

Radiative Corrections and Z'

Jens Erler

Departamento de Física Teórica Universidad Nacional Autónoma de México Instituto de Física (IF-UNAM)

Bar Harbor, ME

PAVI09

June 22-26, 2009

Outline

- Introduction
- Radiative Corrections
 - Vertex and box corrections
 - Running weak mixing angle
- Z' Physics
 - Introduction and overview of popular Z' models
 - Formalism and electroweak data
 - Results and discussion

Introduction

Weak Lagrangian

•
$$\mathscr{L} = \mathscr{L}_{gauge} + \mathscr{L}_{fermion} + \mathscr{L}_{Higgs} + \mathscr{L}_{Yukawa}$$

•
$$\mathscr{L}_{fermion} + \mathscr{L}_{Yukawa} \equiv \mathscr{L}_{\psi} + \mathscr{L}_{QED} + \mathscr{L}_{W} + \mathscr{L}_{Z}$$

$$= \mathscr{L}_{\psi} - g/2 (2 \sin \theta_{W})^{\mu}_{QED} A_{\mu}$$

$$+ J^{\mu}_{W} W^{-}_{\mu} + J^{\mu}_{W}^{\dagger} W^{+}_{\mu} + J^{\mu}_{Z} Z_{\mu} / \cos \theta_{W})$$

electromagnetic current:

$$J^{\mu}_{QED} = \sum_{i} \left(\frac{2}{3} \overline{u^{i}} \gamma^{\mu} u^{i} - \frac{1}{3} \overline{d^{i}} \gamma^{\mu} d^{i} - \overline{e^{i}} \gamma^{\mu} e^{i} \right)$$

weak charged current:

$$J^{\mu}_{W}^{\dagger} = \sqrt{2} \sum_{i} \left(\overline{u}^{i0} \gamma^{\mu} P_{L} d^{i0} + \overline{v}^{i0} \gamma^{\mu} P_{L} e^{i0} \right) \quad \left[P_{L,R} = \frac{1}{2} \left(I \mp \gamma^{5} \right) \right]$$

Weak neutral current

weak neutral current:

$$\begin{split} J^{\mu}_{Z} &= \sum_{i} \left(\overline{u}^{i} \, \gamma^{\mu} \, P_{L} \, u^{i} \, - \, \overline{d}^{i} \, \gamma^{\mu} \, P_{L} \, d \, + \, \overline{v}^{i} \, \gamma^{\mu} \, P_{L} \, v^{i} \, - \, \overline{e}^{i} \, \gamma^{\mu} \, P_{L} \, e^{i} \right) \\ &- 2 \, \sin^{2}\!\theta_{W} \, J^{\mu}_{QED} \\ &= \sum_{i} \overline{\psi}^{i} \, \gamma^{\mu} \, \left[g_{L}^{i} \, P_{L} \, + \, g_{R}^{i} \, P_{R} \right] \, \psi^{i} \, \equiv \sum_{i} \overline{\psi}^{i} \, \gamma^{\mu} \, \left[g_{V}^{i} \, - \, g_{A}^{i} \, \gamma^{5} \right] \, \psi^{i} \end{split}$$

- $g_L^i = \tau_3^i 2 Q^i \sin^2\theta_W$
 - (T_i: Pauli matrices)

•
$$g_R^i = -2 Q^i \sin^2 \theta_W$$

•
$$g_V^i = \frac{1}{2} \tau_3^i - 2 Q^i \sin^2 \theta_W = \frac{1}{2} (g_L^i + g_R^i)$$

•
$$g_A^i = \frac{1}{2} \tau_3^i = \frac{1}{2} (g_L^i - g_R^i)$$

Effective interactions

•
$$\mathscr{H}_{eff}^{NC} = \frac{1}{2} \left(g/2 \cos\theta_W M_Z \right)^2 J^{\mu}_Z J_{\mu Z} = G_F / \sqrt{2} J^{\mu}_Z J_{\mu Z} \right)$$

$$= G_F / \sqrt{2} \sum_{abij} h_{ab}^{ij} \overline{\psi}^i \gamma^{\mu} P_a \psi^i \overline{\psi}^j \gamma_{\mu} P_b \psi^j$$

$$[a, b = L, R] \text{ where } h_{ab}^{ij} = g_a^i g_b^j$$

$$= G_F / \sqrt{2} \sum_{MNij} h_{MN}^{ij} \overline{\psi}^i \Gamma^M \psi^i \overline{\psi}^j \Gamma_N \psi^j$$

$$[\Gamma^M, \Gamma^N = \gamma^{\mu} (V), \gamma^{\mu} \gamma^5 (A)] \text{ where } h_{AB}^{ij} = g_A^i g_B^j$$
• $\mathscr{H}_{eff}^{CC} = (g/2 M_W)^2 J^{\mu}_W ^{\dagger} J_{\mu W} = \sqrt{2} G_F J^{\mu}_W ^{\dagger} J_{\mu W}$

$$= \sqrt{2} G_F \sum_{abijkl} h_{ab}^{ijkl} \overline{\psi}^i \gamma^{\mu} P_a \psi^j \overline{\psi}^k \gamma_{\mu} P_b \psi^l$$

$$= \sqrt{2} G_F \sum_{MNijkl} h_{MN}^{ijkl} \overline{\psi}^i \Gamma^M \psi^j \overline{\psi}^k \Gamma_N \psi^l \text{ (Michel, Sirlin)}$$

Radiative Corrections

Radiative corrections to PVDIS

$$\omega_{PVDIS} = (2 C_{1u} - C_{1d}) + 0.84 (2 C_{2u} - C_{2d})$$

- 2 $C_{lu} C_{ld} = -\frac{3}{2} \left[\rho_{NC} \frac{\alpha}{2\pi} \right] \left[1 \frac{20}{9} \left(\sin^2 \overline{\theta}_{W}(0) \frac{2\alpha}{9\pi} \right) \right]$
 - $+ \frac{5\alpha}{9\pi} [I 4 \sin^2 \theta_W(M_Z)] [ln (M_Z/m_e) + \frac{1}{12}]$
 - + \square_{WW} + \square_{ZZ} + \square_{YZ} Marciano & Sirlin, PRD 1984 $[\overline{\alpha} \equiv \overline{\alpha}(M_Z)]$
- 2 $C_{2u} C_{2d} = -\frac{3}{2} \left[\rho_{NC} \frac{\alpha}{6\pi} \right] \left[1 4 \left(\sin^2 \overline{\theta}_{W}(0) \frac{2\alpha}{9\pi} \right) \right]$
 - $+ \frac{5\alpha}{9\pi} [I \frac{12}{5} \sin^2 \theta_W(M_Z)] [\ln (M_Z/m_q) + \frac{1}{12}]$
 - $-\frac{8\alpha}{9\pi} [\ln (M_W/m_q) + \frac{1}{12}] + \square_{WW} + \square_{ZZ} + \square_{YZ}$
- $\rho_{NC} \approx 1.0007$ (oblique + vertex relative to μ -decay)

