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ABSTRACT  
This paper describes a predictive control algorithm that optimizes the control of a low-lift chiller, a 

chiller run at low pressure ratios, serving a thermo-active building system such as a radiant concrete-core 
slab.  Prior research on control and optimization methods for pre-cooling buildings are reviewed.  A 
predictive control algorithm is presented that incorporates a model of chiller performance at low pressure 
ratios, data-driven models of zone and thermal mass temperature response, and forecasts of outdoor 
temperatures and internal loads.  The energy consumption of the cooling system, including chiller 
compressor, condenser fan, and chilled water pump energy consumption is minimized over a 24-hour look-
ahead moving horizon. A generalized pattern-search optimization over compressor and condenser fan 
speed is performed to identify optimal chiller contro schedules at every hour.  The predicted temperature 
response of the thermo-active building system is especially important as it is directly related to chilled 
water return temperature and refrigerant evaporating temperature, and consequently to the efficiency of 
the chiller at each time step. 

INTRODUCTION 
Low-lift cooling combines variable capacity chillers operated at low pressure ratios with predictive 

pre-cooling of thermal energy storage (TES), such as thermo-active building systems (TABS). Low-lift 
cooling systems offer the potential for significant cooling energy savings in many climates and many 
building types, on average as much as 60 to 70 percent cooling energy savings relative to conventional 
variable air volume (VAV) systems in standard buildings (Armstrong et al 2009a, Armstrong et al 2009b, 
Katipamula et al 2010).  This paper will describe the development of an important control element for low-
lift cooling with TABS, a model-based predictive control algorithm that optimizes control of a low-lift 
chiller identifies to pre-cool TABS thermal storage.   

BACKGROUND 
Signficant improvement in the coefficient of performance (COP) of variable capacity chillers can be 

achieved by operating them at low pressure ratios (Gayeski et al 2010).  Typically, low pressure ratio 
operation is difficult to achieve because chillers operate during the day, when outdoor air temperatures are 
high, and with chilled water temperatures around 6.7°C (~44°F), such that condensing temperature is 
necessarily high and evaporating temperatures are low.   

 
In a low-lift cooling system, predictive pre-cooling of thermal storage is utilized to spread the cooling 

load over a day and shift loads to the night and early morning hours, reducing condensing temperature by 
reducing the outdoor air temperature present during chiller operation and allowing more part-load 
operation.  Combining this approach with a radiant cooling system, such as a concrete-core radiant TABS, 
allows for operation at higher chilled water temperatures and thus higher evaporating temperatures.  
Combining these two strategies allows a low-lift chiller to operate at part-load under low-lift conditions for 
more of the day, while still meeting cooling loads by pre-cooling TABS, which in turn passively cools 
thermal zones during occupied periods. 

 
Past research has shown that low-lift cooling systems have large energy savings potential across a 

range of climates and building types.  The estimated energy savings of low-lift cooling over typical variable 
air volume (VAV) systems common in the United States with conventional two-speed chillers are large.   
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For typical buildings, cooling energy savings range from 37 to 84 percent depending on the climate and 
building type [Katipamula et al 2010].  In high performance buildings, savings range from -9 to 70 percent 
of cooling energy consumption. The low end demonstrates that low-lift radiant cooling may not be 
attractive for high performance buildings in mild climates where free cooling through economizers is 
available.  Although low-lift cooling is a relatively new concept from a systems integration viewpoint, the 
component cooling strategies, constituent systems and pre-cooling control strategies have a long history of 
research, development and implementation.  

 
One key to achieving low-lift cooling is a predictive control algorithm which determines the optimal 

control of the low-lift chiller at each hour over a day to pre-cool thermal storage, such as TABS.  The 
following section will review the significant past research on the use of pre-cooling and predictive control 
of cooling equipment to shift loads, reduce peak demand, reduce operating costs and energy consumption, 
and increase chiller efficiency. Recent research on control strategies for TABS will also be reviewed. 

LITERATURE REVIEW 
Past research on predictive control of cooling systems to pre-cool TES has covered a broad range of 

topics.  These topics include pre-cooling of active TES such as ice-storage or stratified chilled water tanks, 
passive storage such as building thermal mass, and thermo-active TES such as TABS.  Traditional, passive 
TES applications use conventional cooling equipment such as VAV systems to sub-cool zones and thereby 
pre-cool building thermal mass.  TABS thermal storage utililizes pipe embedded in the building structure to 
actively charge building thermal mass, which then absorbs heat from occupied zones over the day subject 
to the temperature response of both the zone and TABS systems.  This section will first review predictive 
pre-cooling control with conventional cooling equipment, such as pre-cooling with VAV systems, followed 
by a review of controls applied to TABS systems. 

