A4 Laser Compton polarimetry progress since PAVI06

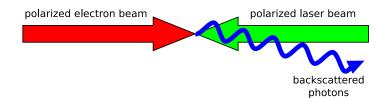
J. Diefenbach

Workshop on Parity Violation 2009, Bar Harbor, Maine - 24.06.2009

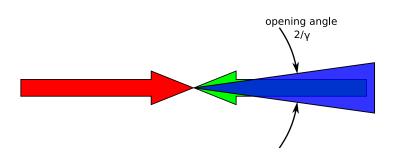
Outline

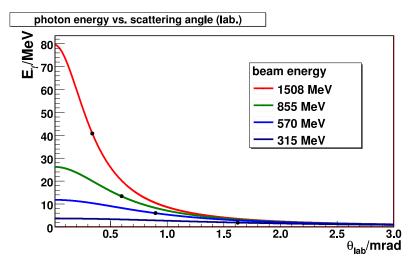
Principles of Laser Compton polarimetry

Experimental Setup


Data analysis

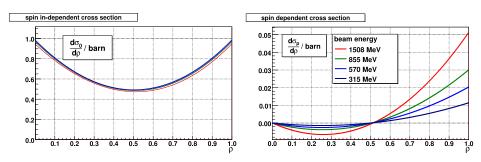
Conclusion and Outlook


Colliding beams


Colliding beams

Colliding beams

Scattering Angle (lab frame)

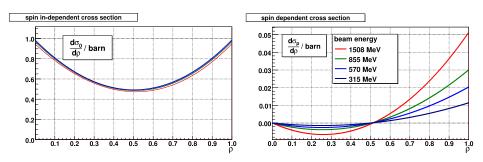


514.5 nm Argon-Ion laser light

Cross section

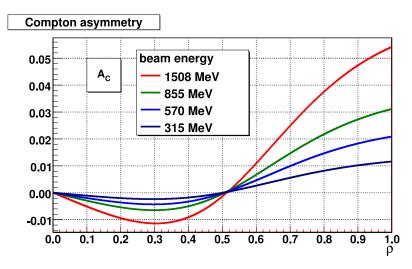
$$\sigma = \sigma_0 \mp P_e P_\gamma \sigma_p$$

$$\rho = k/k_{max}$$



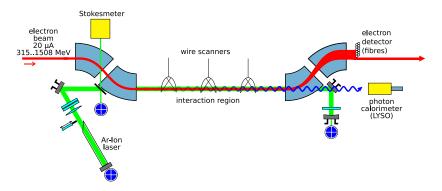
514.5 nm Argon-Ion laser light

Cross section


$$\sigma = \sigma_0 \mp P_e P_\gamma \sigma_p$$

$$\rho = k/k_{max}$$

514.5 nm Argon-Ion laser light

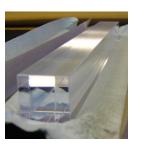

Compton Asymmetry

514.5 nm Argon-Ion laser light

Overview of the A4 Laser Compton polarimeter

- Making use of high laser power inside cavity
- Zero crossing angle
- Fast, semi-automatic overlap procedure (typ. 15..60 min)
- Fast, high-resolution detectors

Photon detector I

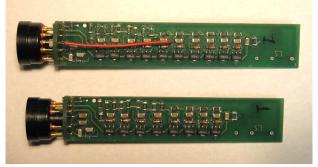

LYSO ($Lu_{1.8}Y_{0.2}SiO_5$), *PreLude420* from Saint Gobain

density: 7.1 g/cm³
 rad. length: 12 mm

decay time: 41 ns

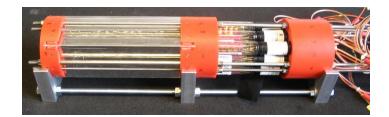
light yield: 32 photons/keV,

i.e. \approx 75% of NaI(TI)

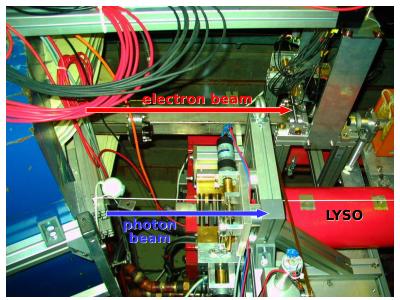

crystals of 20x20x200 mm³

3x3 crystals, wrapped in DF2000MA (3M reflective foil)

Fast, compact calorimeter for 1.5 ... 100 MeV photons


Photon detector II

Active bases for PMTs for high rates (200 kHz or more)



Two types of PMTs:
XP1981 (low gain) for 855 and 1508 MeV (up to 80 MeV)
XP1921 (high gain) for 315 MeV (3.6 MeV max.)
Can be exchanged within 60 minutes

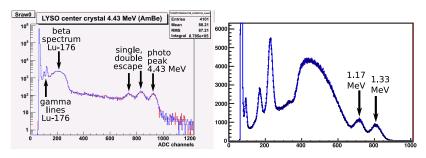
Photon calorimeter III

Photon calorimeter III

Electron fibre detector

48 scintillating fibres Kuraray SCSF-78M 0.83 mm diameter 0.73 mm active core 2x2 stacked layers 24 channels

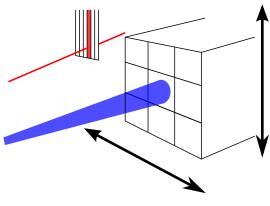
1 mm steel against synchrotron radiation tungsten wires for position calibration



Detector has been operated at 3 mm distance from beam!

