict energy use in the built environment have
volved along two largely independent paths—one aimed at util-
ty (supply-side) forecasting applications and the other oriented
oward building (demand-side) performance applications. Utility
orecasting models typically aggregate demand over a large and
iverse set of loads, which complicates the use of physical or engi-
eering based models. Autoregressive models and ARMA models
ith just one weather variable, temperature, are prevalent.1 Build-

ng performance applications, on the other hand, often try to model
esponse to weather and other factors in order to assign a weather-
ormalized building energy performance rating or so that annual
nergy impact of efficiency retrofits can be estimated. Perhaps the
ldest supply side application, the heating degree day method, has
een used for over 100 years to forecast customer fuel requirements
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

1].
Electric utilities now use short-medium-and long-term fore-

asts routinely for such varied applications as long-term planning
monthly time steps) and load dispatch (fraction of hour to 1 day).

∗ Corresponding author. Tel.: +971 2 698 8139; fax: +971 2 698 8026.
E-mail addresses: mali@masdar.ac.ae (M.T. Ali),

armstrong@masdar.ac.ae (P. Armstrong).
1 Except for long-range planning, the opposite extreme, which is usually based

n historical trends and demographic and economic forecasts.

378-7788/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.enbuild.2010.07.025
© 2010 Elsevier B.V. All rights reserved.

Load control (a form of dispatch) and day-ahead price setting are
other important potential applications.

Building level models find application in rating systems, fault
detection, savings verification, retrofit and operational decision
making, calculation of demand response credits, and model-based
control. In fault detection, for example, deviations of model esti-
mates from measured responses may indicate a fault and an
associated change in one or more of the model parameters may
indicate the type of fault. Models based on daily data are quite com-
mon although shorter (hourly) and longer (weekly and monthly)
time steps have been used as well. Hourly and shorter time steps are
used mainly for component-level fault detection and model-based
control.

The present work is motivated by technology and policy ques-
tions germane to both supply and demand. For example, on the
supply side, the potential for large (urban scale) solar powered cool-
ing in hot, sunny climates is of interest. In order to properly size
a solar district cooling plant, the aggregate cooling loads should
be based on all of the significant load predictors—solar irradia-
tion, humidity and temperature. Utilizability and optimal sizing
are affected by seasonal variations of the solar resource, seasonal
variations of the cooling load, and the phase relation of these varia-
t model of community-aggregate electrical load, Energy Buildings

tions. On the demand-side, policy questions pertain to things such
as retrofit programs, energy codes, and equipment efficiency stan-
dards. Accurate cooling load models are needed to assess how new
demand response technologies, such as smart meters, will impact
both customer and energy supplier. These questions can be bet-

dx.doi.org/10.1016/j.enbuild.2010.07.025
dx.doi.org/10.1016/j.enbuild.2010.07.025
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er answered when existing energy end-use intensities are fully
nderstood.

In this paper we explore models based on the predominantly
inear and non-interacting influences of four weather variables. The
hysical basis of such models is described. The idea of a change-
oint that is a linear combination of the explanatory variables is

ntroduced and the need to model a transition region, rather than a
iscrete change-point, is addressed. The analysis is applied to the
lectrical system load of a Persian Gulf city, Abu Dhabi, in which
ooling load and solar resource are both substantial.

Energy demand forecasting models are typically formulated
s multivariate time-series models that may include independent
ariables representing weather conditions and day-type. For mod-
ls with a one day or larger time step, the most often used weather
ariable is mean daily outdoor dry-bulb temperature or a vari-
ble related to outdoor temperature such as heating or cooling
egree days with respect to a given base temperature [1,4–8].2 A
ew electric load forecast models include humidity and day-typing
9,10]. Models that use only past loads [11,12] and models that con-
ider day-typing and past loads without considering weather at all
13,14] can give satisfactory results for one-step ahead forecasts. In
15], the importance of solar irradiation is demonstrated. The most
ommon model forms are linear, linear with change-point, and
rtificial neural network. A review of utility forecasting methods
nd their application by different researchers is presented in [16].
imilar techniques are used to infer equivalent thermal parameters
ETP) or energy signatures (ES) of a building when applied on the
uilding level [17].

