Two photon exchange and transverse spin asymmetries in the A4 experiment.

David Balaguer Rios

PAVI09
Bar Harbor
A4 Collaboration
Institut für Kern Physik, Mainz

June 25, 2009

Introduction

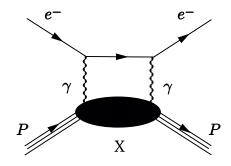
Experimental set up

Data analysis

Results H₂ data

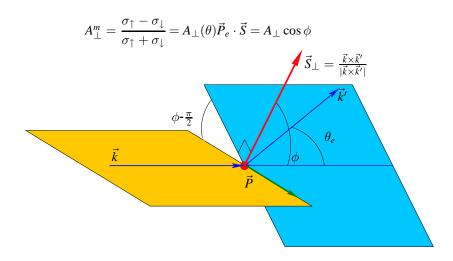
Results D₂ data

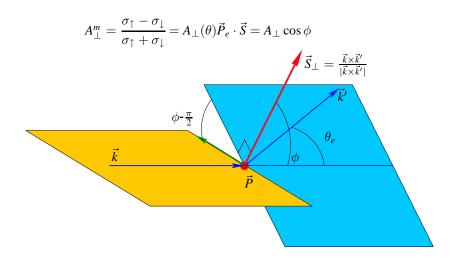
Summary and outlook


Outline

Introduction

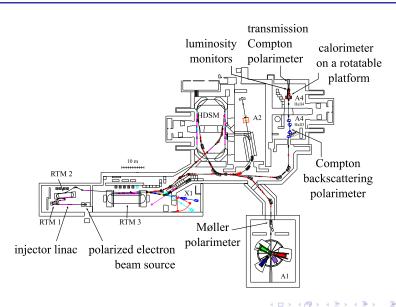
Two photon exchange


- $ightharpoonup R = G_E^p/G_M^p$ discrepancy
- 2γ exchange amplitude A_{2γ}

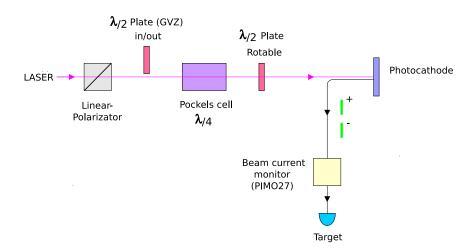

- ▶ Target and beam normal SSA sensitive to $Im(A_{2\gamma})$.
- Dispersion relations between imaginary and real part.
- ▶ PVA experiments set up: transverse beam spin asymmetry A_⊥

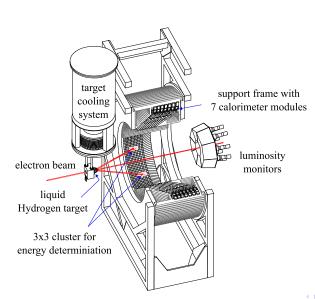
Transverse spin asymmetry

Transverse spin asymmetry



Outline


Experimental set up

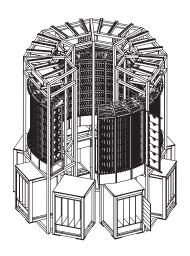

MAMI floor plan

Polarized electron beam source

Calorimeter, target and luminosity monitors

- Detector covers 2π ϕ .
- Counts single events and measures energy.
- Target of liquid hydrogen/deuterium.

Plastic scintillators



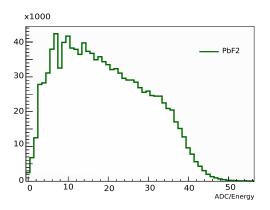
 Plastic scintillators detect charged particles. Neutral particles not detected.

- ▶ 72 plastic scintillators: two rings of 36 with overlap.
- ▶ One scintillator covers two frames: 14 modules.

