

Parity-odd Neutron Spin Rotation and the NN weak interaction

Mike Snow Indiana University/IUCF PAVI09

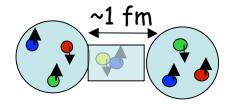
Theory outline of weak NN interaction What is parity-odd neutron spin rotation?

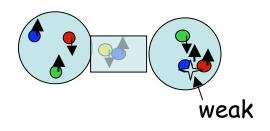
n+4He experiment @NIST: analysis nearing completion Future possibilities for 4He, H, D P-odd spin rotation

N-4He Spin Rotation Collaboration

<u>C.D. Bass</u>¹, B.E. Crawford², J.M. Dawkins¹, T.D. Bass¹, <u>K. Gan</u>³, B.R. Heckel⁴, J.C. Horton¹, C.R. Huffer¹, P.R. Huffman⁵, <u>D. Luo</u>¹, D.M. Markoff⁶, A.M. Micherdzinska¹, H.P. Mumm⁷, J.S. Nico⁷, A.K. Opper³, E. Sharapov⁸, M.G. Sarsour¹, W.M. Snow¹, H.E. Swanson⁴, <u>V. Zhumabekova</u>⁹

Indiana University / IUCF ¹
Gettysburg College ²
The George Washington University ³
University of Washington ⁴
North Carolina State University / TUNL ⁵
North Carolina Central University ⁶
National Institute of Standards and Technology (NIST) ⁷
Joint Institute for Nuclear Research, Dubna, Russia ⁸
Al-Farabi Khazakh National University ⁹





The Weak NN Interaction on one slide

NN repulsive core (from Pauli principle applied to quarks)->1 fm range for strong NN

IN>=lqqq>+lqqqq>+...=valence+sea quarks+gluons+... interacts through strong NN force, mediated by mesons Im>=lqq>+... Interactions have long (~1 fm) range, QCD conserves parity

Both W and Z exchange possess much smaller range [~1/100 fm]

If the quarks are close, the weak interaction can act, which violates parity at a length scale small compared to that set by $\Lambda_{\rm QCD}$ Relative weak/strong amplitudes: $\sim [{\rm e}^2/{\rm m}^2_{\rm W}]/[{\rm g}^2/{\rm m}^2_{\pi}] \sim 10^{-6}$ Quark-quark weak interaction induces NN weak interaction Visible using parity violation

q-q weak interaction: an "inside-out" probe of QCD ground state

Weak qq-> Weak NN: what can we learn?

 $\Delta s=1$ nonleptonic weak interactions [$\Delta l=1/2$ rule, hyperon decays not (completely) understood, data not close to simple estimates from flavor symmetries]

Question: is this problem specific to the strange quark, or is it a general feature in the nonleptonic weak interactions of light quarks? [For nontrivial q-q dynamics answer should be yes.]

To answer, we must look at $\Delta s=0$ nonleptonic weak interactions (u,d quarks) [this sector also sees q-q neutral weak currents]

Any such process is dominated by strong interaction->must measure ~1E-6 PV effects at low E

Weak NN interaction is one of the few experimentally feasible systems where this is possible

SM Structure of qq Weak Interaction

• At low energies L_{weak} takes a current-current form involving charged and neutral weak currents with $\Delta I = 0.1 / 2.1$

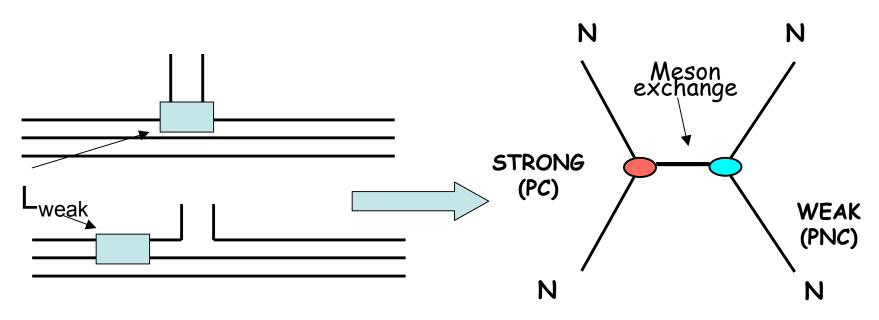
$$L = \frac{G_F}{\sqrt{2}} (J_W^{\dagger} J_W + J_Z^{\dagger} J_Z) + h.c. \quad J_W = \cos \theta_c J_W^1 + \sin \theta_c J_W^{1/2} \qquad J_z = J_Z^0 + J_Z^1$$