The ES/ETP models have been used to forecast heating and cool-
ng loads, heating or cooling plant input power, or whole building
lectric load. When used to forecast heating or cooling load on time
teps of under one day, the models typically include transient terms
18,19]. In [15,20–24], regression-based3 techniques are used while
n [12,25,26] fuzzy logic and neural network techniques are used.

ost of the efforts have been concerned with the heating loads of
uildings. In [22], a model for variable internal gains is presented.

n [26] among others, parameters accounting for both external and
nternal gains are considered for estimating the building energy
ignature. In [23], a detailed review of different models for heating
oads from building-level data is presented. In [27,28], regression
nalysis is used to identify building ETP or response function mod-
ls and develop controls for optimum operation of a chiller plant.
n [29,30], energy signatures are used to assess energy savings and
nancial feasibility of retrofit measures. A critical review of regres-
ion modeling applied to building-level loads is presented in [17].
n exhaustive review of energy models and their applications in
lanning, forecasting, emission reduction, etc. – from building level
o utility service area – is given in [31].

The technique one chooses for developing an energy signature,
TP, or other forecasting model depends on the amount and type
f data available, the application, and the simplifying assumptions
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

hat can or must be made [25,32]. In [33], comparison of 14 regres-
ion models used for forecasting is presented and the need for
ore data with increasing model complexity is illustrated. In [12],
comparison of fuzzy logic, neural network and linear regression-

2 A degree day is defined in terms of the difference between mean daily tem-
erature and a temperature threshold or degree day base [2]. The sum of positive
ifferences during a week, month or year is the cooling degree days for the period

n question and the absolute value of the sum of negative differences is the heating
egree days. Change point models typically estimate both the degree day base and
atio of heating or cooling load to temperature difference [3].

3 In the context of building energy use investigators use the term regression model
o mean a multi-variate linear or linear change-point model as opposed to a fuzzy or
eural network model. Change-point, ETP, and energy signature models are similar

n that they are all typically identified by regression.
 PRESS
ings xxx (2010) xxx–xxx

based modeling techniques is made and the data required to train
a model is shown to be least for linear regression models because
load–weather relationships are nearly linear and can therefore be
identified with just enough data to properly represent the extreme
conditions.

2. Building load data availability and characteristics

Residential and commercial building electrical loads typically
exhibit strong seasonal variation arising from operation of the
equipment that heats and cools the occupied spaces of these
buildings. These are the so-called heating, ventilating and air-
conditioning (HVAC) loads.

Non-HVAC loads, on the other hand, do not vary much with
weather. Non-HVAC loads include refrigeration, lighting, clothes
and dish-washers, water heating,4 consumer and office electronics,
and IT equipment. When considering the impacts of energy supply
and demand-side policies, it is imperative to know how energy is
used within a given population. The breakdown of electricity use
varies from one region to another based on price, climate, economic
activity and local customs. However, the energy consumption for
heating and/or cooling of buildings is almost always significant,
ranging from 10% to over 50% in most developing and developed
countries [34]. Policies to reduce HVAC energy consumption may
target the thermal loads, by introducing standards for the per-
formance of building envelopes, and minimum energy conversion
efficiency of HVAC equipment. Building codes may also target the
energy impacts of HVAC systems and controls.

The most reliable way to assess energy end-use is to mea-
sure it directly, but end-use metering is expensive and invasive.
Because the variability among buildings is large, confidence that
a given sample is representative of the underlying population can
be achieved only with large samples as in, for example, the End-
Use Load and Consumer Assessment Program (ELCAP) [35]. If ETP
or ES methods are used to infer HVAC end-uses, the uncertainty
is typically much greater than that for end-use metering. A similar
but little-used approach involves identification of heating and cool-
ing loads from seasonal load variations observed in aggregates of
buildings monitored at the feeder, substation, or higher level [36].

Both of these approaches are much less costly, per building, than
end-use metering and they can be combined. A modest sample
of building level load observations can provide information about
variance, while substation or higher level load observations pro-
vide estimates for a very large aggregate sample. The combination
of community-level and building-level seasonal load analyses can
thus address the sample size problem in a cost-effective way.

In this study we explore the community-level by looking at the
daily total energy delivered to a city. Abu Dhabi Island, a city of
about 800,000 [37] comprised largely of commercial and residen-
tial buildings, serves as the study case. The level of building type
homogeneity, although uncommon at this scale, is quite common
at the feeder or substation level. The methodology illustrated here
can therefore provide useful assessments of heating and cooling
loads at modest cost in many communities and urban areas. A
method of change-point identification for aggregates of buildings
is developed and a multivariate regression model that uses all the
physically meaningful explanatory variables (that can be applied at
t model of community-aggregate electrical load, Energy Buildings

the building level as well as to large aggregates of buildings) serves
to identify a community energy signature. The resulting model pro-
vides an estimate of the sensitivity of cooling load to each weather
variable. To demonstrate the method, 2008 daily-average electrical