Passive pre-cooling of building thermal energy storage 

In simplified pre-cooling strategies for passive TES a schedule of zone temperature setpoints for 
conventional VAV or other air handling systems are determined that reduce peak power demand or 
minimize energy or costs.  Rabl and Norford (1991) used a first-order thermal resistance-capacitance (RC) 
model of zone temperature response to determine the duration of pre-cooling and a temperature setpoint 
schedule to reduce peak demand.  Snyder and Newell (1990) use a first order thermal RC model to find 
optimal control strategies for cooling cost minimization to achieve load shifting and demand limiting.  The 
optimization determines pre-cooling start time, the duration of time the zone is allowed to float until it 
reaches maximum allowed temperature, and the thermal mass temperature at the start of the occupied 
period.   

 
Keeney and Braun (1997) applied a constant zone temperature setpoint schedule to pre-cool a large 

commericial building with conventional air handling units and demonstrated potential for $25,000 savings 
per month in the peak cooling season.  Braun and Lee (2006, 2008a, 2008b, 2008c) have extensively 
researched the use of optimal zone temperature setpoint trajectories to pre-cool small commercial buildings 
with conventional air handling systems to limit peak demand.  Power consumption of the cooling system is 
assumed to be a linear function of the outdoor temperature.  These approaches are relatively simple to 
implement in existing building automation systems, but make gross assumptions about cooling system 
power consumption as a function of operating conditions. 

 
Henze et al (1997, 2004, 2005) developed an optimal chiller control algorithm to minimize cooling 

costs using passive TES, such as building thermal mass, and active TES, such as ice-storage, under a 
dynamic utility rate structure.  However, they assume constant chiller coefficient of performance (COP) for 
chilled water and ice-making operation, independent of outdoor temperature and supply air or zone air 
temperature.   The problem is thus split into two separate optimizations: one in which zone air temperature 
set points are optimized to minimize cooling load (where power consumption is assumed to be directly 
proportional to cooling load); and another in which an optimal charging and discharging schedule for active 
TES is determined to meet a total daily cooling calculated from the passive storage optimization.   
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By separating the passive and active TES optimization problems and treating chiller efficiency as a 
constant, the passive TES optimization remains a linear problem in which zone temperatures are adjusted to 
minimize cooling load under an assumed active TES charging and discharging schedule.  This allows for 
the application of a quasi-Newton optimization method to the passive TES problem, coupled with a 
dynamic programming optimization for the active TES problem.   

 
Additional research by Henze and others investigated the impact of forecasting uncertainty on the 

predictive optimal control of active and passive TES (Henze et al 1999), the impact of adaptive thermal 
comfort criteria and peak weather conditions (Henze et al 2007a), and optimal control in the presence of 
energy and demand charges (Henze et al 2008).  Henze et al (2007b) investigated the sensitivity of optimal 
TES control to utility rate structure, occupancy schedules, internal gains, the amount of building thermal 
mass, temperature set-points, and climate conditions.    Henze et al (2010) attempted to create near-optimal 
control trajectories using simplified relationships between optimal setpoints and measured variables for 
specific climates and utility rate structures, such as outdoor air temperature.  They found that a simplified 
control relationship was not always achievable. 

 
Liu and Henze (2004, 2006a, 2006b) applied simulated reinforcement learning to optimize pre-cooling 

of active and passive TES using a hybrid approach incorporating model-based control with reinforcement 
learning.  This hybrid approach to pre-cooling control achieved 8.3 percent cost savings in an experiment at 
the Iowa Energy Resource Station relative to no pre-cooling control, but achieved only modest savings 
relative to other pre-cooling strategies.   

 
The focus of all of this prior research is on the use of conventational cooling systems, such as VAV 

systems, to perform passive pre-cooling of zones and  to coordinate passive pre-cooling with active TES 
systems.  The research above does not significantly take into account the temperature and load dependent 
performance of chillers, which greatly influence the energy performance of pre-cooling strategies. 