$$L = \frac{G_F}{\sqrt{2}} [\cos^2 \theta_c (J_W^1)^{\dagger} J_W^1 + \sin^2 \theta_c (J_W^{1/2})^{\dagger} J_W^{1/2} + (J_Z^0)^{\dagger} J_Z^0 + (J_Z^1)^{\dagger} J_Z^1 + (J_Z^0)^{\dagger} J_Z^1 + (J_Z^1)^{\dagger} J_Z^0] + h.c.$$

$$\Delta I = 0, 2 \qquad \Delta I = 1 \qquad \Delta I = 0, 1, 2$$

- Charged currents in ∆I=1 weak NN processes are Cabbibo-suppressed at tree level
- QCD renormalization of terms in L_{weak} is known to modify relative size of operators between electroweak scale and QCD scale

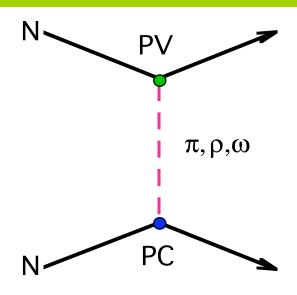
NN Weak Interaction: 5 Independent Amplitudes at Low Energy


Using isospin symmetry applied to NN elastic scattering we get the usual Pauli-allowed L,S,I combinations:

```
\begin{split} &\mathbf{I}_{\text{tot}} = 1 \text{ (isospin-S):} \\ &\operatorname{Space-S} \left( \text{even L} \right) \otimes \operatorname{spin-A} \left( S_{\text{tot}} = 0 \right) \Rightarrow {}^{1}S_{0} \text{ , }^{1}D_{2} \text{ , }^{1}G_{4} \text{ , ...} \\ &\operatorname{or Space-A} \left( \operatorname{odd L} \right) \otimes \operatorname{spin-S} \left( S_{\text{tot}} = 1 \right) \Rightarrow {}^{3}P_{0,1,2} \text{ , }^{3}F_{2,3,4} \text{ , ...} \\ &\mathbf{I}_{\text{tot}} = 0 \text{ (isospin-A):} \\ &\operatorname{Space-A} \left( \operatorname{odd L} \right) \otimes \operatorname{spin-A} \left( S_{\text{tot}} = 0 \right) \Rightarrow {}^{1}P_{1} \text{ , }^{1}F_{3} \text{ , ...} \\ &\operatorname{Space-S} \left( \operatorname{even L} \right) \otimes \operatorname{spin-S} \left( S_{\text{tot}} = 1 \right) \Rightarrow {}^{3}S_{1} \text{ , }^{3}D_{1,2,3} \text{ , }^{3}G_{3,4,5} \text{ , ...} \\ \end{split}
```

If we use energies low enough that only S waves are important for strong interaction and only source for P waves is from weak interaction, we have 5 independent NN parity-violating amplitudes:

```
{}^{3}S_{1} \Leftrightarrow {}^{1}P_{1}(\Delta I=0, np); {}^{3}S_{1} \Leftrightarrow {}^{3}P_{1}(\Delta I=1, np); {}^{1}S_{0} \Leftrightarrow {}^{3}P_{0}(\Delta I=0, 1, 2; nn, pp, np)
```


<u>Different Theoretical Approaches to weak NN interaction</u>

- Kinematic: 5 S->P transition amplitudes in elastic NN scattering [Danilov]
- QCD effective field theory: χ perturbation theory [Liu, Holstein, Musolf, et al, incorporates chiral symmetry of QCD]
- <u>Dynamical model</u>: meson exchange model for weak NN [effect of qq weak interactions parametrized by ~6 couplings, Desplanques, Donoghue, Holstein,...]+ QCD model calculations
- Standard Model [need QCD in strong interaction regime, lattice+EFT extrapolation (Beane&Savage)]

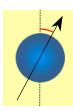
Meson Exchange Model (DDH) and other QCD Models

assumes π , ρ , and ω exchange dominate the low energy PNC NN potential as they do for strong NN