4 Water heating loads vary with water mains temperature, which typically lags
(and blurs—i.e. low-pass filters) outdoor air temperature by months. For this study
we neglect the seasonal variation in water heating load.

dx.doi.org/10.1016/j.enbuild.2010.07.025
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ig. 1. Components of DNI used to model aggregate load of buildings without a
nown wall/roof surface ratio and without a known dominant orientation. Daily
alues are based on sum of hourly DNI components.

oad data for the entire city were obtained from the Abu Dhabi Dis-
ribution Company (ADDC) and 2008 daily-average weather data
rom a coastal weather station near Abu Dhabi served as the inde-
endent explanatory variables.

. Methodology

Our analysis procedure, in outline, follows accepted practice: (1)
ormulate a set of candidate models, (2) identify transition regions
r points, (3) test and refine the model. For aggregates of build-
ngs it is advantageous to model a transition region rather than a
istinct change-point and, because buildings are added during a
tudy period that spans months or years, we must add a growth
erm. The use of more than two weather variables is also novel for
hange-point models with 1-day or longer time steps.

The candidate models considered are multivariate linear and
i-linear combinations of weather, day-type and urban growth
erms. Candidate solar irradiation terms include global horizontal
rradiance (GHI), diffuse horizontal irradiance (DHI), direct normal
rradiance (DNI) on a vertical surface (DNI sin �) and DNI on a hor-
zontal surface (DNI cos �). The components of DNI incident on a
ypothetical cylindrical building are shown in Fig. 1.

Other weather variables include ambient temperature and spe-
ific humidity. To account for growth in building stock during the
elatively short period of 1 year, a linear-growth model5 is consid-
red. The aggregate load model described above may be expressed
s follows:

electric = (1 + C0t)(C1 + C2Ds + C3Df + C4T + C5w + C6GHI

+ C7DHI + C8DNI cos � + C9DNI sin �) (1)

here Welectric = average daily electrical load (MW), time = day
f year, Ds = Saturday indicator variable, Df = Friday indicator
ariable, T = daily mean outdoor dry-bulb temperature, w =
pecific humidity (mass ratio of kg moisture per kg dry air),
HI = diffuse horizontal irradiation (W/m2), DNI = direct normal

rradiation (W/m2), � = solar zenith angle (radian), cos � = ratio of
irect irradiation on a horizontal surface to DNI, sin � = ratio of
irect irradiation on a vertical surface to DNI, GHI = global horizon-
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

al irradiation.
The use of daily time steps means that transient thermal

esponse (lags) will have relatively little effect. Similar models
ave been used for whole-buildings and aggregates of buildings

5 Incorporation of the growth term results in a model with bilinear terms. The
east squares regression may be accomplished by applying a Levenburg–Marquardt
r partial least squares algorithm [38].
Fig. 2. RMSE versus temperature for linear-growth model with DHI and DNI sin �
terms (model 7, data set A).

operating in conditions that require heating every day (i.e. depths
of heating season) or cooling every day (depths of cooling sea-
son). Change-point models with fewer weather terms (usually
temperature only) have been widely used to model energy use
through transition seasons as well as heating and/or cooling season
response. Although, the Coefficient of Performance (COP) of cooling
equipment is in fact a function of outdoor temperature, part load
fraction and indoor conditions, its sensitivity is normally not very
large. The result of this constant-COP assumption is a linear load
model.

Eq. (1), when applied to a single building, models the daily
cooling load on days when conditions result in some amount of
cooling and no heating. For aggregates of buildings, we may relax
the requirement by saying that some amount of cooling is required
in most buildings equipped for cooling, provided that none are being
heated. We refer to days that satisfy this condition as cooling days
and to the locus of conditions on such days as the linear region. Since
Eq. (1) applies only to the linear region, it is necessary to identify
the transition region shown in Fig. 7, (usually modeled, for single
buildings, as a change-point) which is typically observed in swing
seasons. We refer to the lower boundary of the linear region as a
change-point to be identified by an iterative process that may be
described as successive filtering. Successive filtering is used to find
change-points defined in terms of temperature only, temperature
and humidity, and a linear combination of irradiation terms and
temperature.

The simplest and most commonly chosen [5,6,9] threshold for
the linear-to-transition region change-point is temperature. This
choice is consistent with the fact that most cooling systems are
thermostatically controlled. For the present case study we note that
identification of the exact change-point is not critical because the
number of points in the linear region is ample.