Incorporating chiller performance models into pre-cooling control optimization 

A more rigorous approach, but one that requires significantly more information, model complexity, 
and computational resources and is more difficult to implement optimizes control schedules using models 
of zone temperature response and load-dependent cooling plant power consumption.  Braun (1990) takes an 
approach similar to that developed in this research.  An optimization is presented that uses a comprehensive 
room transfer function (CRTF) model (Seem 1987, Armstrong et al 2006a) of zone temperature response; a 
cooling plant power model as a function of chilled water loop load, outdoor wet-bulb temperature, and 
supply air temperature difference; and an air handler power consumption model.  The zone temperature 
setpoints air optimized over a 24-hour look ahead to minimize energy cost, which depends on the zone 
temperature trajectories and resulting power consumption of the air handlers and chiller plant equipment.  
Forecasts of solar loads, internal loads and outdoor climate conditions are included in the model of zone 
temperature response. A direct search method to optimize zone temperature set points that minimize 
electric costs over a 24 hour period (Braun 1990). 

 
Kintner-Meyer and Emery (1995) present a pre-cooling optimization in which the temperature and 

load dependent performance of chillers is taken into account for pre-cooling both passive TES and active 
TES in the form of ice or chilled water storage.  An optimization over 24 hours is performed in which air 
flow rate, chiller part load fractions for two separate chillers, and charging and discharging rates for active 
TES are determined.  They model cooling plant power consumption with a chiller efficiency that is a 
function of part load fraction, outdoor wet-bulb temperature and chilled water temperature.   

 
Armstrong et al (2009a, 2009b) present an approach in which physics-based models of variable 

capacity chillers and CRTF-based temperature response models of zones are used to optimize the control of 
a low-lift chiller serving idealized TES.  This work focuses primarily on optimizing the performance of the 
low-lift chiller, which when allowed to operate at low part-load, and thus low-lift conditions, is 
significantly more efficient (Armstrong et al 2009a, Gayeski 2010).  Applying predictive pre-cooling to 
TES served by variable capacity low-lift chillers shows the potential for significantly more energy and cost 
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savings relative to prior approachs to pre-cooling with conventional cooling equipment (Armstrong et al 
2009b).   

Pre-cooling thermo-active building systems with predictively controlled low-lift chillers 

This paper seeks to integrate the low-lift pre-cooling control strategies developed in Armstrong et al 
(2009a, 2009b), Katipamula et al (2007, 2010) with TABS, in which concrete-core radiant slabs are used as 
TES.  TABS are particularly appropriate for pre-cooling because they can be actively charged by 
circulating moderate temperature chilled water through the concrete-core, but have high thermal storage 
efficiency and no additional transport energy costs like passive storage.  TABS provide an inherent delay 
between active charging of the TES and passive discharge to the zones which must be incorporated into the 
predictive pre-cooling control schedule.   

 
Caution must be exercised in the design and control of TABS, as in any radiant cooling system, 

because of condensation issues and cooling capacity limitations.  TABS are most effective in buildings 
with high performance envelopes and moderate loads (Brunello et al 2003, Lehmann et al 2007).  They also 
require careful humidity control, such as through a dedicated outdoor air system (DOAS), or chilled water 
and/or concrete surface temperature control to prevent condensation.  

 
Research on control strategies for TABS has a relatively short history.  Chen (2001, 2002) developed a 

predictive control algorithm to minimize cost or energy consumption of a radiant concrete-core floor 
heating system.  Chen utilizes a detailed temperature response model of the zone and concrete-core slab, 
but, similar to other work in which chiller efficiency is constant, the efficiency of the heating plant is not 
weather dependent or dependent on past heating rates.  Applying a similar approach to pre-cooling TABS 
with low-lift chillers would not sufficiently account for the load and temperature dependent performance of 
a low-lift chiller.   

 
Olesen et al (2002) presented a study of control concepts that may be applied to concrete-core TABS 

providing both heating and cooling.  These concepts included: “time of operation” control in which the 
concrete-core was only pre-cooled outside of occupied hours and a ventilation system was used during 
occupied hours; “intermittent operation of circulation pump” control in which the circulation pump for the 
concrete-core cooling system was shut off and turned back on at periodic intervals to save pumping energy; 
and “control of water temperature” control in which a variety of water temperature control strategies were 
investigated.  Olesen determined that the best comfort and energy performance was achieved by a water 
temperature control strategy in which supply or average water temperature was controlled based on outdoor 
temperature.  

 
Further advances in control for TABS incorporated room temperature feedback and pulse-width 

modulated (PWM) intermittent operation of the water circulation pump, combined with supply water 
temperature control (Gwerder et al 2007, Gwerder et al 2009). Room temperature feedback allows for 
better comfort control and easier tuning of the control algorithm.  Gwerder et al (2009) use a first order 
thermal RC model of TABS to determine an optimal PWM schedule for operation of the circulation pump.  
Intermittent PWM control allows for dynamic evaluation of whether and how long the circulation pump 
should operate with a given supply water temperature to maintain comfort but reduce pumping energy. 