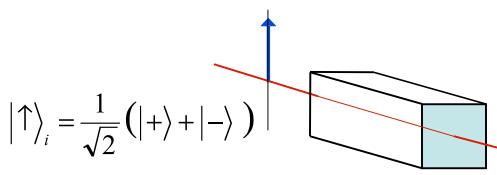
Weak meson-nucleon couplings f_{π} , h_{ρ}^{0} , h_{ρ}^{1} , h_{ρ}^{2} , h_{ω}^{0} , h_{ω}^{1} to be determined by experiment

NN χPT coefficients and quantum numbers (Liu07)

Partial wave transition	I ↔ I'	ΔΙ	n-n	n-p	р-р	EFT coupling
$^{3}S_{I} \longleftrightarrow ^{3}P_{I}$	$0 \longleftrightarrow 1$	1		1		$m\rho_t$
${}^{3}S_{I} \longleftrightarrow {}^{1}P_{I}$	$0 \longleftrightarrow 0$	0				$m\lambda_t$
${}^{1}S_{0} \longleftrightarrow {}^{3}P_{0}$	1 ↔ 1	0	√	√	V	$m\lambda_{_S}^{nn}$
${}^{1}S_{0} \longleftrightarrow {}^{3}P_{0}$	1 ↔ 1	1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$m\lambda_{_S}^{np}$
${}^{1}S_{0} \longleftrightarrow {}^{3}P_{0}$	1 ↔ 1	2			V	$m\lambda_{_S}^{\ \ pp}$
${}^{3}S_{1} \longleftrightarrow {}^{3}P_{1}$	$0 \longleftrightarrow 1$	1				$C^{\pi}[\sim f_{\pi}]$


First 5 couplings are allowed s->p transition amplitudes in NN elastic scattering in "pionless" EFT limit (same as Danilov parameters)

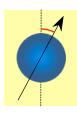
Last coupling is long-range part of weak pion exchange [in DDH $\sim f_{\pi}$]


NN χPT coefficients and observables (Liu07)

EFT coupling (partial wave mixing)	np A _γ	np P _γ	nD A _γ	ηα φ	пр ф	pp A _z	pα A _z
$m\rho_t(^3S_I^{-3}P_I)$	-0.09	0	1.4	-2.7	1.4	0	-1.07
$m\lambda_t (^3S_1 - {}^1P_1)$	0	0.7	1.2	1.3	-0.6	0	-0.54
$m\lambda_s^{nn} (^{1}S_0 - {}^{3}P_0)$	0	0	0.6	1.2	0	0	-0.48
$m\lambda_s^{np} (^{1}S_0 - {}^{3}P_0)$	0	-0.16	0.5	0.6	2.5	0	-0.24
$m\lambda_s^{pp} (^1S_0 - ^3P_0)$	0	0	0	0	0	-0.45,	0
						-0.78	
$C^{\pi}(^{3}S_{l}-^{3}P_{l})[\sim f_{\pi}]$	-0.3	0	0	0	0.3	0	0
experiment	0.6	1.8	42	8		-0.93,	-3.3
(10^{-7})	±2.1	±1.8	±38	±14		-1.57	±0.9
						±0.2	

Column gives relation between PV observable and weak couplings in EFT with pion Needs calculations of PV in few body systems (NN done, others in progress)

A Parity-Violating Observable: Neutron Spin Rotation


- Analogous to optical rotation in an "handed" medium.
- Transversely-polarized neutrons corkscrew due to the NN weak interaction
- PV Spin Angle is independent of incident neutron energy in cold neutron regime, d φ_{PV}/dx ~ 10⁻⁶ rad/m based on dimensional analysis
- $d\phi_{PC}/dx$ (due to B field) can be much larger than $d\phi_{PV}/dx$, and is v_n dependent

$$f(0) = f_{PC} + f_{PV} \left(\vec{\sigma} \cdot \vec{k} \right)$$

Refractive index dependent on neutron helicity

$$\frac{1}{\sqrt{2}} \left(e^{-i(\phi_{PC} + \phi_{PV})} |z\rangle + e^{-i(\phi_{PC} - \phi_{PV})} |-z\rangle \right)$$