The linear-to-transition region change-point is estimated by
plotting RMSE as a function of threshold value. Fig. 2 indicates that
for this data set, the linear region ends at 18.5 ◦C. The average of
the specific humidity at this temperature is 0.0085 kg of water/kg
of dry air. Similar hot-climate temperature thresholds are reported
in [6,9] and also suggested in [5].

To establish the boundary between the base load6 region and the
transition region we could also use a simple temperature threshold.
However, it is desirable to identify this change-point as accurately
t model of community-aggregate electrical load, Energy Buildings

as possible because it corresponds to the base load which, in turn,
determines what fraction of the total annual electrical load may
be attributed to cooling. Because the base load sample is small (7
days) each day in the sample has a large impact on the base load

6 There is undoubtedly some heating on cold days but not enough to reliably
estimate a heating temperature coefficient.

dx.doi.org/10.1016/j.enbuild.2010.07.025
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Table 1
Correlation matrix (pair-wise R2) for the 2008 daily mean electrical load and weather data.

T w GHI DHI DNI cos � DNI sin � Load

T 1.000 0.874 0.651 0.570 0.201 −0.497 0.963
W 0.874 1.000 0.452 0.452 0.094 −0.455 0.916
GHI 0.651 0.452 1.000 0.398 0.686 −0.132 0.581
DHI 0.570 0.452 0.398 1.000 −0.394 −0.901 0.508
DNI cos � 0.201 0.094 0.686 −0.394 1.000 0.582 0.180
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to have the following form:

Welectric = (1 + C0t)(C1 + C2Ds + C3Df + C4T + C5w

+ C7DHI + C9DNI sin �) (4)

Table 2
Choice of solar irradiation terms from two- and three-term equivalent groups.
DNI sin � −0.497 −0.455 −0.132
Load 0.963 0.916 0.581

stimate. We therefore define an adjusted temperature (similar to
ol–air temperature) as:

adj = T + C6GHI+C7DHI + C8DNI cos �+C9DNI sin �
C4

(2)

he adjusted temperature corresponds to outdoor temperature and
olar radiation parts of the cooling load model identified for the
inear region. This model accounts for the fact that thermostats will
all for cooling when there are strong solar gains at a lower outdoor
emperature than when there are not strong solar gains.

Weekend and holiday electrical demands are presumed to
xhibit behaviors different from the demand behavior of typical
eekdays [5]. Therefore, day-typing is implemented to estimate

his behavior [9,16]. Possible day-types considered were Fridays,
aturdays, and holidays. UAE schools and offices are generally
losed on both Fridays and Saturdays. Shops are generally open
n Saturdays but closed on Fridays. Holidays spanning a period
f three days consecutively which are specific to Islam (30th
eptember–2nd October and 8th–10th December in 2008) are also
reated as Fridays. By setting C0 = 0, Eq. (1) reverts to a no-growth

odel and by setting C2 = C3 = 0 it reverts to a model with no
ay-typing.

Ten combinations of the four solar terms mentioned above were
nvestigated and the best model for the linear region was chosen
ased on least Root Mean Squared Error (RMSE), physical plausi-
ility and standard errors of estimated coefficients.

The resulting regression models were used to estimate the
aily-average electricity demand, a major component of which is
upposed, in the study case, to be cooling demand. The data set
as categorized in three data sets. Data set A comprises all the data

ecords. In order to assess the sensitivity of cooling load to weather
n the linear region, cold days were excluded in data set B, while,
n data set C weekends and holidays were also excluded.

In summary, the methodology as applied to a cooling-
ominated community like Abu Dhabi proceeds as follows:

Develop candidate models based on observed response to all
plausible available independent variables, day-types, and time.
Compute the correlation matrix to identify possible co-linearity
problems that may impact the later selection or elimination of
variables in the model.
Select model training and validation sets (not done in this study
for lack of data).
Identify change-points in outdoor temperature (or linear com-
bination of weather variables) by applying successive filtration.
The data are sorted by daily electrical load and regression is per-
formed as each successive record is added. The transition region is
identified when the rate of increase in RMSE becomes statistically
significant.
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

Test all combinations of explanatory variables. Select the best
regression model based on RMSE, t-values and Durbin–Watson
tests.
In the case of base load change-point, fit successive trend lines
to days with lowest cooling potential and apply Grubbs method
−0.901 0.582 1.000 −0.451
0.508 0.180 −0.451 1.000

[39] on the resulting data set with subsequent point for detection
of outliers.

Having identified the change-points, the coefficients of the lin-
ear region models and a transition region interpolating function, a
further analysis can be performed to estimate the share of cooling
load attributed to each weather variable.