Box contributions

- 2 C_{Iu} C_{Id}:
 - $\square_{WW} = -9\overline{\alpha}/[8\pi \sin^2\overline{\theta}_{W}(M_Z)][I \frac{1}{3}\overline{\alpha}_{s}(M_Z)/\pi]$
 - $\Box_{YZ} = -\frac{3\overline{\alpha}}{4\pi} \left[1 4 \sin^2 \overline{\theta}_W(M_Z) \right] \left[\ln \left(\frac{M_Z}{M_\rho} \right) + \frac{3}{4} \right]$
- 2 C_{2u} C_{2d}:
 - $\square_{WW} = -9\overline{\alpha}/[8\pi \sin^2\overline{\theta}_{W}(M_Z)][1 ?\overline{\alpha}_{s}(M_Z)/\pi]$
 - $\Box_{YZ} = -\frac{3\overline{\alpha}}{4\pi} \left[1 \frac{28}{9} \sin^2 \overline{\theta}_W(M_Z) \right] \left[\ln \left(\frac{M_Z}{M_\rho} \right) + \frac{3}{4} \right]$
 - □_{ZZ} « □_{WW}

Marciano & Sirlin, PRD 1984; JE, Kurylov & Ramsey-Musolf, PRD 2003

Box contributions to C_{2q}

	2 C _{Iu} – C _{Id}	2 C _{2u} – C _{2d}	WPVDIS
tree + QED	-0.7060	-0.0715	-0.7660
charge radii	+0.0013	-0.0110	-0.0079
	-0.0120	-0.0120	-0.0220
\Box_{YZ}	-0.0008	-0.0029	-0.0032
other	-0.0009	-0.0011	-0.0018
TOTAL	-0.7184	-0.0985	-0.8011

• Define in \overline{MS} -scheme: $\sin^2 \overline{\theta}_W(\mu) = \overline{g}'^2(\mu)/[\overline{g}^2(\mu) + \overline{g}'^2(\mu)]$

- Define in \overline{MS} -scheme: $\sin^2 \overline{\theta}_W(\mu) = \overline{g}'^2(\mu)/[\overline{g}^2(\mu) + \overline{g}'^2(\mu)]$
- RGE for $\overline{\alpha}$: $\mu^2 d\overline{\alpha}/d\mu^2 = \overline{\alpha}/24\pi \sum_k N_c^k \gamma^k (Q^k)^2$

- Define in \overline{MS} -scheme: $\sin^2 \overline{\theta}_W(\mu) = \overline{g}'^2(\mu)/[\overline{g}^2(\mu) + \overline{g}'^2(\mu)]$
- RGE for $\overline{\alpha}$: $\mu^2 d\overline{\alpha}/d\mu^2 = \overline{\alpha}/24\pi \sum_k N_c^k \gamma^k (Q^k)^2$
- RGE for \overline{v}^i : $\overline{X} = \sum_i N_C^i \gamma^i \overline{v}^i Q^i \Longrightarrow d\overline{X}/\overline{X} = d\overline{\alpha}/\alpha$

- Define in \overline{MS} -scheme: $\sin^2 \overline{\theta}_W(\mu) = \overline{g}'^2(\mu)/[\overline{g}^2(\mu) + \overline{g}'^2(\mu)]$
- RGE for $\overline{\alpha}$: $\mu^2 d\overline{\alpha}/d\mu^2 = \overline{\alpha}/24\pi \sum_k N_c^k \gamma^k (Q^k)^2$
- RGE for \overline{v}^i : $\overline{X} = \sum_i N_C^i \gamma^i \overline{v}^i Q^i \implies d\overline{X}/\overline{X} = d\overline{\alpha}/\alpha$
- ightharpoonup running of $\overline{\alpha}$ (e⁺e⁻ and/or $\overline{\tau}$ data) \Longrightarrow running of $\sin^2 \overline{\theta}_W$ if
 - either no mass threshold is crossed
 - or perturbation theory applies (W±, leptons, b & c quarks)
 - or all coefficient are equal (RGE factorizes) like for (d,s)
 - or there is a symmetry like SU(2)1 or SU(3)F

 \rightarrow only problem area: u vs. (d,s) or s vs. (u,d) (m_s \neq m_d \approx m_u)

- \rightarrow only problem area: u vs. (d,s) or s vs. (u,d) (m_s \neq m_d \approx m_u)
- strategy: define threshold masses, $\overline{m}^q = \frac{1}{2} \xi^q M_{1S} (0 \le \xi^q \le 1)$

- \rightarrow only problem area: u vs. (d,s) or s vs. (u,d) (m_s \neq m_d \approx m_u)
- strategy: define threshold masses, $\overline{m}^q = \frac{1}{2} \xi^q M_{1S} (0 \le \xi^q \le 1)$
 - expect: $\xi^{b} > \xi^{c} > \xi^{s} > \xi^{d} > \xi^{u}$

- \rightarrow only problem area: u vs. (d,s) or s vs. (u,d) (m_s \neq m_d \approx m_u)
- strategy: define threshold masses, $\overline{m}^q = \frac{1}{2} \xi^q M_{1S} (0 \le \xi^q \le 1)$
 - expect: $\xi^{b} > \xi^{c} > \xi^{s} > \xi^{d} > \xi^{u}$
 - compute \overline{m}^b and \overline{m}^c in perturbative QCD $\Longrightarrow \xi^b > \xi^c (\checkmark)$

- \rightarrow only problem area: u vs. (d,s) or s vs. (u,d) (m_s \neq m_d \approx m_u)
- strategy: define threshold masses, $\overline{m}^q = \frac{1}{2} \xi^q M_{1S} (0 \le \xi^q \le 1)$
 - expect: $\xi^{b} > \xi^{c} > \xi^{s} > \xi^{d} > \xi^{u}$
 - compute \overline{m}^b and \overline{m}^c in perturbative QCD $\Longrightarrow \xi^b > \xi^c (\checkmark)$
 - heavy quark limit for m_s : $\xi^s \longrightarrow \xi^c \Longrightarrow m_s < 387 \; \text{MeV}$

