

H Atom, show Weakness!!

Parity Violation

in

Atomic Hydrogen

revisited!

Maarten DeKieviet

Universität Heidelberg

Physikalisches Institut

... P-Violation Experiments

with an Atomic Beam Interferometer!

Contents:

- Introduction to Atomic Beam Spin Echo
 - Principle
 - Quantum Reflection
 - Casimir Force and QED-Tests
- Parity Violation Experiments
 - Basic Ingredients
 - Hydrogen Interferometry
 - Berry Phase

Motivation for APV in times of LHC

FUNDAMENTAL INTERACTIONS AND THEIR SYMMETRIES: HIGH-PRECISION EXPERIMENTS AT LOWEST ENERGIES

LOWEST ENERGIES:

Particle energies down to $E \sim 10^{-12} \,\text{eV} = \text{pico-eV}$ (cf. HEP: energies up to $E \sim 10^{+12} \,\text{eV} = \text{Tera-eV}$)

When an unknown process is at $M \sim 10^{5...19}$ GeV, then a propagator like $(p^2+M^2)^{-1}$ becomes $1/M^2$, whether one works at 0 GeV or at several 100 GeV – what counts is:

HIGHEST PRECISION:

in energy: $\delta E = \pm 10^{-23} \text{ eV} = \pm 0.000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 01 \ \text{eV}$

in momentum: $\delta p/p = \pm 10^{-11}$: 1Å/10m p

in mass: $\delta m/m = \pm 10^{-11}$

all with 1st particle family: abundant, long-lived, useful

ABSE principle semi-classical - cartoon

Larmor precession of spin vector

Spin Echo

Spin Rotation vs Spin Echo

³He Spin Echo Spectrometer ...

... works much better than it looks !!

Energy Loss in Gravitational Field

 $\Delta E = m g \Delta h$

m = 3 amu Δh = 11 cm g = 9.81 m/s²

 $\Delta E = 33 + / - 1 \text{ neV} !$

The Principle - quantum mechanically

Spin polarized in
$$|\uparrow_x\rangle = \frac{1}{\sqrt{2}} (|\uparrow_z\rangle + |\downarrow_z\rangle)$$
 in magnetic field in z direction

Superposition of spin up/down

Spin Echo Field 1

$$H = \frac{p^2}{2m} \mp \frac{1}{2} g \mu_K \sigma_z B$$

Spin Echo Field 2

³He spin echo: $\tau_{SF} = 10 \text{ ps} - 10 \text{ ns}$

Sample

Surface Dynamics Experiments

- 3D Gas Noble Gases 3-D Brownian Motion
- 2D Gas \longrightarrow Xe / Au(111) \longrightarrow 2-D Phases
- Phonons
- Jump Diffusion
- Continuous Diffusion
- \leftarrow C₂₄H₁₂ / Au(111) \rightarrow "Slow" Motion
- 2D Structure Growth → Thiols / Au(111) → Spatial Resolution
- Phase Transitions \longrightarrow Si(111) 7x7 \longrightarrow Critical Behavior

ABSE beyond Surface Science ...

- we study surfaces
- to resolve structures, dynamics, reactivity, etc.
- under well-defined conditions
- to reduce spurious environmental influences
- typical: Ultra High Vacuum conditions

```
Surface = break of symmetry (e.g. bulk -> vacuum)
```

<u>common:</u> what does vacuum do to the surface?

now: what does the surface do to the vacuum?

The QED-Vacuum

the void is not empty!

- Quantization of the Electromagnetic Field
- Bath of Harmonic Oscillators in 3-D, of all freq., pol.
- each having Zero-Point Energy $\frac{1}{2}\hbar\omega$
- "Vacuum Fluctuations" within the vacuum

What happens to the vacuum fluctuations, when there is a surface in the vacuum?

Casimir Force

Motivation:

- 1948 Hendrik Casimir prediction
- 1958 attractive force between two flat surface

Hendrik Brugt Gerhard Casimir (1909 – 2000)

The Casimir Force — Semi-Classical

$$V_{atom-atom}^{ret.}(r) = -\frac{23\hbar c\alpha_1 \alpha_2}{4\pi r^7}$$

Atom – Surface:
$$V_{atom-surface}^{ret.}(r) = -\frac{3\hbar c\alpha}{8\pi r^4}$$

for $r_{ret.} >> \lambda_{|g\rangle \rightarrow |e\rangle}$

 α : atomic polarizability

Quantum mechanical effect!

reduced strength

(even weaker than the v/d Waals force and that at large distances!)

ABSE and Casimir II

How can He atom scattering contribute?

- Probe atom Surface interaction potential
- Over a long range 0.1 nm 10 μm (!)
- van der Waals vs. Casimir
- High spatial and energy resolution 1 neV 1 meV (!)

•

.

very special tool: Quantum Reflection!

Quantum Reflection – Where ?

=> QR = very sensitive probe of potential shape far out

Quantum Reflection – setup

=> measure specularly reflected ³He intensity as a function of incident angle

- low beam energy (< 1meV)
- ∆v/v ≈ 15%
- grazing incidence (70° 90°)
- huge $\lambda_{De\ Broglie}$ \perp surface (1 nm 1 μ m)
- perpendicular energy (neV 100 μeV)
- Specular Reflection

Phys. Rev. Lett. 91(19), 06 Nov. 2003

Current Casimir-Polder Experiments

Fundamental issues:

- Temperature Dependence
- Morphology:
 - Boundary Conditions
 - Casimir focussing

$$F_{Casimir} = 2 > 0$$
 (!)

