Low-Q: Proton Electric and Magnetic Form Factors The Mainz high precision proton form factor measurement

Jan C. Bernauer

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

PAVI09: From Parity Violation to Hadronic Structure and more...

June 22 - June 26, 2009

1

Outline

- 1 Introduction: The elastic electron-proton cross section
- The Mainz high-precision p(e,e')p measurement
 - Design considerations
 - Covered kinematical region
- 3 First results
 - Background and Background subtraction
 - Cross sections
 - Radii and their model dependence
- Open Issues
- ⑤ Conclusion

Cross section and form factors for elastic e-p scattering

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)\right]$$

with:

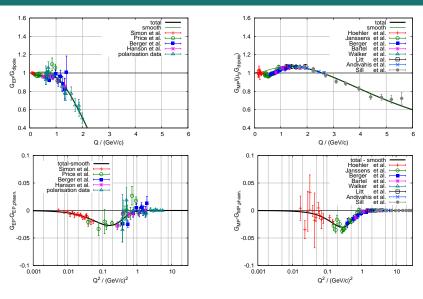
$$au = rac{Q^2}{4m_p^2}, \quad arepsilon = \left(1 + 2\left(1 + au
ight) an^2rac{ heta_e}{2}
ight)^{-1}$$

Fourier-transform of G_E , $G_M \longrightarrow$ spatial distribution (Breit frame)

$$\left\langle r_{E}^{2}\right\rangle =-6\hbar^{2}\left.\frac{\mathrm{d}\mathit{G}_{E}}{\mathrm{d}\mathit{Q}^{2}}\right|_{\mathit{Q}^{2}=0}\quad\left\langle r_{\mathit{M}}^{2}\right\rangle =-6\hbar^{2}\left.\frac{\mathrm{d}\left(\mathit{G}_{\mathit{M}}/\mu_{\mathit{p}}\right)}{\mathrm{d}\mathit{Q}^{2}}\right|_{\mathit{Q}^{2}=0}$$

3

Motivation



(see J. Friedrich and Th. Walcher, Eur. Phys. J. A 17 (2003) 607)

4

Motivation



Discrepancy of existing values for proton electric radius:

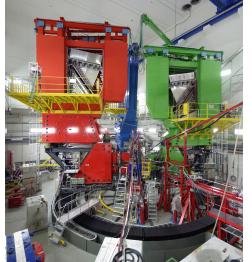
- 0.809(11) fm: standard dipole at HEPL (Hand et al. 1963)
- 0.862(12) fm: low Q^2 at Mainz (Simon et al. 1979)
- 0.847(09) fm: dispersion relation (Mergell et al. 1996)
- 0.890(14) fm: Hydrogen Lamb shift (Udem et al. 1997)



(see J. Friedrich and Th. Walcher, Eur. Phys. J. A 17 (2003) 607)

The Mainz high-precision p(e,e')p measurement at MAMI

Three spectrometer facility of the A1 collaboration:



Design goal: High precision

 \bullet Statistical precision: 20 min beam time for ${<}0.2\%$

7

- Statistical precision: 20 min beam time for <0.2%
- Control of luminosity and systematic errors:
 Measure all quantities in as many ways as possible:

- Statistical precision: 20 min beam time for <0.2%
- Control of luminosity and systematic errors:
 Measure all quantities in as many ways as possible:
 - $\begin{array}{l} \bullet \ \ \, \text{Beam current:} \\ \ \ \, \text{Foerster probe (usual way)} \Longleftrightarrow \text{pA-meter} \\ \ \ \, \longrightarrow \ \, \text{measures down to extremely low currents for small} \; \theta \\ \end{array}$

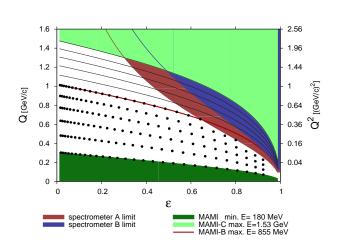
- Statistical precision: 20 min beam time for <0.2%
- Control of luminosity and systematic errors:
 Measure all quantities in as many ways as possible:

- Statistical precision: 20 min beam time for <0.2%
- Control of luminosity and systematic errors:
 Measure all quantities in as many ways as possible:

 - Luminosity: current × density × target length
 third magnetic spectrometer as monitor
 - Overlapping acceptance
 - Where possible: Measure at the same scattering angle with two spectrometers

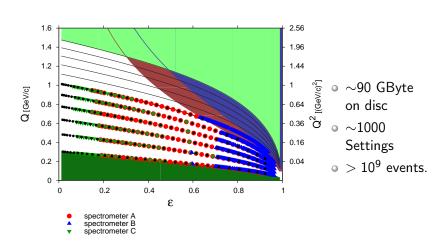
Measured settings and future expansion

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$



Measured settings and future expansion

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mort}} \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$

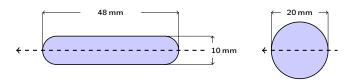


First results

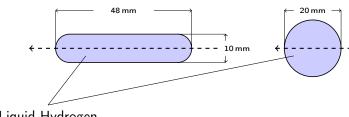
- Analysis is not complete!
 - Redundancy is not fully exploited.
 - Not all of the data completely analyzed!