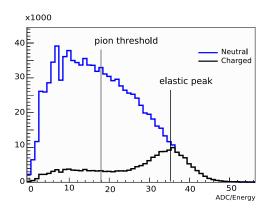
Medusa

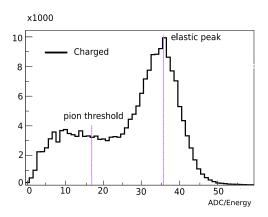
Measurements performed at backward angles

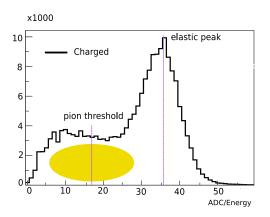
Target	Energy (MeV)	angle (deg)	Q^2 (GeV/c) 2
H_2	315.1 MeV	140 - 150	0.23
$\overline{D_2}$	315.1 MeV	140 - 150	0.23


Outline

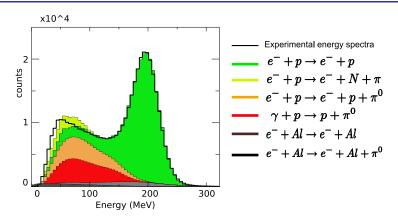
Data analysis




- Counts and energy: energy spectrum histograms every 5 min.
- Two histograms for each polarization state.
- Scintillators: a histogram for charged particles and one for neutral paticles.

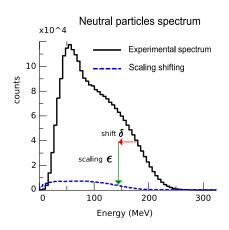

- Counts and energy: energy spectrum histograms every 5 min.
- Two histograms for each polarization state.
- Scintillators: a histogram for charged particles and one for neutral paticles.

- Counts and energy: energy spectrum histograms every 5 min.
- Two histograms for each polarization state.
- Scintillators: a histogram for charged particles and one for neutral paticles.

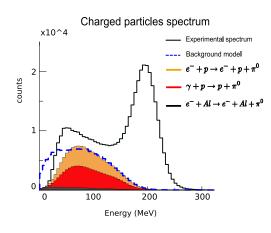


- Separation of the elastic peak in the charged particles spectrum
- ▶ Still neutral background from $\gamma \rightarrow e^-e^+$

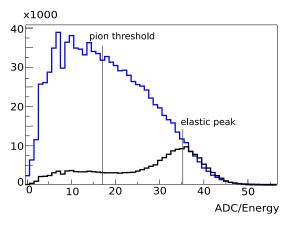
- Separation of the elastic peak in the charged particles spectrum
- ▶ Still neutral background from $\gamma \rightarrow e^-e^+$


Understanding the energy spectrum

- ▶ Monte Carlo Geant4 simulation: e^- processes and γ_s
- Background from Al walls: measurement with empty target
- Agreement above 125 MeV



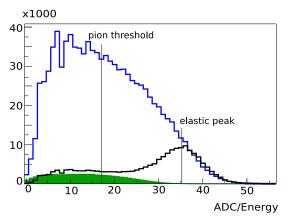
Background obtained from neutral spectrum



- γ background asymmetry?
- From experimental spectrum of neutral particles
- Model to obtain γ background
- Parameters
 - Shift δ
 - scaling factor ε

Background obtained from neutral spectrum

- Scaling shifting model agrees with simulated background:
- above 125 MeV
- energy range of our interest