4. Application

Least-squares regression is used to estimate the coefficients
for the linear regions of the different data sets and models con-
sidered. The day-type constants are removed from the models of
data sets B and C from which weekends were eliminated. Although
the models containing two or three irradiation components have
lower RMSE than models containing one or two, the former often
have negative coefficients for some of the terms. Any model with
a negative irradiation term is physically implausible because solar
irradiation always contributes to the cooling load positively. The
negative coefficients are partly due to multicollinearity present
between irradiation terms as can be seen in Table 1. Temperature
and specific humidity are also correlated but the coefficients are
seen in Appendix A to be much more stable, across models and
data sets, than the coefficients of the solar irradiation terms. There-
fore, elimination of certain irradiation terms, but not humidity, was
undertaken to address collinearity problems [40,41].

Note that in (1), only two of the three terms involving C6, C7 and
C8 are admissible in a given model because the associated random
variables are related exactly by:

DHI = GHI − DNI cos � (3)

Therefore, when DHI is considered, either the GHI or DNI cos � term
can be included but not both. The solar terms for models with two
and three irradiation terms are shown in Table 2 on the left and
the equivalent two- and three-term groups are shown on the right.
GHI appears usefully in only two of the Eq. (1) sub-models: one in
which GHI is the only solar term and the other with DNI sin �.

For the linear region (cooling days) the regression models results
for all 11 linearly independent combinations of radiation terms are
reported in Table 3. The best physically plausible model was found
t model of community-aggregate electrical load, Energy Buildings

N Terms used in the regression Equivalent groups

2 (DHI, DNI cos �) (GHI, DHI)
(GHI, DNI cos �)

3 (DNI sin �, DHI, DNI cos �) (DNI sin �, GHI, DHI)
(DNI sin �, GHI, DNI cos �)

dx.doi.org/10.1016/j.enbuild.2010.07.025
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Table 3
Regression results for the linear region (Data Set B, 305 records) with manually chosen growth coefficient of 0.128/year (0.00035/day). In this table only, specific humidity is in g/kg.

Random variables are listed in the left-most column and each model formulation is represented by a pair of columns headed by its numeric designation. Each model has two variants: a no-growth (NG) formulation
and a linear-growth (LG) formulation, thus creating the pair of columns for each model number. The coefficients are listed in the top section of the table and the t-statistics are reported in the middle section. Four rows
at the bottom report the overall performance of each model in terms of RMSE (MW), correlation coefficient R2, adjusted R2, and Durbin–Watson statistic. Green cells identify the best models based on RMSE. Because
RMSE variation among the candidate models is small, identification of the best model is based on R2 and Durbin–Watson statistic. Red cells identify shortcomings of the others relative to the best model. Corresponding
results for data sets A and C can be found on http://web.mit.edu/parmstr/Public/EnergyBuildingsAppendix/.

dx.doi.org/10.1016/j.enbuild.2010.07.025
http://web.mit.edu/parmstr/Public/EnergyBuildingsAppendix/
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this transition region we find a base load that can be estimated from
the days with the lowest cooling potential where cooling potential,

T
S

T
S

ig. 3. Predicted electrical load from linear-growth model 7 versus ADWEC data
data set A).

rom Fig. 3 and Table 4b, it can be seen that the linear growth model
ts the data better than its no-growth counterpart. However, from
able 4a, we observe that the t-value, 0.01, is very low. The growth
oefficient, C0, identified by the model is therefore not reliable. For
ooling dominated climates with practically no heating and a data
et that begins and ends in the cold season, a manual estimate
f C0 is possible based on matching the base loads at the begin-
ing and end of the year. By this means, a physically reasonable
rowth constant was found without significant (<1%) increase in
MSE. The manually assigned 0.00035 growth/day corresponds to
12.8% growth over the year while the regressed value corresponds

o 16.2%/year, a large number even by UAE standards. Building stock
ime-series data could be employed in cases where the base load-

atching adjustment used for this Abu Dhabi data set is not an
ption.
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

To check for an ill-conditioned data set, the regression analysis
as repeated after normalizing the data; the same residuals and

erm-by-term contributions to electrical load were obtained.

able 4a
tatistics for best fit no-growth and linear-growth models of the linear region (data set B

RMSE R2

No-growth 50.943 0.965
Linear-growth 43.333 0.975
Specified linear-growth 43.656 0.971

able 4b
tatistics for best fit no-growth and linear-growth models of the linear region (Model 7, d