- \rightarrow only problem area: u vs. (d,s) or s vs. (u,d) (m_s \neq m_d \approx m_u)
- strategy: define threshold masses, $\overline{m}^q = \frac{1}{2} \xi^q M_{1S} (0 \le \xi^q \le 1)$
 - expect: $\xi^{b} > \xi^{c} > \xi^{s} > \xi^{d} > \xi^{u}$
 - compute \overline{m}^b and \overline{m}^c in perturbative QCD $\Longrightarrow \xi^b > \xi^c (\checkmark)$
 - heavy quark limit for m_s : $\xi^s \longrightarrow \xi^c \Longrightarrow m_s < 387 \; \text{MeV}$
 - SU(3)_F limit: $\xi^s \longrightarrow \xi^d \approx \xi^u +$ dispersion result for $\Delta \overline{\alpha}^{(3)}(\overline{m}_c) \Longrightarrow \overline{m}_s > 240$ MeV

JE & Ramsey-Musolf, PRD 2005

• $\Delta \overline{\alpha}^{(3)}(\overline{m}_c)$: e⁺e⁻-annihilation and T-decay data from ALEPH, BaBar, Belle, CLEO, CMD-2, KLOE, SND, etc. (±3×10⁻⁵)

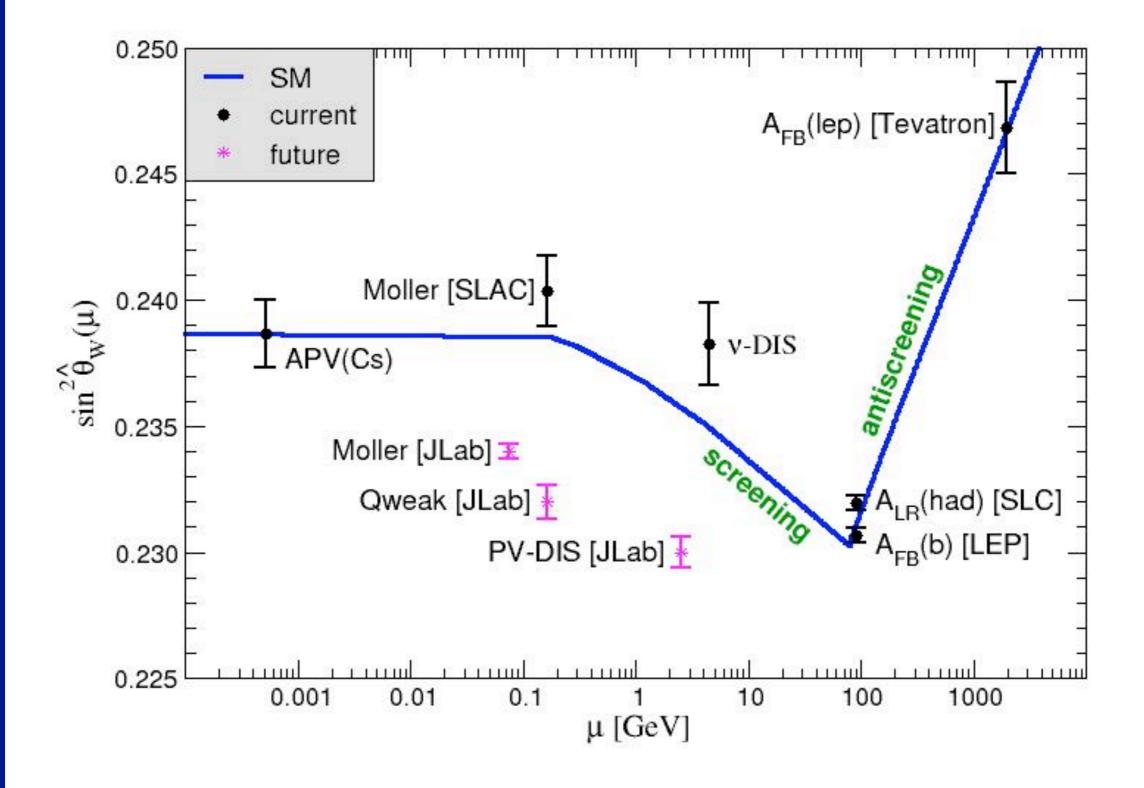
- $\Delta \overline{\alpha}^{(3)}(\overline{m}_c)$: e⁺e⁻-annihilation and T-decay data from ALEPH, BaBar, Belle, CLEO, CMD-2, KLOE, SND, etc. (±3×10⁻⁵)
- SU(3)_F breaking threshold masses, $\overline{m}_u = \overline{m}_d \neq \overline{m}_s (\pm 5 \times 10^{-5})$

- $\Delta \overline{\alpha}^{(3)}(\overline{m}_c)$: e⁺e⁻-annihilation and T-decay data from ALEPH, BaBar, Belle, CLEO, CMD-2, KLOE, SND, etc. (±3×10⁻⁵)
- SU(3)_F breaking threshold masses, $\overline{m}_u = \overline{m}_d \neq \overline{m}_s (\pm 5 \times 10^{-5})$
- $SU(2)_I$ breaking threshold masses: $m_u \neq m_d (\pm 8 \times 10^{-6})$

- $\Delta \overline{\alpha}^{(3)}(\overline{m}_c)$: e⁺e⁻-annihilation and T-decay data from ALEPH, BaBar, Belle, CLEO, CMD-2, KLOE, SND, etc. (±3×10⁻⁵)
- SU(3)_F breaking threshold masses, $\overline{m}_u = \overline{m}_d \neq \overline{m}_s (\pm 5 \times 10^{-5})$
- $SU(2)_I$ breaking threshold masses: $m_u \neq m_d (\pm 8 \times 10^{-6})$
- at \ge 3 loops there is the (OZI rule violating) singlet (QCD annihilation) contribution to the RGE for α but not to the RGE for \overline{v} [Qu + Qd + Qs = Tu + Td = 0] ($\pm 3 \times 10^{-5}$)

- $\Delta \overline{\alpha}^{(3)}(\overline{m}_c)$: e⁺e⁻-annihilation and T-decay data from ALEPH, BaBar, Belle, CLEO, CMD-2, KLOE, SND, etc. (±3×10⁻⁵)
- SU(3)_F breaking threshold masses, $m_u = m_d \neq m_s (\pm 5 \times 10^{-5})$
- $SU(2)_I$ breaking threshold masses: $m_u \neq m_d (\pm 8 \times 10^{-6})$
- at \ge 3 loops there is the (OZI rule violating) singlet (QCD annihilation) contribution to the RGE for α but not to the RGE for $\sqrt[n]{[Q^u + Q^d + Q^s = T^u + T^d = 0]}$ ($\pm 3 \times 10^{-5}$)
- parametric uncertainties from m_c and m_b (QCD sum rule)