 
None of the TABS control methods described above take into the account the temperature and load 

dependent efficiency of a chiller providing chilled water to a concrete-core cooling system.  Furthermore, 
existing TABS control strategies do not fully leverage zone temperature response models to determine an 
optimal control strategy.  This paper presents a model-based predictive control algorithm for TABS that 
incorporates temperature response models of the zone and concrete core, a temperature and load dependent 
chiller efficiency model, and optimization of chiller compressor and condenser fan control to minimize 
energy consumption of the cooling system.  

 

LOW-LIFT PREDICTIVE PRE-COOLING CONTROL FOR THERMO-ACTIVE BUILDING 
SYSTEMS 
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A framework for optimal control of low-lift chillers to pre-cool TABS will be developed that 

determines on optimal chiller control schedule for each hour, looking 24 hours-ahead. The goal of the 
control algorithm is to minimize cooling energy consumption (or cost) over a 24-hour period by controlling 
chiller compressor speed and condenser fan speed in a near optimal way.  This near-optimal control 
function incorporates a model of variable-capacity chiller power consumption, presented in Gayeski et al 
(2010), to account for the temperature and load, or control variable, dependent chiller power consumption 
and cooling rate.  It also incorporates a CRTF temperature reponse model (Seem 1987, Armstrong et al 
2006b) to predict zone temperature response, and a transfer function model of concrete-core temperature 
response.  The optimization function can be described mathematically as follows: 
 

( )∑
=

ω +ϕ+⋅=
24

1t
tttt PEPO1PrJminarg        (1) 

 
In equation (1), the objective function J is the sum over 24 hours of the cooling system energy 

consumption (or cost), a penalty for operative temperatures outside of a comfort range, and a penalty for 
chiller evaporating temperatures below a low temperature threshold.  The variables are as follows: 

 
• rt is a weighting factor for system energy consumption.  rt can be set to one to minimize energy 

consumption or to a utility pricing schedule to minimize cost,  
• Pt is the power consumption of the cooling system during the hour t, which is multiplied by one hour to 

calculate energy consumption over the hour, 
• � is a weighting factor that penalizes excursions from an allowable operative temperature region, 
• POt is a penalty as a function of zone operative temperatures relative to comfortable operative 

temperatures at time t,  
• PEt is a penalty as a function of chiller evaporating temperature relative to a low temperature threshold, 

which has been included to prevent control predictions that would cause the chiller to freeze. 

Chiller performance model 

The cooling system energy consumption Pt includes the energy consumption of the water circulation 
pump and the low-lift chiller serving the TABS and is given by the following equation: 

 
)),T,T(f,,T,T(PPP tt,et,xtt,et,xt,chillert,pumpt ωω+=       (2) 

 
• Ppump,t is the energy consumption of the chilled water pump over the hour t.  For this research, the 

chilled water pump is assumed to be operated at constant speed while the chiller is operating and off 
otherwise.  Thus, its power consumption is either zero if the chiller is off or a constant while running. 

• Pchiller,t is a regression-based curve-fit model of the power consumption of a low-lift chiller as a 
function of outdoor air temperature Tx, evaporation temperature Te, compressor speed ω , and fan speed 
f at hour t. 
 
The chiller power consumption, Pchiller,t, is shown in equation (3).  It is a function of evaporating 

temperature Te, outdoor air temperature Tx, compressor speed ω, and fan speed f.   
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The coefficeints of this model can be determined for variable capacity chillers through regression 

based on physics-based performance simulations or based on measurements of actual chiller performance.  
Methods for developing empirical curve-fit models from measured data for this type of chiller performance 
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model are presented by Gayeski et al (2010).  Models of the same form as equation (3), but with different 
coefficients, can be identified  to represent cooling capacity QCchiller,t and electric input ratio EIRchiller,t as a 
function of Te, Tx, ω, and f (Gayeski et al 2010).  Only two of these three curves, one for cooling rate 
QCchiller,t and for power consumption Pchiller,t are needed in the pre-cooling optimization algorithm presented 
in this paper.  This will be explained in more detail below. 