$$\phi_{PV} = \varphi_+ - \varphi_- = 2\pi l \rho f_{PV}$$

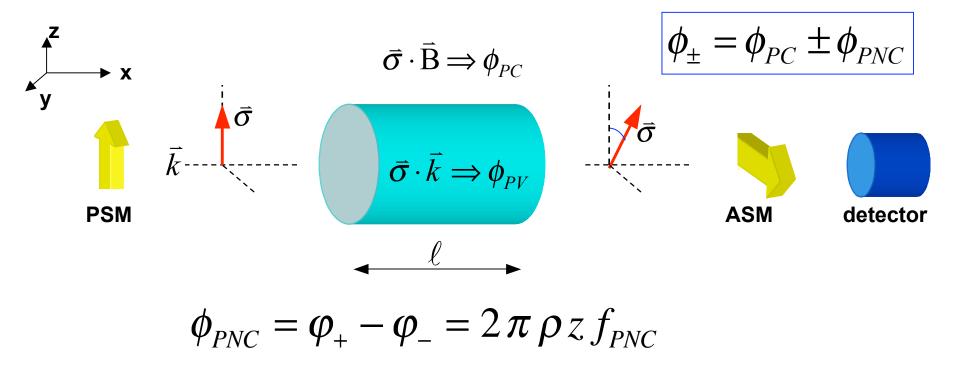
Theoretical Expectations for 4He Spin Rotation

$$\phi_{PV}(\bar{n}, {}^{4}\text{He}) = -(0.97f_{\pi} + 0.22h_{\omega}^{0} - 0.22h_{\omega}^{1} + 0.32h_{\rho}^{0} - 0.11h_{\rho}^{1} - 0.02h_{\rho}^{\prime 1}) \text{ rad/m}$$

Dmitriev *et al*. Phys Lett **125** 1 (1983)

Using "best values" and "reasonable range" values for DDH couplings:

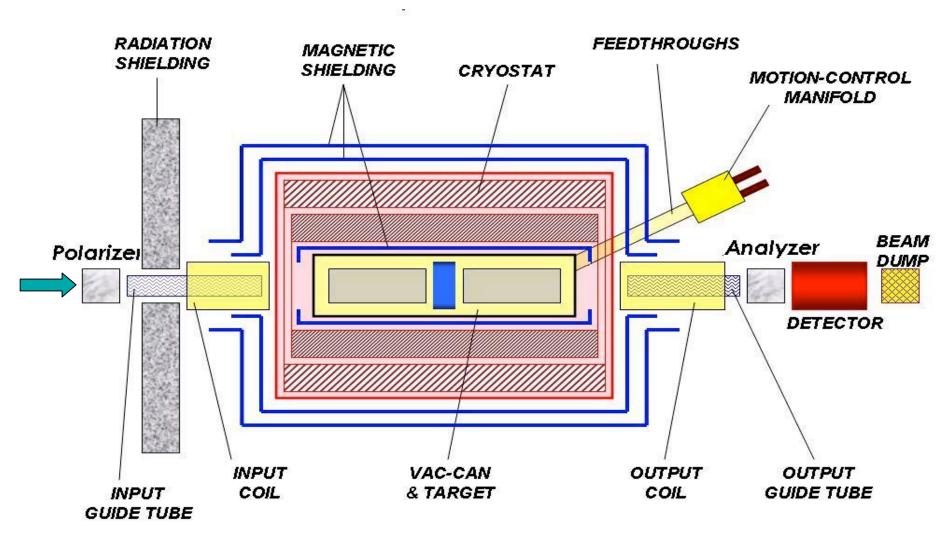
$$\varphi_{PV}(\vec{n},^4\text{He}) = -(0.1 \pm 1.5) \times 10^{-6} \text{ rad/m}$$


In terms of new EFT couplings Zhu et al. Nucl. Phys. A 748 435-498 (2005)

$$\phi_{PV}(n^4 \text{He}) = (1.2\lambda_s^{nn} + 0.6\lambda_s^{np} + 1.3\lambda_t - 2.7\rho_t) m_n$$