- $\Delta \overline{\alpha}^{(3)}(\overline{m}_c)$: e⁺e⁻-annihilation and T-decay data from ALEPH, BaBar, Belle, CLEO, CMD-2, KLOE, SND, etc. (±3×10⁻⁵)
- SU(3)_F breaking threshold masses, $m_u = m_d \neq m_s (\pm 5 \times 10^{-5})$
- $SU(2)_I$ breaking threshold masses: $m_u \neq m_d (\pm 8 \times 10^{-6})$
- at \ge 3 loops there is the (OZI rule violating) singlet (QCD annihilation) contribution to the RGE for α but not to the RGE for $\sqrt[n]{i}$ [Qu + Qd + Qs = Tu + Td = 0] ($\pm 3 \times 10^{-5}$)
- parametric uncertainties from m_c and m_b (QCD sum rule)
- parametric uncertainty from $\overline{\alpha}_s(M_Z)$



 Many types of radiative corrections larger than anticipated experimental uncertainty

- Many types of radiative corrections larger than anticipated experimental uncertainty
- for DIS, replace hadronic cut-off scales $(m_q, M_\rho, ...)$ by Q^2 in $\sin^2\overline{\theta}_W$, charge radii & $\square_{\gamma Z}$; also chang QED correction to g_A (these should be the dominant effects)

- Many types of radiative corrections larger than anticipated experimental uncertainty
- for DIS, replace hadronic cut-off scales $(m_q, M_\rho, ...)$ by Q^2 in $\sin^2\overline{\theta}_W$, charge radii & $\square_{\gamma Z}$; also chang QED correction to g_A (these should be the dominant effects)
- obtain I-loop radiative corrections with full Q² and y-dependence (like in Czarnecki & Marciano, PRD 1996 for Møller)

- Many types of radiative corrections larger than anticipated experimental uncertainty
- for DIS, replace hadronic cut-off scales $(m_q, M_\rho, ...)$ by Q^2 in $\sin^2\overline{\theta}_W$, charge radii & $\square_{\gamma Z}$; also chang QED correction to g_A (these should be the dominant effects)
- obtain I-loop radiative corrections with full Q² and y-dependence (like in Czarnecki & Marciano, PRD 1996 for Møller)
- \bullet compute leading QCD corrections to charge radii & \square_{YZ}

- Many types of radiative corrections larger than anticipated experimental uncertainty
- for DIS, replace hadronic cut-off scales $(m_q, M_\rho, ...)$ by Q^2 in $\sin^2\overline{\theta}_W$, charge radii & $\square_{\gamma Z}$; also chang QED correction to g_A (these should be the dominant effects)
- obtain I-loop radiative corrections with full Q² and y-dependence (like in Czarnecki & Marciano, PRD 1996 for Møller)
- \odot compute leading QCD corrections to charge radii & \Box_{YZ}
- correct PVDIS asymmetry for $Q^2 \neq 0$ effects or define new C_{2q} , which could supersede less precise old ones

Z' Physics

The search for a fifth force

• Extra Z' bosons are predicted anywhere you look:

- Extra Z' bosons are predicted anywhere you look:
 - Grand Unfied Theories, LR-models, Strings, Technicolor, Large Extra Dimensions, Little Higgs Theories, ...

- Extra Z' bosons are predicted anywhere you look:
 - Grand Unfied Theories, LR-models, Strings, Technicolor, Large Extra Dimensions, Little Higgs Theories, ...
 - \rightarrow expect $M_{z'}$ at the electroweak or TeV scale

- Extra Z' bosons are predicted anywhere you look:
 - Grand Unfied Theories, LR-models, Strings, Technicolor, Large Extra Dimensions, Little Higgs Theories, ...
 - \rightarrow expect $M_{z'}$ at the electroweak or TeV scale
- LHC: $100 (1,000) \text{ fb}^{-1} \text{ probe } M_{z'} \lesssim 5 (6) \text{ TeV Godfrey, hep-ph/0201093}$

- Extra Z' bosons are predicted anywhere you look:
 - Grand Unfied Theories, LR-models, Strings, Technicolor, Large Extra Dimensions, Little Higgs Theories, ...
 - \rightarrow expect $M_{z'}$ at the electroweak or TeV scale
- LHC: $100 (1,000) \text{ fb}^{-1} \text{ probe } M_{z'} \lesssim 5 (6) \text{ TeV Godfrey, hep-ph/0201093}$
 - angular distribution of leptons helps to discriminate
 spin-I (Z') against spin-0 (sneutrino) and spin-2 (KK graviton) resonances
 Osland, Pankov, Paver & Tsytrinov, arXiv:0904.4857

- Extra Z' bosons are predicted anywhere you look:
 - Grand Unfied Theories, LR-models, Strings, Technicolor, Large Extra Dimensions, Little Higgs Theories, ...
 - \rightarrow expect $M_{z'}$ at the electroweak or TeV scale
- LHC: 100 (1,000) fb⁻¹ probe $M_{z'} \lesssim 5$ (6) TeV Godfrey, hep-ph/0201093
 - angular distribution of leptons helps to discriminate
 spin-I (Z') against spin-0 (sneutrino) and spin-2 (KK graviton) resonances
 Osland, Pankov, Paver & Tsytrinov, arXiv:0904.4857
 - Diagnostic tools: leptonic FB asymmetries, heavy quark final states

 Barger, Han & Walker, PRL 2008; Godfrey & Martin, PRL 2008

$$U(I)' = \cos\beta U(I)_X + \sin\beta U(I)_{\psi}$$
 $(-90^{\circ} < \beta \le 90^{\circ})$

$$U(1)' = \cos\beta \ U(1)_X + \sin\beta \ U(1)_{\Psi} \qquad (-90^{\circ} < \beta \le 90^{\circ})$$

•
$$\beta = 0^{\circ} \Longrightarrow \mathbb{Z}_{X} [SO(10) \longrightarrow SU(5) \times U(1)_{X}]$$

$$U(I)' = \cos\beta \ U(I)_X + \sin\beta \ U(I)_{\Psi} \qquad (-90^\circ < \beta \le 90^\circ)$$

•
$$\beta = 0^{\circ} \Longrightarrow \mathbb{Z}_{X} [SO(10) \longrightarrow SU(5) \times U(1)_{X}]$$

•
$$\beta = 90^{\circ} \Longrightarrow Z_{\psi} [E_6 \longrightarrow SO(10) \times U(1)_{\psi}]$$

$$U(I)' = \cos\beta U(I)_X + \sin\beta U(I)_{\psi} \qquad (-90^\circ < \beta \le 90^\circ)$$