 
The fan speed variable can be eliminated from equations (2-3) by choosing the optimal fan speed at a 

given Te, Tx, and ω.  By taking a partial derivative of the EIRchiller,t curve with respect to f, the optimal fan 
speed fopt can be determined that provides the greatest chiller efficiency for a given set of Te, Tx, and ω. 
This optimal fan speed is given by the following equation: 

 
( ) 2225x24e2321opt c2/cTcTccf ω+++=       (4) 

Zone and concrete core temperature response models 

The presence of Te in equations (2-4) requires that evaporating temperature be predicted at each time 
step of the 24-hour optimization.  The prediction of Te may be based on engineering calculations or data-
driven models relating the chilled water supply or return temperatures and the chilled water flow rate to 
chiller evaporating temperature at specific operating conditions.  For a given chiller with a fixed evaporator 
water flow rate, a fixed comrpessor speed, and a fixed closed loop superheat control algorithm, Te is 
directly related to chilled water return temperature Tchwr.  Thus, evaporating temperature and chiller power 
consumption can be predicted if Tchwr can be predicted and the operating state of the chiller is known.   

 
In Gayeski (2010) it was shown that Tchwr can be predicted based on past cooling rates, return water 

temperatures, and concrete-core temperature Tcc using a simple Nth order model for Tchwr  as a function of 
cooling rate QCchiller and concrete-core temperature Tcc as shown in equation (5): 
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This Nth order transfer function model is equivalent to an Nth order thermal RC model.  
 
Temperature CRTF models (Seem 1987, Armstrong et al 2006b) of zone temperature response can be 

used to predict both the zone operative temperature and concrete-core temperature (Gayeski 2010).  These 
models are discrete-time transfer function representations of the one-dimensional heat diffusion equation 
governing heat transfer through each surface of a zone.  Physical constraints on the coefficients of 
temperature CRTF models have been presented by Armstrong et al (2006b) that provide causal, stable and 
more physical models.  For use in the low-lift cooling predictive pre-cooling of TABS, the operative 
temperature To is predicted from the following temperature CRTF model: 
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The temperature of the concrete-core Tcc can be predicted from a similar temperature CRTF model: 
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In equations (6-7), To is the zone operative temperature, Tcc is the concrete-core temperature, Tx is the 
outdoor air temperature, Ta is an adjacent zone temperature (in this case only one adjacent zone has been 
considered), QI is the internal heat load, and QCchiller is the cooling rate delivered by the low-lift chiller. 
The lower case letters are weighting coefficients for each variable at each time step into the past which 
determine the temperature response.   

 
The operative temperature To,T and concrete-core temperature Tcc,T at the next hour T are predicted 

from measurements of each variable at the previous hours T-M to T-1, in addition to forecasts at hour T of 



 

 7

outdoor air temperature Tx, adjacent zone air temperature Ta, internal heat rate QI, and chiller cooling rate 
QIchiller.  The optimization determines the chiller cooling rate which minimizes power consumption but 
maintains thermal comfort conditions.  The choice of chiller compressor speed at each hour of a 24 hour 
look ahead control schedule, along with the historic data and predicted data up to a given hour in the 
schedule, determines the zone operative temperature, concrete-core temperature, chilled water temperature, 
evaporating temperature and chiller power consumption and cooling rate at each hour of the next day.  The 
chiller power consumption along with the operative temperature and evaporating temperature penalties in 
the objective function are minimized to determine the optimal compressor speed and condenser fan speed 
control schedule. 

Operative temperature comfort penalty 

The second term in equation (1) accounts for zone operative temperature constraints.  Without this 
term the minimal power consumption would equal zero at all times, but thermal comfort conditions would 
not be maintained.  The operative temperature penalty is given by the following equation: 
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In equation (8), To,min and To,max are the minimum and maximum allowable operative temperatures and 

To,t is the operative temperature at the current time t.  Operative temperatures within half a degree Celsius 
of the comfort bounds are penalized, with a quadratically increasing penalty moving away from the comfort 
bounds.  The quadratic dependence is a convenient choice, because the derivative of the function is 
continuous, however other comfort penalty functions are possible.   

 
The weight � in the operative temperature penalty function equates operative temperature excursions 

outside of a comfort range to power consumption.  For example, a choice for � greater than Pmin,chiller/ 1°C, 
where Pmin,chiller is the chiller power consumption at its lowest speed, will cause an operative temperature 
penalty greater than the cost of running the chiller that hour when operative temperature exceeds comfort 
bounds by one half of a degree Celsius.  The operative temperature range can be chosen to reflect thermal 
comfort conditions in ASHRAE 55 (ASHRAE 2007a), with allowable operative temperatures of about 19.4 
to 25°C (67 to 77°F) based on the summer (or 0.5 clo) operative temperature comfort range.  