Nano-Structured Surfaces

nano structuring --> huge increase in reflectivity!

New impulse for Hydrogen

Experiment:

(DeKieviet et al. 1994 -)

Atomic Beam Spin Echo

sensitve interferometer

Quantum Reflection

atom-surface interaction

Casimir-Polder

vacuum QED

Sokolov results

Casimir-like 2S-2P mixing

Theory:

(Nachtmann et al. 1994 -

PNC pitfalls

~ (H_{Weak})2, when T-symmetric

Chiral Boxes

 $\tilde{\ }$ H_{Weak} , when T-violation

Complex Degeneracy

~√H_{Weak}, when |ΔE_{Lamb}|≈0

Geometric phases:

 $H_{Weak} \Delta \phi_{PNC} \iff \Delta \phi_{Berry} !$

traditional Weak enhancement in H(2S)

(nearly) degenerate levels of opposite parity:

$$|\psi_{2S}^{\bullet}\rangle \approx |\psi_{2S}\rangle + \frac{\langle \psi_{2S}|H^{Weak}|\psi_{2P}\rangle}{|E_{2S}-E_{2P}|}|\psi_{2P}\rangle$$

⇔ small Lamb shift ⇒ large mixing!!

Stark interference (EM and Weak amplitude):

enhancement factor!

New Info from H(2S)

 $\psi_{|2S\rangle}(r=0) \neq 0 \implies$ many point-like e⁻ - p⁺ interactions:

The Heidelberg approach

Berry Phases in the Quantum Reflection of H(2S) atoms from a diffraction grating

- Atom Interferometry
 - H(2S) Atomic Beam Spin Echo => QM phases => "chiral boxes"
 - Multiple Spin Echo Groups => systematics => separation of PNC from PC effects

H(n=1) Spin Echo - dynamic phase

The Heidelberg approach

Berry Phases in the Quantum Reflection of H(2S) atoms from a diffraction grating

- 1. Atom Interferometry
 - H(2S) Atomic Beam Spin Echo => QM phases => "chiral boxes"
 - Multiple Spin Echo Groups => systematics => separation of PNC from PC effects
- Atom-Surface interaction
 - Chirality => (v, B, E_{eff}) => PV Signature
 - Quantum Reflection => H(2S) survival => Intensity
 - Admixture (2S+δ2P) => enhancement of PNC over PC contributions => Intensity
 - Grating => many interactions => accumulated phase

Experimental Scheme II

Quantum Reflection of H(2S) from a diffraction grating

- Atom Surface interaction ⇒ "E_{eff}"
- close to surface => large 2S-2P state mixing!
- Casimir-like interaction
- Quantum Reflection (at distance ≈ 1 μm) => avoid "touch-down"
- acquire geometric (Berry) phase => accumulative!

The Heidelberg approach

Berry Phases in the Quantum Reflection of H(2S) atoms from a diffraction grating

- 1. Atom Interferometry
 - H(2S) Atomic Beam Spin Echo => QM phases => "chiral boxes"
 - Multiple Spin Echo Groups => systematics => separation of PNC from PC effects
- Atom-Surface interaction
 - Chirality => (v, B, E_{eff}) => PV Signature
 - Quantum Reflection => H(2S) survival => Intensity
 - Admixture (2S+δ2P) => enhancement of PNC over PC contributions => Intensity
 - Grating => many interactions => accumulated phase
- Geometric Berry Phase
 - Robustness => coherence time => resolution
 - Selected Trajectories => separation of PNC from PC phases => clear Signature

Calculated Signal

trajectories in (E,B)-parameter space -> geometric phases

Parity Conserving

Parity NonConserving

SOIN ECHO

ABSE & PNC: putting it all together

- 1. Atom Interferometry
 - H(2S) Atomic Beam Spin Echo => QM phases => "chiral boxes"
 - Multiple Spin Echo Groups => systematics => separation of PNC from PC effects
- 2. Atom-Surface interaction
 - Chirality => (v, B, E_{eff}) => PV Signature
 - Quantum Reflection => H(2S) survival => Intensity
 - Admixture (2S+δ2P) => enhancement of PNC over PC contributions => Intensity
 - Grating => many interactions => accumulated phase
- 3. Geometric Berry Phase
 - Robustness => coherence time => resolution
 - Selected Trajectories => separation of PNC from PC phases => clear Signature

Berry Phases in the Quantum Reflection of H(2S) atoms from a diffraction grating

Experimental Setup

The Search for Parity Violation

in atomic hydrogen ...

... is to be continued!

for details see Eur. Phys. J. D (accepted)

Thanks!

Special thanks to:

to all (former) members
of the ABSE group:

PhD:

Christian Schmidt Axel Reiner Sascha Hafner Frank Lang Viola Druzhinina Lodewijk Arntzen Diplom:

Thilo Stöferle
Ulrich Warring
Christian Roux
Sacher Khoudari
Thorsten Schult
Felix Laux
Babette Döbrich
Manuel Vedovelli
Peter Augenstein
Knut Wellnitz
Friedor Jeske
Matthias Janke

to my collaborators:

Timo Bergmann
Thomas Gasenzer
Holger Gies
Ulrich Jenschura
Otto Nachtmann
Martin Trappe

and to:

YOU!

Universität Heidelberg

maarten@physi.uni-heidelberg.de