Coefficient t-Va

No-growth Linear-growth No-g

Growth/day – 0.00035 –
Constant −803.22 −645.59 −15.
Saturday constant −19.186 −17.332 −2.
Friday constant −61.864 −58.475 −7.
Temperature 36.718 34.333 33.
Specific humidity 68001 52335 17.
DHI 0.516 0.747 2.
DNI on vertical surface 0.596 0.501 4.
 PRESS
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Fig. 4 shows that, except for cold days, identified by ‘+’, the
residuals are generally without structure. The cold-day residuals
are positive. In the “linear region” of T > 18.5 ◦C a small system-
atic variation of residuals with temperature is visible in Fig. 4(a).
In Fig. 5 we see some temporal structure in the residuals. This can
be quantitatively expressed by the Durbin–Watson test [42]. The
calculated value is below the threshold of 1.87 for a 95% confidence
interval. This can be due to growth model inadequacy and might
possibly be rectified by developing the growth model using build-
ing stock data. The Coefficient of Variation (RMSE/Wavg) obtained
for the best model is better than or similar to the values obtained
by other researchers using change-point models on building level
data [28,43,44]. Therefore, accuracy in estimation of cooling load
from electrical load using the above model is good. However, the
savings achieved by a policy decision may be difficult to estimate
at the community or regional level if market penetration is slow.
On the other hand, the effect of policy with small impact per build-
ing but high market penetration might be easier to detect on the
community-level than at the individual building level.

From Fig. 6, one can see that the distribution of data set B resid-
uals is nearly normal except in the positive (measured > modeled)
tail. This may stem from eliminating (treating as non-cooling days)
some days that really belong in set B or from the fact that the tail
is artificially truncated at the change-point. These would be days
that are in the linear region as far as cooling load is concerned but
appear not to be because they have an unusually high non-cooling
load—i.e. large deviation from mean base load. It suggests, as does
the thermodynamic basis of vapor-compression cooling [45] and
as does the slight structure observed in Fig. 3, that the assumption
of linear variation of load with temperature is not completely jus-
tified. With a stationary data set (loads for parts of the community
that are relatively free of demolition and construction) it is possible
that a more realistic model with physically meaningful non-linear
terms could be identified.

The linear model with temperature, humidity and solar irra-
diation terms works very well in the region above the 18.5 ◦C
threshold. Change-point model practitioners usually use a tem-
perature threshold to distinguish building-level cooling days from
non-cooling days [43,46]. We postulate that for aggregates of build-
ings there may not be a distinct change-point in the cooling load
behavior but rather, as illustrated in Fig. 7, a transition region. Below
t model of community-aggregate electrical load, Energy Buildings

Wp, is defined as:

Wp = C4T + C5w + C7DHI + C9DNI sin � (5)

).

CV-RMSE Adjusted R2 D–W test [52]

4.53% 0.964 0.681
3.86% 0.975 1.004
3.89% 0.970 1.016

ata set B).

lue [51,41] t-Value significance

rowth Linear-growth No-growth Linear-growth

0.010 – 0.992
484 −14.235 <10−3 <10−3

278 −2.401 0.023 0.017
523 −8.295 <10−3 <10−3

327 36.323 <10−3 <10−3

634 14.783 <10−3 <10−3

306 3.885 0.022 <10−3

256 4.143 <10−3 <10−3

dx.doi.org/10.1016/j.enbuild.2010.07.025
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Fig. 4. Plot illustrating random distribution of residuals with w

Fig. 5. Plot illustrating moderate structure in the residuals of linear-growth model
7 (data set A).

Fig. 6. Plot illustrating verification of normality of errors assumption in regression
(data set B).
eather parameters of linear-growth model 7 (data set A).

Although the cooling load on these days may be so small as to be
indistinguishable from random variations in the base load, Eq. (5)
can be used to rank the potential for total daily cooling load. The
most sensitive test is the one that considers each day in order of
increasing cooling potential. A linear model was fit to the successive
data points representing the lowest cooling potential. The deviation
of the subsequent data point from the linear model was computed.
The Grubbs outlier detection test [39] was applied to the resulting
data set at the 95% confidence level. The first outlier was detected
at the 8th point.

The t-statistic indicates that the trend of the first 7 points is not
significant. This means that the daily load of the lowest ranked 7
days is essentially invariant with the cooling potential. Therefore,
the mean weekday base load is computed from these 7 data points
as 596.5 MW with a standard deviation of 21.73 MW. The foregoing
t model of community-aggregate electrical load, Energy Buildings

points pertaining to the relation between daily load and cooling
potential are illustrated in Fig. 8.