Chiller operational constraint penalty 

The last term in the objective function, PEt is a constraint on the evaporating temperature Te of the 
refrigerant.  Te is constrained to prevent freezing of the chiller, or more precisely to prevent predictions of 
infeasible cooling rates at future time steps that would cause the chiller to freeze.  The constraint on Te can 
be chosen conservatively to prevent Te below one degree Celsius, with an infinite penalty for evaporating 
temperatures below the threshold (or replaced by a very high penalty value in computer code).  This choice 
was made to prevent any freezing, even if just locally on a heat exchanger surface, on the water-side of the 
chiller.  The resulting evaporating temperature penalty function is as follows: 
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An alternative approach would be to apply the evaporating temperature constraint as a limitation on 

system operation.   Penalizing the evaporating temperature in the objective function is convenient, because 
it eliminates the need to include additional constraints to the curve-fit chiller model shown in equation (3).  
Similarly, the To penalty function could have been incorporated as a constraint on operative temperatures.  
However, this approach does not allow for a simple tradeoff between comfortable temperatures and power 
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consumption, which is useful for allowing some overheating as the optimization searches for the best 
chiller control schedule.   

Predictive pre-cooling control optimization method 

In the previous section, an objective function was defined for the pre-cooling control algorithm which 
contains penalties for power consumption of the cooling system, operative temperatures outside of a 
comfort region, and low evaporating temperatures.  The goal of this section is describe how the objective 
function, equation (1) is minimized to optimize the chiller control over a 24 hour look ahead schedule. 

 
Each hourly cost component of the objective function must be evaluated sequentially from hour one to 

24.  This is a result of the fact that Pt, POt, and PEt all depend on past values of both the independent and 
dependent variables in equations (2-9).   As the simulation for each optimization evaluation moves from 
current time to the next time step, tsim, the choice of compressor speed at time tsim depends on previous 
values of compressor speeds at times t<tsim and will affect the choice of future compressor speeds at times 
t>tsim.   A given compressor speed at time step tsim will determine QCchiller.  Along with predicted outdoor 
air temperature Tx, adjacent zone air temperature Ta, and internal loads QI at time tsim, and their histories, it 
will also determine fopt, To, Tcc, Tchwr, and Te at the next time step in the simulation which are required to 
evaluate the tsim term of the objective function and to calculate the required variables for the next time step. 

 
The power consumption and cooling rate of the chiller are non-linear functions of Tx, Te, and ω (with 

fan speed fopt determined by these three variables).  Consequently, the power consumption of the chiller at 
the current simulation time depends non-linearly both on the choice of compressor speed at the current time 
tsim and previous choices of compressor speeds which determine the concrete-core temperature Tcc and 
ultimately evaporating temperature Te at tsim.  Furthermore, when the compressor speed is zero the cooling 
system is off and the power consumption and cooling rate become zero discontinuously, because the 
compressor cannot run at arbitrary speeds down to zero Hertz. 

 
As a result of these discontinuities and non-linearities in the objective function, an optimization 

method suitable for non-linear objective functions is used.  A simple form of direct search, called a 
generalized pattern search was elected as an optimization method (Torczon 1997, Lewis et al 1999, Lewis 
et al 2000, Audit and Dennis 2003).  Pattern search is essentially a grid search on the independent variable, 
compressor speed, where an initial guess is made and points in a grid around that guess are evaluated for a 
more optimal solution.  Pattern search continues to search the grid until no more optimal solutions can be 
found, at which point it reduces the size of the grid and searches locally around the current most optimal 
solution identified by the larger grid.   

 
The pattern search seeks optimal compressor speeds for every hour t in a 24-hour-ahead schedule of 

chiller operation.  The search space is a 24-dimenstional space, where each dimension represents a possible 
chiller compressor speed at each hour of the next 24-hours.  The compressor speed at each hour can take 
the values of 0 Hz, or off, and anywhere within its range of operation. For a given set of forecast outdoor 
conditions and internal loads, a choice of compressor speed determines Pchiller, QCchiller, To, Te, Tcc, and To at 
the current predicted hour.  Some speeds will cause infinite penalties if the temperature-CRTF models 
determine that they will cause operative temperatures outside of comfort bounds or too low evaporating 
temperatures, and the risk of freezing the chiller.   