- $\beta = 0^{\circ} \Longrightarrow \mathbb{Z}_{X} [SO(10) \longrightarrow SU(5) \times U(1)_{X}]$
- $\beta = 90^{\circ} \Longrightarrow Z_{\psi} [E_6 \longrightarrow SO(10) \times U(1)_{\psi}]$
- $\beta \approx -52.2^{\circ} \Longrightarrow Z_{\eta}$ [heterotic string on Calabi-Yau manifold]

$$U(I)' = \cos\beta \ U(I)_X + \sin\beta \ U(I)_{\Psi} \qquad (-90^\circ < \beta \le 90^\circ)$$

- $\beta = 0^{\circ} \Longrightarrow \mathbb{Z}_{X} [SO(10) \longrightarrow SU(5) \times U(1)_{X}]$
- $\beta = 90^{\circ} \Longrightarrow Z_{\psi} [E_6 \longrightarrow SO(10) \times U(1)_{\psi}]$
- $\beta \approx -52.2^{\circ} \Longrightarrow Z_{\eta}$ [heterotic string on Calabi-Yau manifold]
- $\beta \approx 37.8^{\circ} \Longrightarrow Z_{I} \perp Z_{\eta}$ [hadrophobic: no up-quark couplings]

$$U(I)' = \cos\beta \ U(I)_X + \sin\beta \ U(I)_{\Psi} \qquad (-90^\circ < \beta \le 90^\circ)$$

- $\beta = 0^{\circ} \Longrightarrow \mathbb{Z}_{X} [SO(10) \longrightarrow SU(5) \times U(1)_{X}]$
- $\beta = 90^{\circ} \Longrightarrow Z_{\psi} [E_6 \longrightarrow SO(10) \times U(1)_{\psi}]$
- $\beta \approx -52.2^{\circ} \Longrightarrow Z_{\eta}$ [heterotic string on Calabi-Yau manifold]
- $\beta \approx 37.8^{\circ} \Longrightarrow Z_{I} \perp Z_{\eta}$ [hadrophobic: no up-quark couplings]
- $\beta \approx 23.3^\circ \Longrightarrow Z_S$ [secluded U(I)' breaking: $M_Z \ll M_{Z'}$ and EW baryogenesis] JE, Langacker & Li, PRD 2002; Kang, Langacker, Li & Liu, PRL 2005

$$U(I)' = \cos\beta \ U(I)_X + \sin\beta \ U(I)_{\psi}$$
 $(-90^{\circ} < \beta \le 90^{\circ})$

- $\beta = 0^{\circ} \Longrightarrow \mathbb{Z}_{X} [SO(10) \longrightarrow SU(5) \times U(1)_{X}]$
- $\beta = 90^{\circ} \Longrightarrow Z_{\psi} [E_6 \longrightarrow SO(10) \times U(1)_{\psi}]$
- $\beta \approx -52.2^{\circ} \Longrightarrow Z_{\eta}$ [heterotic string on Calabi-Yau manifold]
- $\beta \approx 37.8^{\circ} \Longrightarrow Z_{I} \perp Z_{\eta}$ [hadrophobic: no up-quark couplings]
- $\beta \approx 23.3^\circ \Longrightarrow Z_S$ [secluded U(I)' breaking: $M_Z \ll M_{Z'}$ and EW baryogenesis] JE, Langacker & Li, PRD 2002; Kang, Langacker, Li & Liu, PRL 2005
- $\beta \approx 75.5^{\circ} \Longrightarrow Z_N$ [no couplings to V_R : see-saw possible]

•
$$(\alpha, \beta) \approx (50.8^{\circ}, 0^{\circ}) \Longrightarrow Z_{R} [SU(2)_{R} \longrightarrow U(1)_{R}]$$

- $(\alpha, \beta) \approx (50.8^{\circ}, 0^{\circ}) \Longrightarrow \mathbb{Z}_{\mathbb{R}} [SU(2)_{\mathbb{R}} \longrightarrow U(1)_{\mathbb{R}}]$
- $Z_{LR} \propto \overline{\alpha} Z_R Z_{B-L}/2\overline{\alpha}$, where $\overline{\alpha} = \sqrt{(g_R^2/g_L^2 \cot^2\theta_W 1)} \approx 1.53$ (for $g_R = g_L$); $[(\alpha, \beta) \approx (-39.2^\circ, 0^\circ) \implies Z_{B-L} \perp Z_R]$

- $(\alpha, \beta) \approx (50.8^{\circ}, 0^{\circ}) \Longrightarrow \mathbb{Z}_{\mathbb{R}} [SU(2)_{\mathbb{R}} \longrightarrow U(1)_{\mathbb{R}}]$
- $Z_{LR} \propto \overline{\alpha} \ Z_R Z_{B-L}/2\overline{\alpha}$, where $\overline{\alpha} = \sqrt{(g_R^2/g_L^2 \cot^2\theta_W 1)} \approx 1.53$ (for $g_R = g_L$); $[(\alpha, \beta) \approx (-39.2^\circ, 0^\circ) \implies Z_{B-L} \perp Z_R]$
- $(\alpha, \beta) \approx (28.6^{\circ}, -48.6^{\circ}) \Longrightarrow Z_{k}$ [leptophobic: no couplings to charged leptons and v_{l}]

- $(\alpha, \beta) \approx (50.8^{\circ}, 0^{\circ}) \Longrightarrow Z_{R} [SU(2)_{R} \longrightarrow U(1)_{R}]$
- $Z_{LR} \propto \overline{\alpha} \ Z_R Z_{B-L}/2\overline{\alpha}$, where $\overline{\alpha} = \sqrt{(g_R^2/g_L^2 \cot^2\theta_W 1)} \approx 1.53$ (for $g_R = g_L$); $[(\alpha, \beta) \approx (-39.2^\circ, 0^\circ) \implies Z_{B-L} \perp Z_R]$
- $(\alpha, \beta) \approx (28.6^{\circ}, -48.6^{\circ}) \Longrightarrow Z_{k}$ [leptophobic: no couplings to charged leptons and v_{l}]
- sequential Z': couples like ordinary Z; could be excited state

- $(\alpha, \beta) \approx (50.8^{\circ}, 0^{\circ}) \Longrightarrow \mathbb{Z}_{\mathbb{R}} [SU(2)_{\mathbb{R}} \longrightarrow U(1)_{\mathbb{R}}]$
- $Z_{LR} \propto \overline{\alpha} \ Z_R Z_{B-L}/2\overline{\alpha}$, where $\overline{\alpha} = \sqrt{(g_R^2/g_L^2 \cot^2\theta_W 1)} \approx 1.53$ (for $g_R = g_L$); $[(\alpha, \beta) \approx (-39.2^\circ, 0^\circ) \implies Z_{B-L} \perp Z_R]$
- $(\alpha, \beta) \approx (28.6^{\circ}, -48.6^{\circ}) \Longrightarrow Z_{k}$ [leptophobic: no couplings to charged leptons and v_{l}]
- sequential Z': couples like ordinary Z; could be excited state
- Z_{string}: family non-universal Z' appearing in a specific string model Chaudhuri, Chung, Hockney & Lykken, NPB 1995; Cleaver et al., PRD 1999