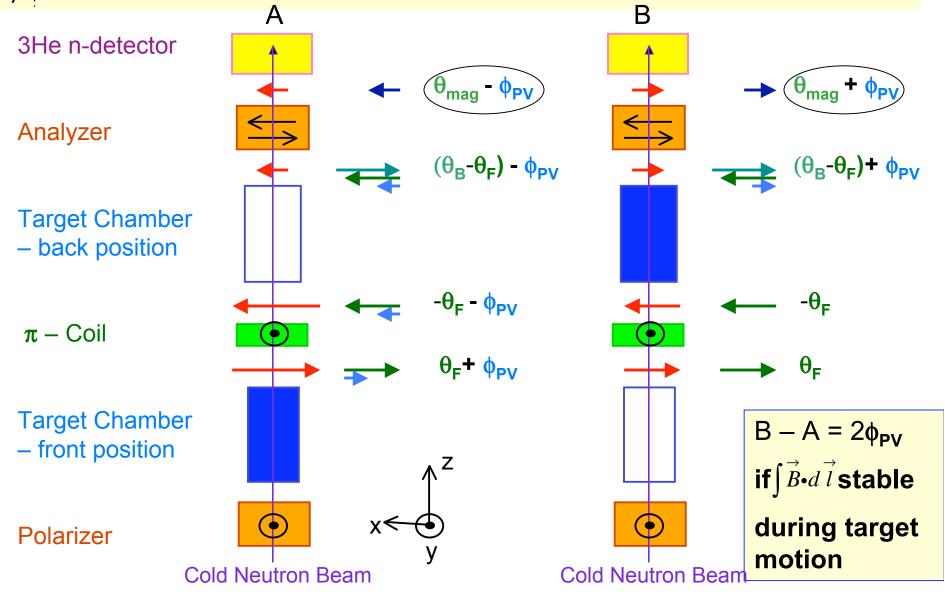
 ϕ = (8 ± 14 (stat) ± 2 (sys)) ´10-7 rad/m is existing (unpublished) experimental limit (D. Markoff, PhD thesis U Washington)

PV Neutron Spin Rotation Measurement


• PV rotation angle / unit length $(d\phi_{PV}/dx)$ approaches a finite limit for zero neutron energy:

 $d\phi_{PV}/dx \sim 10^{-6} \text{ rad/m inlight nuclei (H,D,}^{4}\text{He)}$

• $d\phi_{PC}/dx$ (due to B field) is much larger than $d\phi_{PV}/dx$, and is v_n dependent: Spin rotation of polarized meV neutrons in B field of Earth is larger than PV rotation by 6 orders of magnitude

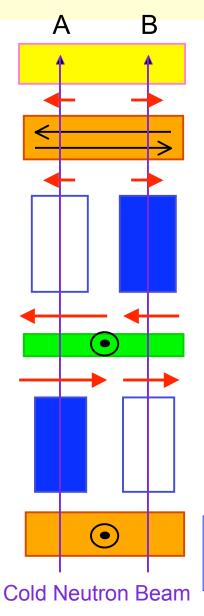

Cross section of Spin Rotation Apparatus

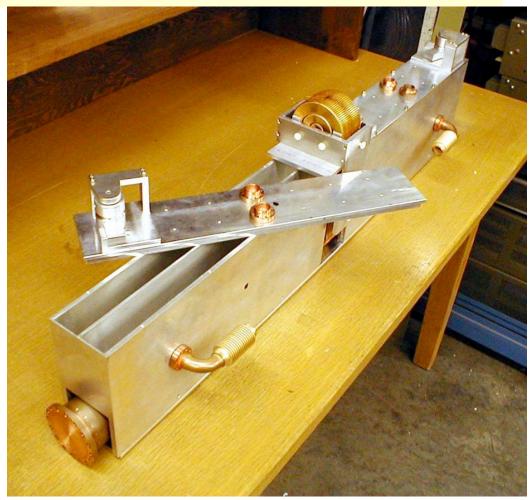
Step 1 to isolate PV spin rotation: shielding reduces B by ~10⁴

Target design: Oscillation of PV Signal

Target design: Beam Noise Suppression

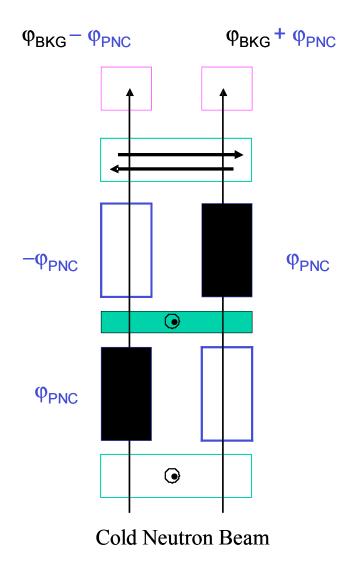
3He n-detector


Analyzer


Target Chamber – back position

 π – Coil

Target Chamber – front position


Polarizer

$$[B - A]_1 - [B - A]_2 = 4\phi_{PV} \text{ if } \int_{B} \vec{b} \cdot d\vec{l} - \int_{A} \vec{b} \cdot d\vec{l}$$