Although a good deal of cooling equipment may be left running,
the lack of any relation between load and cooling potential is an

Fig. 7. Three regions characterized by different behavior of electrical load with
temperature (hypothetical non-heating climate).

dx.doi.org/10.1016/j.enbuild.2010.07.025
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small fraction: about 8% of total electrical load or 20% of the cooling
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C

ig. 8. Urban-growth and day-type-adjusted daily load versus solar-irradiation-
djusted outdoor temperature (data set A).

ndication that there is very little useful cooling in the lowest ranked
days. Many commercial building cooling plants produce chilled
ater 24 × 7 even when there are no coil loads.

The daily cooling load contributions may be evaluated as fol-
ows:

WT = C4(T − TBASE)+;
Ww = C5(w − w@TBASE)+;
WDHI = C7DHI;
WDNI V = C9 DNI sin �

(6)
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

here (x)+ returns only positive values (i.e. x for x > 0 and 0 other-
ise). To see the weather effects more clearly in Fig. 9, we plot the
aytype- and growth-normalized total load (top trajectory) given

Fig. 9. Daytype and growth-normalized model (Eqs. (6)–(10)) e

able 5
ontributions of different model parameters in growth and day-type-adjusted-electrical

Total (TW h) Averag

Temperature 2.0164 231.45
Specific humidity 0.7215 82.81
DHI 0.3767 43.24
DNI on vertical surface 0.3021 34.68
Base load 5.1954 596.50
Total load 8.6121 988.68
Total cooling electrical load 3.4167 392.18
 PRESS
ings xxx (2010) xxx–xxx

by:

W1 = C1 + C4T + C5w + C7DHI + C9DNI sin �; (7)

The boundaries of the shaded areas plotted in Fig. 9 are given by
successive subtractions:

W2 = W1 − WT ;
W3 = W2 − Ww;
W4 = W3 − WDHI;
W5 = W4 − WDNI V;

(8)

The temperature and humidity at the base of the linear region
define a transition load given by:

WX = C1 + C2Ds + C3Df + C4TBASE + C5w@TBASE (9)

When W1 falls below the base load, W1 is taken equal to base load.
When W5 < WX, each of the components from W1 to W5 are mul-
tiplied by an interpolation factor. The interpolation factor must
provide a continuous response surface between the linear region
(Wx) and the base load (WBL) identified by outlier detection, as the
mean of the 7 points that fall below the transition region. One such
interpolating factor is defined as:

Interpolation factor = W1 − WBL

W1 − WX
(10)

Estimates of the annual contributions to the total annual elec-
trical demand of Abu Dhabi can now be evaluated by summing W
terms over the year and taking the appropriate differences. The
results of these calculations are presented in Table 5. The solar
contribution to the electrical load is seen to represent a relatively
t model of community-aggregate electrical load, Energy Buildings

load. While the combined effect of solar radiation components is
remarkably flat over the year, the contribution of the direct solar
component, DNI sin �, is seen to be much higher than the contribu-
tion of the diffuse solar component in the winter months. Around

stimates of load attributed to each weather component.

load for specified-growth model 7 with change-points (data set A).

e (MW) % of Total load % of Cooling load

23.4 59.01
8.4 21.12
4.4 11.03
3.5 8.84

60.3 –
100 –

39.7 100

dx.doi.org/10.1016/j.enbuild.2010.07.025
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1% of the annual electrical cooling load is associated with humid-
ty which suggests that buildings are either leaky or the rate of fresh
ir supplied to the building is much higher than necessary. Temper-
ture accounts for 23% of the total load or 59% of the cooling load.
his does not fully explain the relative success of models that use
emperature as the only weather variable. Rather, it is probably the
act that there is also a strong correlation between humidity and
emperature that makes temperature-only based models viable in

ost building populations.
The average total load, 988.68 MW, minus the estimated average

ase load, (366*596.5 − 52*17.332 − 57*58.475)/366 = 584.93 MW,
ives an estimated average cooling load of 404 MW or 40% of the
otal. The fraction of the peak daily load that can be attributed to
ooling is also of interest. The peak load of 1532.5 MW occurs on
Sunday (workday in UAE) and this represents a cooling load that

s (1532.5 − 596.5)/1532.5 = 61% of the peak day average total load.
he cooling load fraction is similar to that found in nearby Al-Ain
47].