All results are very preliminary! DO NOT QUOTE!

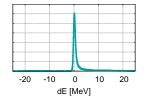
Background



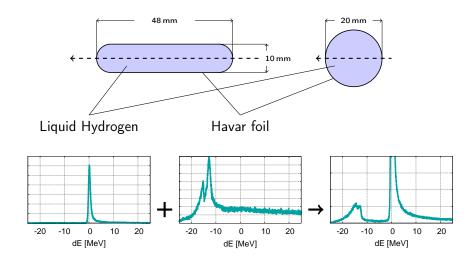
Background



Liquid Hydrogen



Background



Background subtraction

Vertex Resolution not good enough for cut at small angles!

Background subtraction

Vertex Resolution not good enough for cut at small angles!

- ⇒Simulate and subtract background:
 - Simulate elastic reactions off wall nuclei (Fe, Co, Cr, ...)
 - Simulate quasi-elastic reaction (Fermi gas, de Forest)

Background subtraction

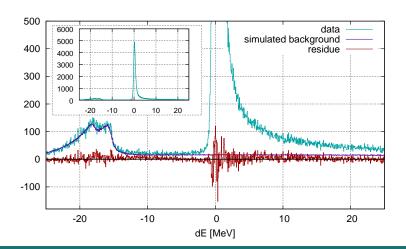
Vertex Resolution not good enough for cut at small angles!

- ⇒Simulate and subtract background:
 - Simulate elastic reactions off wall nuclei (Fe, Co, Cr, ...)
 - Simulate quasi-elastic reaction (Fermi gas, de Forest)
 - Simulate elastic scattering off hydrogen
- ⇒Fit amplitudes to data

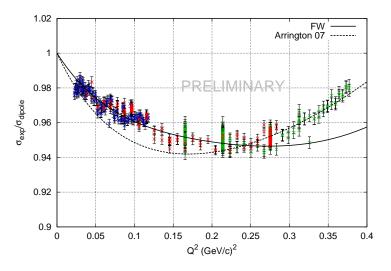
Data ←→Simulation matching

Simulation:

- Model for energy loss and small angle scattering
- Input: momentum, angular, vertex resolution of spectrometer

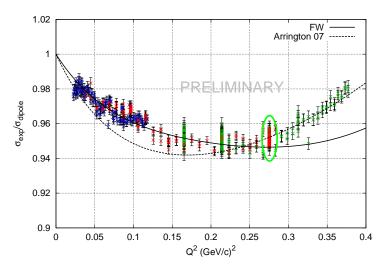


Cross sections: 450 MeV



[FW: Eur. Phys. J. A 17 (2003) 607, Arrington 07: Phys. Rev. C 76 035205 (2007)]

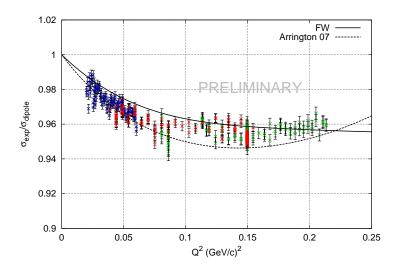
Cross sections: 450 MeV



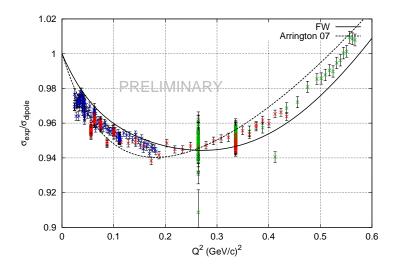
[FW: Eur. Phys. J. A 17 (2003) 607, Arrington 07: Phys. Rev. C 76 035205 (2007)]

• Error bars: data spread $\longrightarrow 0.2 - 0.4\%$ (stat.: 0.1 - 0.3%)

Cross sections: 315 MeV



Cross sections: 585 MeV



Two methods:

Classical Rosenbluth separation

Two methods:

- 1 Classical Rosenbluth separation
- 2 "Super-Rosenbluth separation": Fit of form factor models directly to the measured cross sections
 - Feasible due to fast computers.
 - All data at all Q^2 and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q^2) needed.
 - Easy fixing of normalization.

Two methods:

- Classical Rosenbluth separation
- 2 "Super-Rosenbluth separation": Fit of form factor models directly to the measured cross sections
 - Feasible due to fast computers.
 - All data at all Q^2 and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q^2) needed.
 - Easy fixing of normalization.
 - Model dependence?

Two methods:

- 1 Classical Rosenbluth separation
- 2 "Super-Rosenbluth separation": Fit of form factor models directly to the measured cross sections
 - Feasible due to fast computers.
 - All data at all Q^2 and ε values contribute to the fit, i.e. full kinematical region used, no projection (to specific Q^2) needed.
 - Easy fixing of normalization.
 - Model dependence?