 
Beginning with a guess at an initial point in the 24-dimensional grid of compressor speeds, pattern 

search evaluates the objective function at all of the grid points surrounding the initial guess.  This is called 
a poll.  All of these grid points are compared to identify the most optimal solution relative to each other and 
to the initial guess.  If a more optimal grid point is identified, the pattern search continues by polling a grid 
around the new optimal solution.  The grid size is increased, up to maximum compressor speed step size, 
each time a more optimal point in the grid is identified.  If a more optimal grid point is not found, the 
pattern search continues around the current point with a smaller grid size, down to a minimum grid size.  
The pattern search continues searching the grid until no more optimal points can be found at the smallest 
grid size.   
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An optional step in a pattern search is the execution of a secondary optimization on the current grid 
point each time a new optimal solution is found around that point.  Instead of immediately polling the grid 
around the new optimal solution, a search of the other dimensions of the grid (not the dimension in which a 
new optimal point has been found) is conducted to identify whether an even more optimal solution can be 
found.  This allows the pattern search to perform faster, by moving in more than one-dimension of the grid 
at each iteration.  A complete explanation of the pattern search algorithm is included Matlab’s Global 
Optimization Toolbox: User’s Guide (Mathworks 2010) and more information can be found in (Torczon 
1997, Lewis et al 1999, Lewis et al 2000, Audit and Dennis 2003).   

 
A flow chart of the pattern search implemented for optimizing the daily schedule of compressor 

speeds, w, of a low-lift chiller serving a concrete-core TABS is shown in Figure 1.  An initial guess of 24 
compressor speeds iω  is made at each hour, which may be based on the previous hour’s guess.  The 

pattern search algorithm is performed to identify an optimal schedule of compressor speeds optω for the 
next 24 hours.  At each iteration of the pattern search, equations (2) through (9) are applied to calculate the 
Pt, QCchiller, To, Tcc, and Tchwr sequentially for each time step because they depend on past-predicted values.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Closed loop optimization of compressor speed for  
low-lift cooling of TABS with pattern search 

 
For operation of a TABS system pre-cooled with a low-lift chiller, the pattern search algorithm may be 

employed at every hour to calculate a new set of optimal compressor speeds for the next 24 hours.  This 
allows for the use of updated forecasts of outdoor air temperature Tx, adjacent zone air temperature Ta, and 
internal loads QI at each hour.  Only the first compressor speed computed by the pattern search is then used 
to set the compressor speed for the following hour.  A new pattern search may be performed at the next 
hour to identify a new optimal set of 24 hour compressor speeds for the following 24 hours.  Henze et al 
(2004) refers to this approach as closed loop optimization, where feedback from the previous time step 
(hour) and updated forecasts are used to determine a new optimal control schedule.   

 
An alternative approach is consecutive time block optimization Henze et al (2004), in which 

compressor speeds are predicted once at the beginning of a 24 hour time block.  This approach is identical 
to closed loop optimization only in the case where model predictions and exogenous variable forecasts are 
perfect.   

 

Example pre-cooling optimization from an experimental implementation 

Initial guess for current hour iω  

Pattern search algorithm for current 
hour 

Operate compressor at 

1,optω=ω for current hour 

{ }241t,optopt →=ω=ω

{ }0,242t,opti →=ω=ω  

24 hour-ahead forecasts of 
Tx, Ta, QI 
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A sample result of the low-lift pre-cooling optimization for TABS from an experimental 
implementation in a test chamber is shown in Figure 2.  The details of this experiment, including the test 
chamber, the low-lift chiller, and implementation of the control algortihm are described in part 2 of this 
paper.  Figure 2 illustrates an example predicted optimal compressor speed schedule and the resulting 
predicted temperature response over 24 hours, chiller power and energy consumption.  A compressor speed 
schedule for each of 24 hours into the future, is shown at the top left.  For this schedule, the operative 
temperature To, concrete-core temperature Tcc, return water temperature Tchwr, evaporating temperature Te, 
cooling rate QCchiller, and chiller power consumption Pchiller are predicted for each hour of the 24 hours 
ahead. At the top right of Figure 2, the predicted To, Tcc, Tchwr, Te for the 24 hour ahead period are shown 
along with the outdoor temperature Tx and the comfort constraint To,max and To,min. The chiller power at 
each time step and the cumulative energy consumption over the 24 hour period are shown at the bottom.  
For the hour following this optimization, a low-lift chiller would be operated at the first predicted optimal 
compressor speed, which is 0 Hz, or off, in the case below.   