stable during target motion

Signal Modulation/ Noise Suppression

³He *n*-detectors

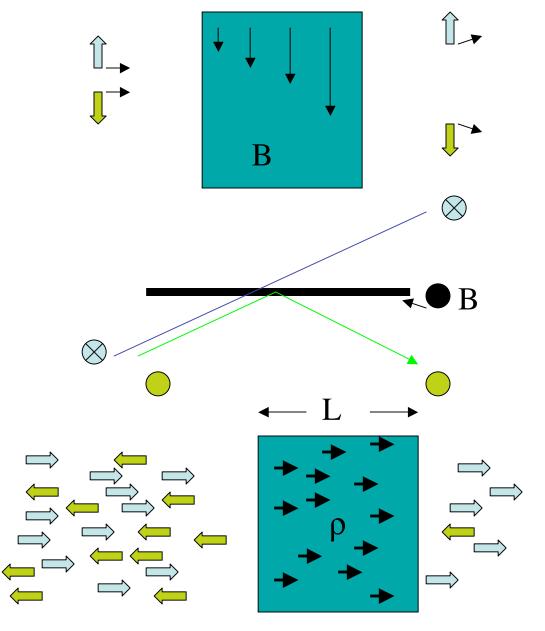
Analyzer

Target Chamber Back Position

π - Coil

Target Chamber Front Position

Polarizer


Motion of liquid isolates P-odd signal

Beam split into two parallel beams for common-mode noise reduction

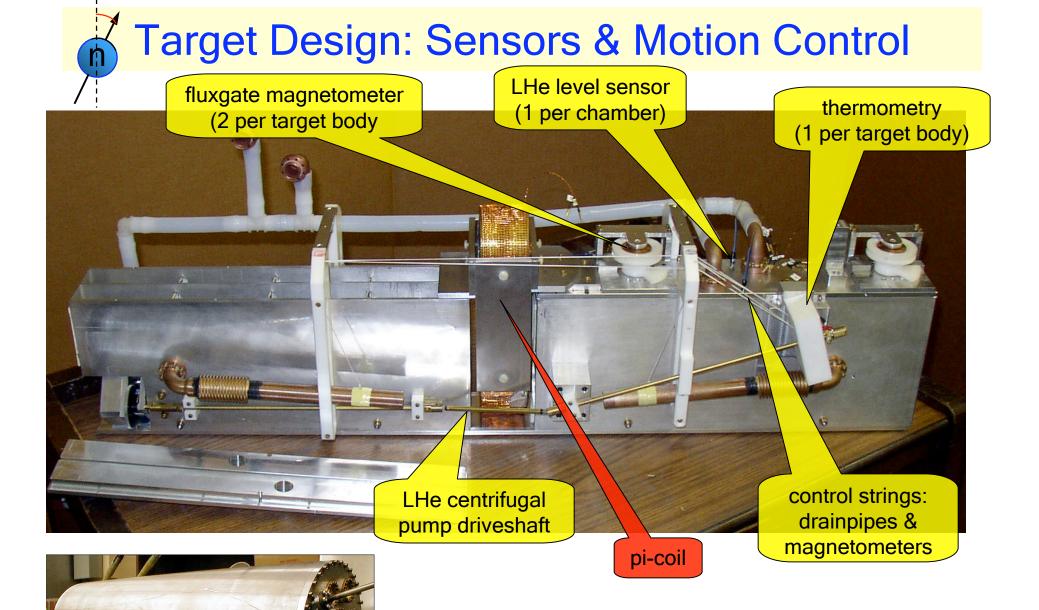
Analyzer direction switched at known frequency

$$\sin \varphi = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

How can neutrons be polarized?