For radii extraction: Needs a fit anyway! Classical Rosenbluth: Extracted G_E and G_M highly correlated! \Longrightarrow Error propagation very involved.

Some models

Dipole (different b for G_E and G_M):

$$G_D\left(Q^2,b\right) = rac{1}{\left(1+rac{Q^2}{b}
ight)^2}$$

Double Dipole (as in Friedrich/Walcher phenomenological fit [Eur. Phys. J. A 17 (2003) 607]):

$$G_{DD}\left(Q^{2},a,b_{1},b_{2}
ight)=aG_{D}\left(Q^{2},b_{1}
ight)+\left(1-a
ight)G_{D}\left(Q^{2},b_{2}
ight)$$

30

More models

Polynomial × standard Dipole

$$G_{P}\left(Q^{2}, a_{1}, a_{2}, a_{3}, a_{4}\right) = \left(1 + a_{1}Q^{2} + a_{2}Q^{4} + a_{3}Q^{6} + a_{4}Q^{8}\right) \cdot G_{D}\left(Q^{2}, 0.71\right)$$

Continued fraction expansion (I. Sick) [Phys. Rev. C 76 035201 (2007)]:

$$G_C(Q^2, a_1, a_2, ...) = \frac{1}{1 + \frac{a_1 Q^2}{1 + \frac{a_2 Q^2}{1 + ...}}}$$

31

Electric and magnetic rms radii

This fit was done at an early stage of the analysis!

- 840 data points (< 2/3 of all)
- Data normalization floating: 12 additional parameters
- Without correction for Coulomb distortion (Calculation by Friedrich: For 180 MeV: average effect \approx 0.7%, variation over $Q^2 \approx$ 0.5%)
- \circ Errors determined by perturbing the measured data according to error bars ($\pm 5\%$ normalization uncertainty) and refitting

Model	<i>r_E</i> [fm]	<i>r_M</i> [fm]	$\frac{\chi^2}{d.o.f.}$	number of fit parameters	
Dipole	0.8706 ± 0.0011	0.8145 ± 0.0005	1.826	2	
Double Dipole	0.8646 ± 0.0015	0.845 ± 0.002	1.467	6	
Polynomial	0.879 ± 0.003	0.841 ± 0.008	1.083	8	
Cont. Frac. 1	0.892 ± 0.004	0.845 ± 0.018	1.0599	10	
Cont. Frac. 2	0.891 ± 0.003	0.866 ± 0.018	1.0595	10	

Model dependence of radius extraction

Check extraction of radii with Monte-Carlo data:

- Monte-Carlo data from given parametrization (known radii!)
- Error distribution of this simulated data according to errors from real data
- Fit with different models

Assumption: $\pm 5\%$ normalization error

Model dependence of extracted rms radii

Difference of extracted radii to radii of input model, all radii in am

Input		Analysis								
			Dipole		Double Dipole		Polynomial		Cont. Frac.	
	rE	r _M	rE	r _M	r _E	r _M	r _E	r _M	rE	r _M
Std. dipole	811	811	0±1	0±0.5	0±2	0±1	0±3	0±8	2±6	7±11
Arrington 07	878	858	-9±1	-57±0.5	-8±2	-30±2	-4±3	-12±7	0±4	-3±8
Arr. 03 (P)	829	837	29±1	-34 ± 0.5	17±2	-8±2	3±3	0±7	0±7	-2±9
Arr. 03 (R)	868	863	0±1	-55±0.5	-1 ± 3	-14±10	0±2	-8±7	0±5	3±8
FW	860	805	-1±1	2±0.5	-18±2	32±2	-3±3	8±8	2±5	7±18

[Arr. 03: Phys.Rev. C 69 022201 (2004)]

Open Issues

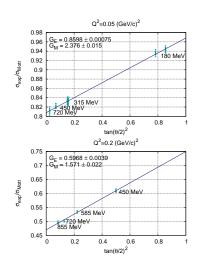
- Better event generator for simulation (explicit calculation of Feynman diagrams of bremsstrahlung)
- Coulomb distortion, two photon effects etc.
- More models, e.g. models in r-space.
- Include existing, external data for higher Q^2 .
- As many crosschecks as possible or as ideas come up.

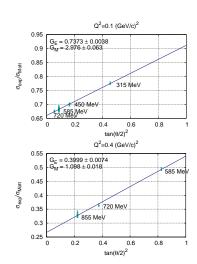
Conclusion

- The high precision data from MAMI promise a knowledge of separated electric and magnetic form factors in the Q^2 range from 0.003 to 1 $(\text{GeV}/c)^2$.
- They will evidently also allow to calculate the ratio G_{Ep}/G_{Mp} .
- The expected errors are: < 0.4% statistical errors, < 0.7% systematical errors for the cross sections.
- Model dependence estimated for early analysis and reduced dataset: < 1.5% for radius, < 0.5% for $G_E,\ G_M$

Backup Foils

Classical Rosenbluth Separation





Continued Fraction Ambiguity