 $M_0 = M_W/(\cos\theta_W \sqrt{\rho})$ (Mz in the absence of Z-Z' mixing)

• Higgs sectors with only singlets and doublets $\Rightarrow \rho = G_{NC}/G_{CC} = I$; otherwise $\rho \neq I$ (also without Z')

- Higgs sectors with only singlets and doublets $\Rightarrow \rho = G_{NC}/G_{CC} = I$; otherwise $\rho \neq I$ (also without Z')
- anomaly cancellation and gauge coupling unification require extra "exotic" fermions $\Rightarrow T \neq 0$ (in general)

- Higgs sectors with only singlets and doublets $\Rightarrow \rho = G_{NC}/G_{CC} = I$; otherwise $\rho \neq I$ (also without Z')
- anomaly cancellation and gauge coupling unification require extra "exotic" fermions $\Rightarrow T \neq 0$ (in general)
- \Rightarrow phenomenologically ρ and T are indistinguishable \Rightarrow only one effective combination enters: $\rho/(1-\alpha T)$

- Higgs sectors with only singlets and doublets $\Rightarrow \rho = G_{NC}/G_{CC} = I$; otherwise $\rho \neq I$ (also without Z')
- anomaly cancellation and gauge coupling unification require extra "exotic" fermions $\Rightarrow T \neq 0$ (in general)
- \Rightarrow phenomenologically ρ and T are indistinguishable \Rightarrow only one effective combination enters: $\rho/(1-\alpha T)$
- $\rho/(1-\alpha T) \neq I$ has relatively little impact on extracted Z' parameters \Rightarrow will mostly set $\rho/(I-\alpha T) = I$

• $\tan^2\theta_{ZZ'} = (M_0^2 - M_Z^2)/(M_{Z'}^2 - M_0^2)$: general relation from diagonalizing the vector boson mass matrix ($\Longrightarrow M_0^2 > M_Z^2$)

- $\tan^2\theta_{ZZ'} = (M_0^2 M_Z^2)/(M_{Z'}^2 M_0^2)$: general relation from diagonalizing the vector boson mass matrix ($\Longrightarrow M_0^2 > M_Z^2$)
- $\theta_{ZZ'} = C g_2/g_1 M_Z/M_{Z'}$: C is sometimes known in terms of U(1)' charges and $SU(2)_L$ multiplet structure of Higgs fields

- $\tan^2\theta_{ZZ'} = (M_0^2 M_Z^2)/(M_{Z'}^2 M_0^2)$: general relation from diagonalizing the vector boson mass matrix ($\Longrightarrow M_0^2 > M_Z^2$)
- $\theta_{ZZ'} = C g_2/g_1 M_Z/M_{Z'}$: C is sometimes known in terms of U(1)' charges and $SU(2)_L$ multiplet structure of Higgs fields
- Example: $x \equiv \langle \varphi_V \rangle$ in $\mathbf{I6}_{SO(10)}$, $v(\overline{v}) \equiv \langle \varphi_{N(\overline{N})} \rangle$ in $\mathbf{\overline{5}}(\mathbf{5})_{SU(5)}$ $|v|^2 + |\overline{v}|^2 + |x|^2 = (\sqrt{2} G_F)^{-1} = (246.22 \text{ GeV})^2$ (27 of E₆) also define: $\tau \equiv \sqrt{2} G_F |\overline{v}|^2$, $\omega \equiv \sqrt{2} G_F |x|^2$ ($0 \leq \tau, \omega \leq 1$)

- $\tan^2\theta_{ZZ'} = (M_0^2 M_Z^2)/(M_{Z'}^2 M_0^2)$: general relation from diagonalizing the vector boson mass matrix ($\Longrightarrow M_0^2 > M_Z^2$)
- $\theta_{ZZ'} = C g_2/g_1 M_Z/M_{Z'}$: C is sometimes known in terms of U(1)' charges and $SU(2)_L$ multiplet structure of Higgs fields
- Example: $x \equiv \langle \varphi_V \rangle$ in $\mathbf{I6}_{SO(10)}$, $v(\overline{v}) \equiv \langle \varphi_{N(\overline{N})} \rangle$ in $\overline{\mathbf{5}}(\mathbf{5})_{SU(5)}$ $|v|^2 + |\overline{v}|^2 + |x|^2 = (\sqrt{2} G_F)^{-1} = (246.22 \text{ GeV})^2$ (27 of E₆) also define: $\tau \equiv \sqrt{2} G_F |\overline{v}|^2$, $\omega \equiv \sqrt{2} G_F |x|^2$ ($0 \leq \tau, \omega \leq 1$)
- Z_I for illustration: $C = \tau + 2 \omega I \implies -I \le C \le I$ restricted range for SUSY $(\omega = 0, \tau \ge \frac{1}{2}) \implies -\frac{1}{2} \le C \le 0$

Z' effects

Z' effects

• Z-Z' mixing effects: strong constraints on $\theta_{ZZ'}$ from Z-pole observables and M_W-M_Z interdependence (even for the Z_k)

- Z-Z' mixing effects: strong constraints on $\theta_{ZZ'}$ from Z-pole observables and M_W - M_Z interdependence (even for the Z_k)
- Z' exchange: Z' and Z' amplitudes almost completely out of phase at LEP $I \Longrightarrow go$ off peak: LEP 2 and low energies

- Z-Z' mixing effects: strong constraints on $\theta_{ZZ'}$ from Z-pole observables and M_W - M_Z interdependence (even for the Z_k)
- Z' exchange: Z' and Z' amplitudes almost completely out of phase at LEP $I \Longrightarrow go$ off peak: LEP 2 and low energies
- loop effects (small but not necessarily negligible):

- Z-Z' mixing effects: strong constraints on $\theta_{ZZ'}$ from Z-pole observables and M_W - M_Z interdependence (even for the Z_k)
- Z' exchange: Z' and Z' amplitudes almost completely out of phase at LEP $I \Longrightarrow go$ off peak: LEP 2 and low energies
- loop effects (small but not necessarily negligible):
 - Mw-G_F interdependence: $\delta(\Delta \hat{r}_{W}) = -5 \lambda \epsilon_{L^{e}} \epsilon_{L^{\mu}} \alpha_{Y}/\pi \ln(M_{Z'}/M_{W})/(M_{Z'}^{2}/M_{W}^{2} 1) (\lambda \sim 1)$