. Discussion

As reported by others [48,49], we find that electrical load is
trongly correlated with exposure of buildings to solar irradiation.
owever, in the case of Abu Dhabi, we have found that most of

he large seasonal variation in electrical load must be attributed
ot to solar irradiation but to specific humidity and temperature.
he annual solar contribution to cooling load is comparable to
he annual humidity contribution but much flatter. Nevertheless,
he day-to-day variations in electrical load are well, and to large
xtent independently, correlated with the two solar terms DHI
nd DNI sin �. The coefficients of these two terms may be thought
f as corresponding to aggregate equivalent aperture areas for
he interception of diffuse and direct solar irradiation. The coef-
cient of the temperature term may be thought of as a sum of
he aggregate envelope thermal conductance and aggregate ven-
ilation thermal capacitance rate. The coefficient of the humidity
erm can be interpreted as an aggregate ventilation rate times the
nthalpy of condensation per unit of ventilation air. Embedded in
he foregoing interpretations is an unknown constant of propor-
ionality representing the average COP for community-aggregate
ooling systems.

.1. Limitations of a community-aggregate load model

The impact that non-cooling electrical loads, such as lighting,
ave on cooling loads cannot be assessed from the models and
ata investigated here because the base load term includes not
nly the equipment and lighting inside buildings but also exte-
ior lighting, street lighting, distribution losses, and other urban
nfrastructure loads such as communications and water and sewer
umping stations. The interior non-cooling loads contribute to the
hermal load which, in turn, increases the electrical cooling load,
hile the exterior electrical loads do not contribute to cooling

oad.
In general, each building has its own energy signature com-

rising a unique change-region and base load intercept: (1) some
uildings may follow a linear load-temperature curve to well below
he threshold determined for the full sample, (2) after cooling ends,
ome buildings may begin to call for heating, (3) yet others may call
or heating in some spaces while cooling is still called for in oth-
Please cite this article in press as: M.T. Ali, et al., A cooling change-poin
(2010), doi:10.1016/j.enbuild.2010.07.025

rs, (4) use of reheat may be substantial in some buildings and (5)
thers may never call for heating at all. These behaviors have been
dentified historically by identifying ES/ETP models at the individ-
al building level and there is reason to expect that, to the extent
f local homogeneity in building thermal and use characteristics,
 PRESS
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feeder-level model identification will result in more clearly defined
heating and cooling transition regions.

The effects of COP and saturation with outdoor temperature
were not modeled. However, with a stationary data set, e.g. load
time-series for a part of the community that is relatively free of
demolition and construction, it is possible that these second-order
effects could be reliably identified.

5.2. Limitations of building-level models

It is currently possible for a utility to process and fit a change-
point or change-region model to every single metered building in
its service territory based on monthly billing data [50] and with
advanced metering, a daily data feed is economically, as well as
technically, feasible so that such a process may be automated. But
even with building level data, the allocation of cooling load to tem-
perature, humidity, and solar irradiation, is problematic under light
cooling loads. One can begin to estimate that part of the cooling load
tied to internal gains only after the base load has been separated
into indoor and outdoor loads. These details, if needed, are best
(and, perhaps, only) be understood by end-use metering.

6. Conclusion

A change-point model with a transition region interpolating
function has been developed. The change points are defined in
terms of linear combinations of the weather variables. The linear-
region model is found to have different sensitivities to the vertical
and horizontal components of DNI as would be expected on phys-
ical grounds.

The analysis suggests that the main characteristics of aggregate
cooling load can be inferred approximately from electric utility
system load time-series data and contemporaneous local weather
when the building population in question is sufficiently homo-
geneous and the aggregate cooling load is a large fraction of the
system load. For the case studied, we see that the decrease in
electrical load is relatively small on weekends, suggesting that a
substantial fraction of cooling equipment and/or other loads are in
continuous operation. The significant contribution of humidity to
cooling load suggests that ventilation retrofits could have a large
impact. These might include weatherization, demand-controlled
ventilation, dedicated outdoor air systems, enthalpy recovery and
desiccant dehumidification.

Building thermal inertia has not been modeled. For the 1-day
sampling time, as used this analysis, thermal inertia effects are gen-
erally small. Other second-order effects like sol-air temperature
(effect of wind and irradiation on building exterior surface temper-
atures), wind- and buoyancy-driven infiltration, and COP variations
with ambient dry-bulb and wet-bulb temperatures are not cur-
rently modeled. Saturation effects – when loads exceed cooling
capacity of some buildings during extreme heat – are likewise not
modeled. Further work should attempt to address these effects by
using more detailed data sets, e.g. contemporaneous interval meter
data from a sample of individual buildings, seasonal water heating
estimates, building stock time-series, street lighting schedules and
system water use.
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