B gradients (Stern-Gerlach, sextupole magnets) electromagnetic

$$F = (\mu \bullet \nabla)B$$

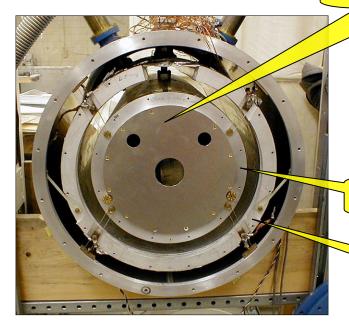

Reflection from magnetic mirror: electromagnetic+ strong

f \pm =a(strong) +/- a(EM) with | a(strong)|=| a(EM)| \Rightarrow f \pm 2a, f \pm 0

Transmission through polarized nuclei: strong

$$\sigma + \neq \sigma - \Rightarrow T + \neq T - = 0$$

Spin Filter: $T_{+}=\exp[-\rho\sigma_{+}L]$

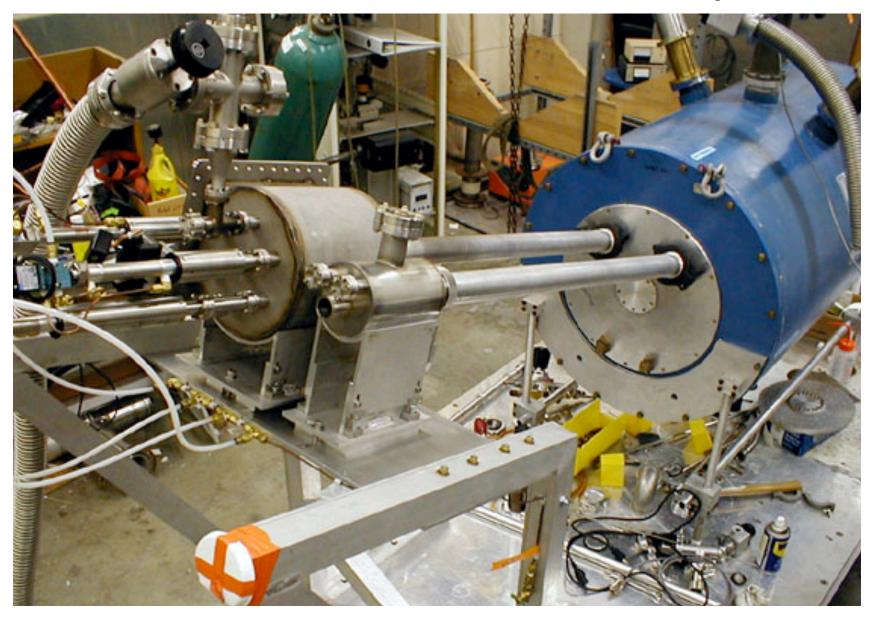

Target/pump immersed in a pool of liquid helium below n beam inside this cylinder

Nonmagnetic Cryostat

- Oxford horizontal, cold-bore cryostat
 - built from *non-magnetic* materials
 - consists of two coaxial annular vessels housed within a cylindrical main vacuum vessel