- Z-Z' mixing effects: strong constraints on $\theta_{ZZ'}$ from Z-pole observables and M_W - M_Z interdependence (even for the Z_k)
- Z' exchange: Z' and Z' amplitudes almost completely out of phase at LEP $I \Longrightarrow go$ off peak: LEP 2 and low energies
- loop effects (small but not necessarily negligible):
 - M_W-G_F interdependence: $\delta(\Delta \hat{r}_W) = -5 \lambda \epsilon_L^e \epsilon_L^\mu \alpha_Y/\pi \ln(M_{Z'}/M_W)/(M_{Z'}^2/M_W^2 1) (\lambda \sim 1)$
 - $\delta(|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)$: same with $\epsilon_L^{\mu} \longrightarrow -2 (\epsilon_L^{\mu} \epsilon_L^d)$

- Z-Z' mixing effects: strong constraints on $\theta_{ZZ'}$ from Z-pole observables and M_W - M_Z interdependence (even for the Z_k)
- Z' exchange: Z' and Z' amplitudes almost completely out of phase at LEP $I \Longrightarrow go$ off peak: LEP 2 and low energies
- loop effects (small but not necessarily negligible):
 - M_W-G_F interdependence: $\delta(\Delta \hat{r}_W) = -5 \lambda \epsilon_L^e \epsilon_L^\mu \alpha_Y/\pi \ln(M_{Z'}/M_W)/(M_{Z'}^2/M_W^2 1) (\lambda \sim 1)$
 - $\delta(|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)$: same with $\epsilon_L^{\mu} \longrightarrow -2 (\epsilon_L^{\mu} \epsilon_L^d)$
 - $\delta a_{\mu} = 5/36 \lambda (v_{\mu}^2 5 a_{\mu}^2) \alpha_{Y}/\pi m_{\mu}^2/M_{Z'}^2$

Pivotal data

Quantity	Group(s)	Value	SM	pull
g _L ²	NuTeV	0.3010(15)	0.3039(2)	-2.0
g_R^2	NuTeV	0.0308(11)	0.0300	0.7
Qw(e)	SLAC E158	-0.0403(53)	-0.0472(5)	1.3
Qw(Cs)	Boulder	-73.16(35)	-73.16(3)	0.0
$cosy C_{Id} - siny C_{Iu}$	Young et al.	0.342(63)	0.3885(2)	-0.7
sinγ C _{Id} +cosγ C _{Iu}	$(\tan \gamma \approx 0.445)$	-0.0285(43)	-0.0335(1)	1.2
CKM unitarity	various	1.0000(6)	l	0.0
$a_{\mu}-\alpha/(2\pi)$	BNL E821	4511.07(74)	4509.04(9)	2.7
Mw [GeV]	LEP 2, Tevatron	80.399(25)	80.380(15)	0.8

Z' limits

Z'	EW	CDF	LEP 2	$\theta_{zz'^{min}}$	$\theta_{zz'}^{\text{max}}$	χ^2 min
Z_X	1,141	892	673	-0.0016	0.0006	47.3
Z_{Ψ}	147	878	481	-0.0018	0.0009	46.5
Z_{η}	427	982	434	-0.0047	0.0021	47.7
Zı	1,204	789		-0.0005	0.0012	47.4
Zs	1,257	821		-0.0013	0.0005	47.3
Z_N	623	861		-0.0015	0.0007	47.4
Z_R	442			-0.0015	0.0009	46.1
Z_{LR}	998	Run I: 630	804	-0.0013	0.0006	47.3
ZŁ	$C^2 = 3/8:803$	jj (Z _{SM}): 740		-0.0094	0.0081	47.7
Z_{SM}	1,403	1,030	1,787	-0.0026	0.0006	47.2

• EW subject to ρ = I (fixed) and II4.4 GeV < M_H < I TeV

- EW subject to ρ = I (fixed) and II4.4 GeV < M_H < I TeV
- Tevatron assumes no SUSY or exotic decay channels open

- EW subject to ρ = I (fixed) and II4.4 GeV < M_H < I TeV
- Tevatron assumes no SUSY or exotic decay channels open
- CDF mass limits are from $\mu^+\mu^-$ channel; limits from e⁺e⁻ channel (CDF and DØ) are slightly lower

- EW subject to ρ = I (fixed) and II4.4 GeV < M_H < I TeV
- Tevatron assumes no SUSY or exotic decay channels open
- CDF mass limits are from $\mu^+\mu^-$ channel; limits from e⁺e⁻ channel (CDF and DØ) are slightly lower
- significant excess at $m_{ee} \approx 240$ GeV at CDF (but not confirmed in dimuon channel)

- EW subject to ρ = I (fixed) and II4.4 GeV < M_H < I TeV
- Tevatron assumes no SUSY or exotic decay channels open
- CDF mass limits are from $\mu^+\mu^-$ channel; limits from e⁺e⁻ channel (CDF and DØ) are slightly lower
- significant excess at $m_{ee} \approx 240$ GeV at CDF (but not confirmed in dimuon channel)
- LEP 2 mass limits are from virtual Z' (interference) effects on dilepton, hadron, $b\overline{b}$ and $c\overline{c}$ final states

- EW subject to ρ = I (fixed) and II4.4 GeV < M_H < I TeV
- Tevatron assumes no SUSY or exotic decay channels open
- CDF mass limits are from $\mu^+\mu^-$ channel; limits from e⁺e⁻ channel (CDF and DØ) are slightly lower
- significant excess at $m_{ee} \approx 240$ GeV at CDF (but not confirmed in dimuon channel)
- LEP 2 mass limits are from virtual Z' (interference) effects on dilepton, hadron, $b\overline{b}$ and $c\overline{c}$ final states
- The various mass limits are highly complementary (e.g., limits from EW and LEP 2 scale with coupling strength)

M_H with LEP 2 bound removed

Z'	M _H [GeV]	χ^2 min
Z _X	I7I ⁺⁴⁹³ -89	47.3
Z_{Ψ}	97 +31 ₋₂₅	46.1
Zη	423 ⁺⁵⁷⁷ ₋₃₅₀	47.7
Zı	4 +304 ₋₆	47.4
Zs	I 49 ⁺³⁵³ -68	47.3
Z _N	II7 ⁺²²² -40	47.4

Z'	M _H [GeV]	χ^2 min
Z _R	84+31-24	45. I
Z _{LR}	I I 0 ⁺¹⁷⁴ -35	47.3
ZŁ	126 ⁺²⁷⁶ -52	47.7
Z _{SM}	331 ⁺⁶⁶⁹ -246	47.2
Z_{string}	134 ⁺²⁹⁹ -58	47.7
SM	96 ⁺²⁹ ₋₂₅	48.0