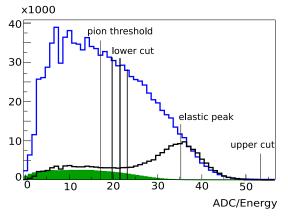
• Cuts applied f = 5, 9, 16%

$$A_e = \frac{N_e^+ - N_e^-}{N_e^+ + N_e^-}$$

$$A_{\gamma} = \frac{N_{\gamma}^+ - N_{\gamma}^-}{N_{\gamma}^+ + N_{\gamma}^-}$$

$$A_{\text{phys}}^{\text{raw}} = \frac{A_e - f A_{\gamma}}{1 - f}$$

$$f = \frac{N_e^{back}}{N_e^{back} + N_e^{el}}$$

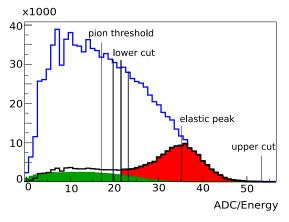

• Cuts applied f = 5, 9, 16%

$$A_e = \frac{N_e^+ - N_e^-}{N_e^+ + N_e^-}$$

$$A_{\gamma} = \frac{N_{\gamma}^+ - N_{\gamma}^-}{N_{\gamma}^+ + N_{\gamma}^-}$$

$$A_{\text{phys}}^{\text{raw}} = \frac{A_e - f A_{\gamma}}{1 - f}$$

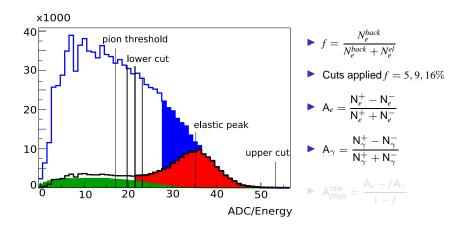
$$f = \frac{N_e^{back}}{N_e^{back} + N_e^{el}}$$

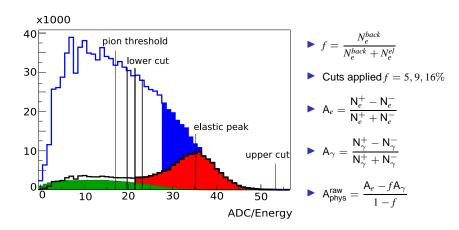

• Cuts applied f = 5, 9, 16%

$$A_e = \frac{N_e^+ - N_e^-}{N_e^+ + N_e^-}$$

$$A_{\gamma} = \frac{N_{\gamma}^+ - N_{\gamma}^-}{N_{\gamma}^+ + N_{\gamma}^-}$$

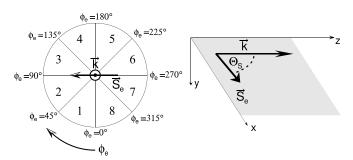
$$A_{\text{phys}}^{\text{raw}} = \frac{A_e - f A_{\gamma}}{1 - f}$$




▶ Cuts applied f = 5, 9, 16%

$$A_e = \frac{N_e^+ - N_e^-}{N_e^+ + N_e^-}$$

$$A_{\gamma} = \frac{N_{\gamma}^+ - N_{\gamma}^-}{N_{\gamma}^+ + N_{\gamma}^-}$$

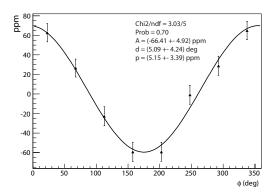

$$A_{\text{phys}}^{\text{raw}} = \frac{A_e - f A_{\gamma}}{1 - f}$$

Combination of asymmetries

- ▶ Detector divided in sectors: azimuthal modulation of A_{\perp}
- ▶ A_{\perp} averaged over the scattering angle θ

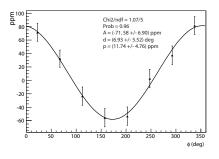
Outline

Results H₂ data

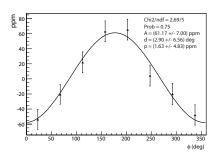

Raw asymmetry dependence on ϕ / H_2

$$Q^2 = 0.23 \, (\text{GeV/c})^2$$

A4 backwards kinematics


f = 9%

$$A_{\mathsf{exp}} = A_{\perp} \cos(\phi + \delta) + p$$

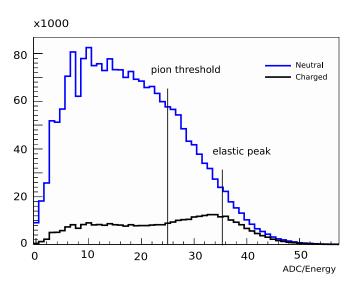


GVZ test of systematics

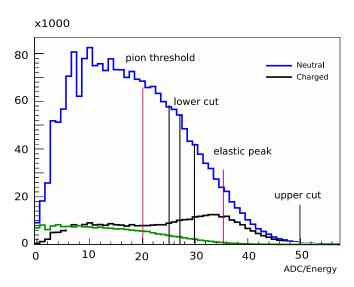
GVZ = OUT

GVZ = IN

Preeliminary results for H₂ data


- 5 inner rings: 730 crystals.
- 50 h of data taking.
- ▶ Altogether 1.8 · 10¹¹ elastic events.
- Effective $P_e = 70.0\%$, error $\Delta(P_e) = 4\%$