 
The example in Figure 2 demonstrates certain important aspects of predictive control for low-lift 

cooling with TABS.  First, the best time to perform most of the cooling is over night and during the early 
morning hours. The outdoor air temperature Tx is low and the chiller can run more efficiently.  Second, the 
chiller runs at relatively low speed (19 Hz is its minimum) most of the time, and thus at low pressure ratios, 
because it is most efficient at low part load.  These are consistent with expected control in low-lift cooling 
(Armstrong et al 2009a, Armstrong et al 2009b).  Third, near the beginning of the scheduled operation of 
the compressor, at hours six, seven and eight, the compressor is scheduled to cycle on for an hour, then off 
for an hour, and then turn back on.  The optimization has determined that it is more efficient not to run the 
compressor continuously for those three hours because doing so would result in a decrease in Tcc, Tchwr, and 
most importantly Te causing the chiller to run less efficiently at lower evaporating temperatures. Lastly, at 
the end of the scheduled pre-cooling the compressor turns off for an hour and then back on.    This is the 
result of the evaporating temperature Te approaching the low temperature threshold of one degree Celsius.  
The compressor is not allowed to run at hour 16 to prevent the chiller from freezing.  This freezing 
constraint can be avoided by improving the design of the concrete-core TABS so that the difference 
between chilled water temperatures Tchwr and the concrete-core temperature Tcc is less.  This low-
temperature constraint is largely an artifact of the system as implemented in the experimental test chamber 
described in part 2 of this paper. 
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Figure 2  Sample low-lift pre-cooling optimization for TABS from an experimental test chamber 

SUMMARY 

This paper describes a data-driven, model-based predictive control algorithm for low-lift, variable 
capacity chillers serving concrete-core TABS.  Curve-fit chiller performance models and zone operative 
temperature and concrete-core temperature response models are incorporated into a chiller control 
optimization algorithm.  This algorithm predicts optimal compressor and condenser fan speeds for a 24 
hour period based on the predicted chiller performance and zone and concrete-core temperature response.  
The optimal schedule minimizes cooling system energy consumption, including temperature and load 
dependent chiller performance, while maintaining zone comfort conditions during occupied periods over a 
24 hour period.  For operational implementation, a closed loop optimization is proposed in which the 
optimal chiller control schedule is determined at every hour based on new forecasts and the latest measured 
building data. 

DISCUSSION 

The control algorithm developed in this paper has been applied to a room-sized experimental test 
chamber with a radiant concrete slab served by a variable capacity chiller operated at low pressure ratios.  
Experimental results from applying this control algorithm are described in part 2 of this paper.  The results 
showed 25 percent cooling energy consumption for a typical Atlanta summer week with standard efficiency 
internal loads relative to a high efficiency split-system variable capacity air conditioner. 

 
The predictive control strategy presented here has been developed primarily for the purposes of 

experimentally testing low-lift cooling with TABS in a test chamber.  A number of important additions and 
revisions must be made to this control strategy for implementation at full-scale.  First, the algorithm must 
be revised to include solar loads in the temperature CRTF models.  Furthermore, multi-zone temperature 



 

 12

predictions must be included for TABS systems serving multiple, distinct zones.  The inclusion of a 
variable speed chilled water pump serving the TABS and the chiller will also be important, as it may allow 
for further improvements in chiller efficiency and control. 

 
Another important revision that must be made is incorporating the possibility for direct cooling into the 

optimization algorithm, not through TABS but through conventional air conditioner evaporators, large heat 
exchanger fan coil units, or radiant cooling systems.  A strategy that combines pre-cooling of thermal 
storage, such as TABS, with direct cooling of zones is likely to achieve the best balance of system 
efficiency and comfort control.  This will help deal with another consideration, error in forecasts of 
exogenous variables, such as outdoor temperature, and error in predictions by the data-driven models. 

 
Lastly, optimization methods other than pattern search may be applicable to the predictive pre-cooling 

control problem and further research is necessary to evaluate other options.  For this research, however, 
pattern search was found to identify near-optimal solutions within a few minutes, whereas applying genetic 
algorithms or simulated annealing required hours of optimization time and did not always converge to a 
solution.   Thus, pattern search was suitable for implementation of the control algorithm in the room-size 
experimental test chamber described in part 2 of this paper. 
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Figure 2. Closed loop optimization of compressor speed for low-lift cooling of TABS with pattern search 
Figure 2. Sample low-lift pre-cooling optimization for TABS from an experimental test chamber 
 
 