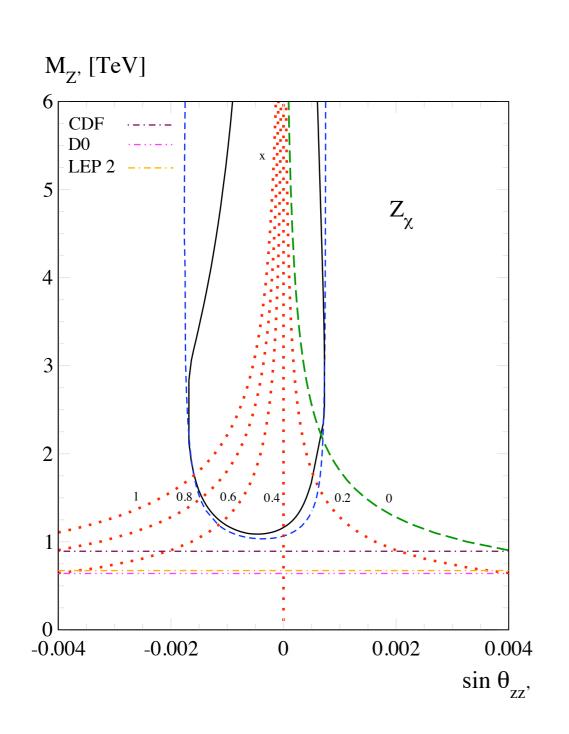
• Technically, there is a 90% C.L. upper bound, $Z_R < 29 \text{ TeV}$

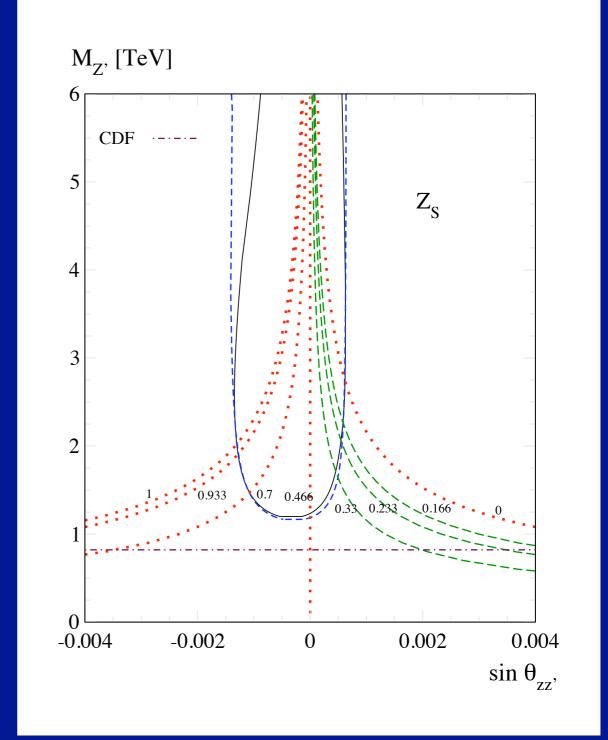
- Technically, there is a 90% C.L. upper bound, $Z_R < 29 \text{ TeV}$
- However, \exists 2 extra fit parameters ($M_{Z'}$ & $\theta_{ZZ'}$) and various adjustable charges (e.g., α & β) \Longrightarrow little significance; still surprising since SM fit is quite good: $\chi^2_{min} = 48.0/45$ d.o.f.

- Technically, there is a 90% C.L. upper bound, $Z_R < 29 \text{ TeV}$
- However, \exists 2 extra fit parameters ($M_{Z'}$ & $\theta_{ZZ'}$) and various adjustable charges (e.g., α & β) \Longrightarrow little significance; still surprising since SM fit is quite good: $\chi^2_{min} = 48.0/45$ d.o.f.
- $\Delta\chi^2_{min}$ = -2.9 mainly from PAVI observables, $Q_W(e)$ (-1.7) & e^- -hadron (-0.9); LEP I also changes, σ_{had} (-1.1) & R_I (+0.7)

- Technically, there is a 90% C.L. upper bound, $Z_R < 29 \text{ TeV}$
- However, \exists 2 extra fit parameters ($M_{Z'}$ & $\theta_{ZZ'}$) and various adjustable charges (e.g., α & β) \Longrightarrow little significance; still surprising since SM fit is quite good: $\chi^2_{min} = 48.0/45$ d.o.f.
- $\Delta\chi^2_{min}$ = -2.9 mainly from PAVI observables, $Q_W(e)$ (-1.7) & e^- -hadron (-0.9); LEP I also changes, σ_{had} (-1.1) & R_I (+0.7)
- $M_{Z'} = 667$ GeV (best fit) $\Longrightarrow \Delta |Q_W(e,p)| = -0.0073$ (6.6 & 2.5 σ) and $\Delta |2 C_{1u} C_{1d} + 0.84$ (2 $C_{2u} C_{2d}| = -0.0200$ (4.2 σ)

- Technically, there is a 90% C.L. upper bound, $Z_R < 29 \text{ TeV}$
- However, \exists 2 extra fit parameters ($M_{Z'}$ & $\theta_{ZZ'}$) and various adjustable charges (e.g., α & β) \Longrightarrow little significance; still surprising since SM fit is quite good: $\chi^2_{min} = 48.0/45$ d.o.f.
- $\Delta\chi^2_{min}$ = -2.9 mainly from PAVI observables, $Q_W(e)$ (-1.7) & e^- -hadron (-0.9); LEP I also changes, σ_{had} (-1.1) & R_I (+0.7)
- $M_{Z'} = 667$ GeV (best fit) $\Longrightarrow \Delta |Q_W(e,p)| = -0.0073$ (6.6 & 2.5 σ) and $\Delta |2 C_{1u} C_{1d} + 0.84$ (2 $C_{2u} C_{2d}$) | = -0.0200 (4.2 σ)
- $M_{Z'} = I \text{ TeV} \implies \text{shifts of } -0.0033 \text{ (3.0 & I.I } \sigma\text{)} \text{ and } -0.0090 \text{ (I.9 } \sigma\text{), respectively}$





Radiative corrections to PVDIS
more complicated but also
cleaner than at Q² = 0 (some
theory work still to be done)

- Radiative corrections to PVDIS
 more complicated but also
 cleaner than at Q² = 0 (some
 theory work still to be done)
- Z' details in

JE, Langacker, Munir & Rojas, arXiv:0906.2435

- Radiative corrections to PVDIS
 more complicated but also
 cleaner than at Q² = 0 (some
 theory work still to be done)
- Z' details in
 JE, Langacker, Munir & Rojas, arXiv:0906.2435
- ... go and find the Z_R in PAVI experiments