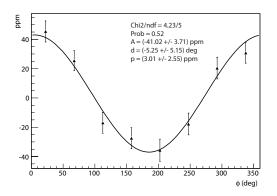
At A4 Backward kinematics and $Q^2 = 0.23$ (GeV/c)² $A_{\perp} = (-86.65 \pm 3.35 \pm 3.46)$ ppm


Outline

Results D₂ data

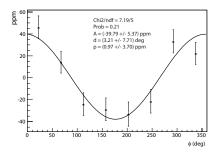
Neutral and charged particles spectra for D₂

Neutral and charged particles spectra for D₂

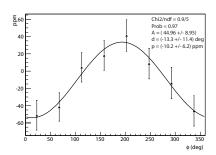

Raw asymmetry dependence on ϕ / D_2

$$Q^2 = 0.23 \, (\text{GeV/c})^2$$

A4 backwards kinematics


f = 16%

$$A_{\mathsf{exp}} = A_{\perp} \cos(\phi + \delta) + p$$



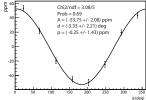
GVZ test of systematics

GVZ = OUT

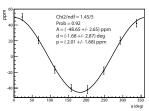
GVZ = IN

Preeliminary results for D₂ data

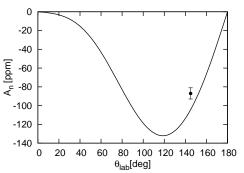
- 5 inner rings: 730 crystals.
- 60 h of data taking.
- ▶ Altogether 2.5 · 10¹¹ elastic events
- Effective $P_e = 78.4\%$, error $\Delta(P_e) = 4\%$


At A4 Backward kinematics and $Q^2=0.23$ (GeV/c)² $A_{\perp}=(-57.60\pm2.54\pm3.07)$ ppm

Systematic errors


	Systematic error contribution
Polarization	2.30 ppm
False asymmetries	0.64 ppm
Model parameter δ	1.3 ppm
Model parameter ϵ	0.25 ppm
Target density	0.03 ppm
Spin deviation	1.4 ppm
Aluminium	<u> </u>
Pile-up	<u> </u>
Nonlinearity LuMo	_
Total	3.07 ppm

Transverse spin asymmetry in neutral background


- ► A^{back} is large and depends on the cut:
- ▶ A_⊥ sensitive to background subtraction

Summary of asymmetries

Target	elastic	background
H_2	$-86.65 \pm 3.35 \; \text{ppm}$	$-100.60 \pm 2.78 \ ppm$
D_2	$-57.60\pm2.54~\mathrm{ppm}$	$-62.37 \pm 2.28 \ { m ppm}$

Comparision of measured and calculated A_⊥

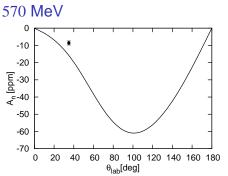
Calculation of A_{\perp} for proton ¹

¹Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering. B. Pasquini et al. physical review c 70. 045206 (2004)

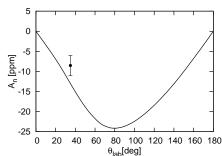
Outline

Summary and outlook

Summary


- ► Transverse spin asymmetry with H_2 and D_2 at $Q^2 = 0.23$ (GeV/c)² and backward angles.
- Detector of plastic scintillators to separate neutral background
- ▶ Understanding the energy spectrum and mixed γ background
- Modulation of the transverse spin asymmetry on cos φ
- Combination of whole data. Preliminary results
- Comparision of the measured transverse spin asymmetries with the calculations.

Outlook


▶ Analysis in progress: sensitivity of A_{\perp} to background subtraction.

- Investigation the transverse spin asymmetry in the neutral background.
- ▶ Analysis of data at backward angles with H_2 and D_2 and $Q^2 = 0.35$ (GeV/c)²

Previous A₁ at A4 forward kinematics

855 MeV

Target I-H₂

$$A_{\perp}(Q^2=0.11(GeV/c)^2)=(-8.59\pm0.89\pm0.75)~{
m ppm}$$

 $A_{\perp}(Q^2=0.23(GeV/c)^2)=(-8.52\pm2.31\pm0.87)~{
m ppm}$