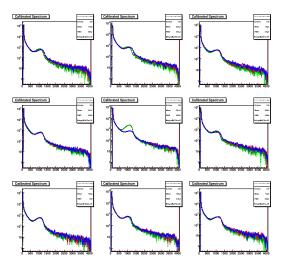
Energy calibration I

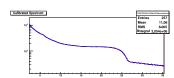
At low energies calibration of each crystal on ⁶⁰Co or AmBe neutron source (4.43 MeV)

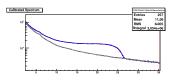


Works very well up to 855 MeV (26 MeV max. photon energy)

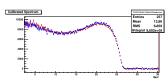
Energy calibration II


For 1508 MeV beam energy (up to 78 MeV photons) use tagged photons:

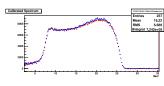

$$E_{beam} + k_0 = E_e + k$$

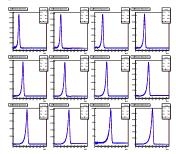

Energy calibration II

For 1508 MeV beam energy (up to 78 MeV photons) use tagged photons:

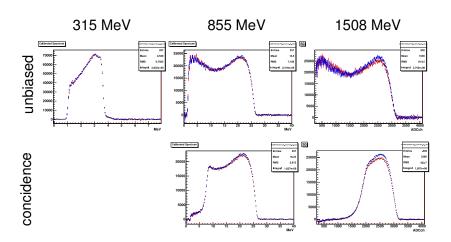


•Runs with laser light




- •Runs with laser light
- •Runs without laser light (background subtraction)

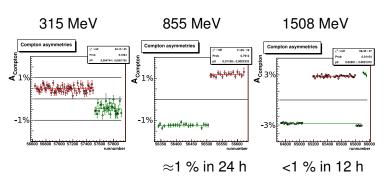
- •Runs with laser light
- •Runs without laser light (background subtraction)
- Trigger on every photon:
- "unbiased" spectra


- Runs with laser light
- Runs without laser light (background subtraction)
- Trigger on every photon:
- "unbiased" spectra
- also read out fibre detector
 - software trigger:
 - "concidence" spectra ($\gamma + e$)

- •Runs with laser light
- Runs without laser light (background subtraction)
- Trigger on every photon:
- "unbiased" spectra
- also read out fibre detector
 - software trigger:
 - "concidence" spectra ($\gamma + e$)
 - "tagged photon" spectra (one per fibre)

Typical spectra

Compton asymmetries


The simple way:

Calculate asymmetry from red and blue spectra

Compton asymmetries

The simple way:

Calculate asymmetry from red and blue spectra

Analyzing power

The simple way:

Calculate asymmetry from red and blue spectra

Problem:

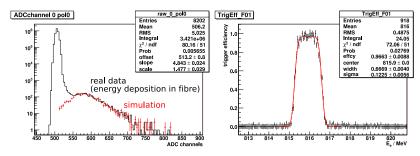
Accuracy of detector response simulation??

Analyzing power

The simple way:

Calculate asymmetry from red and blue spectra

Problem:

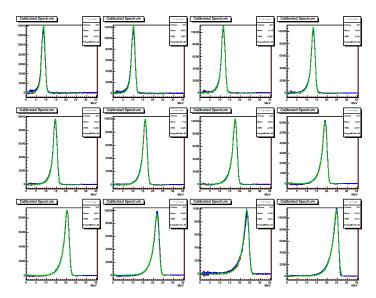

Accuracy of detector response simulation??

Solution: • Use fibres as photon tagger!

- Parametrize fibre trigger efficiencies
- Simultaneous fit of detector response simulation to tagged photon spectra

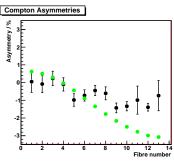
Suppression of systematics

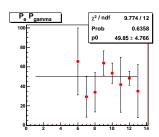
Simulate and parametrize fibre trigger efficiencies:



Analyzing power for corresponding tagged photons can now be calculated

Perform simultaneous fit of detector simulation to tagged photon spectra with


- Chicane dispersion
- Effective fibre bundle position
- Beam position fluctuations etc.


Perfectly describes tagged photon spectra! (non-trivial!!)

Suppression of systematics

855 MeV data:

black: measured

green: expected asymmetries

ratio black/green = $P_e P_{gamma}$

Conclusion and Outlook

- routine operation during parity beamtimes
- Compton asymmetry data at 315, 855, 1508 MeV:
 - $\bullet \approx$ 1 %_{stat} in 24 hours at 855 MeV
 - <1 %_{stat} in 12 hours at 1508 MeV
- low systematics when using tagged photon spectra: <1 $\%_{syst}$ (+ <1 $\%_{syst}$ from Stokesmeter) expected
- Independent, absolute, non-destructive polarization measurement for the 1.5 GeV PVA4 beamtimes!