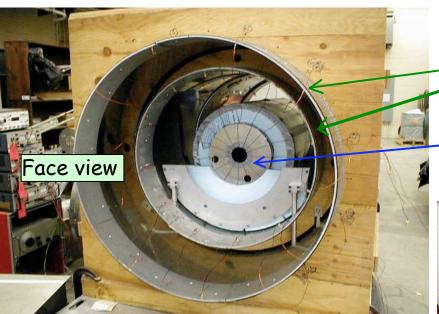

4K thermal shield

cold bore: 30.5 cm dia 100 cm long


LHe volume: 30L

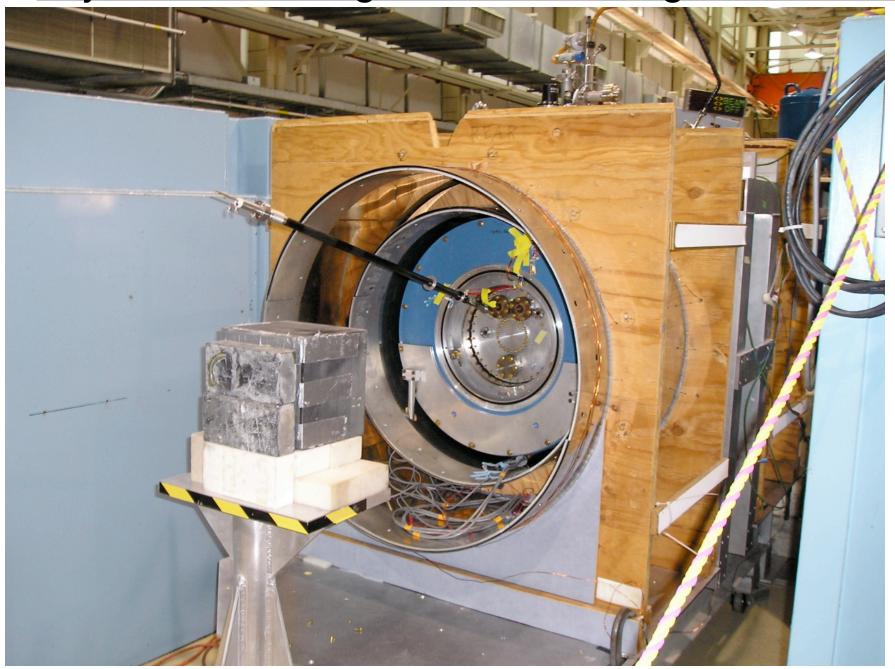
LN2 volume: 50L

coldbore

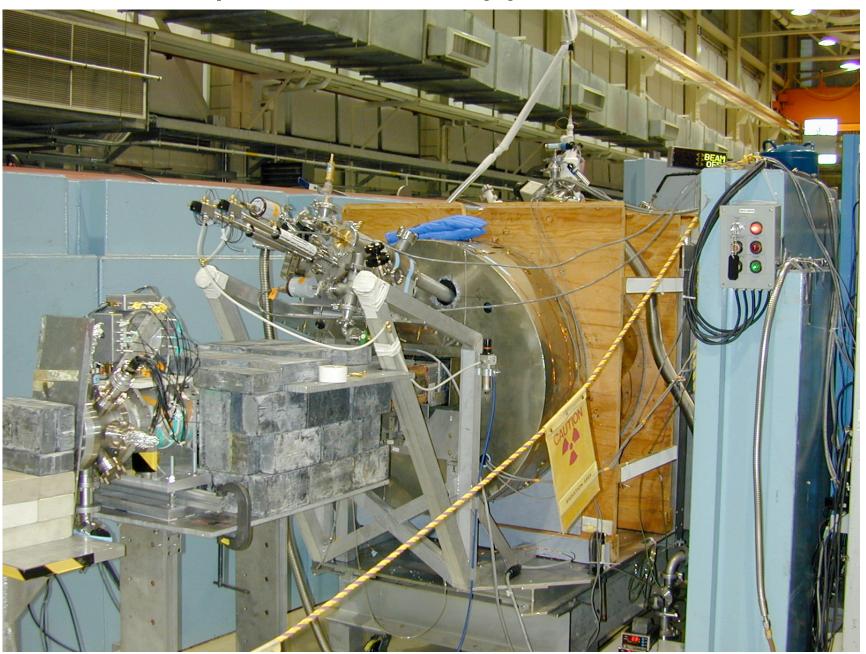

Liquid Helium Motion Control System

Nonmagnetic cryostat: target feedthroughs and liquid motion control system

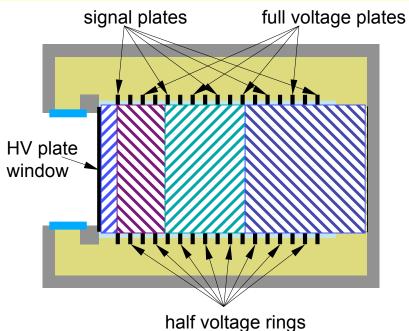
Magnetic shielding


2 outer CO-NETIC AA shield

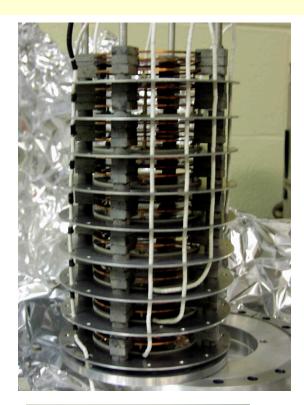
1 inner CRYOPERM-10 shield

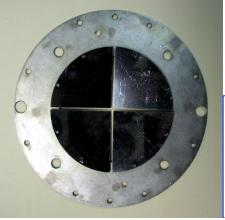


Cryostat and Target in B Shielding on Beamline

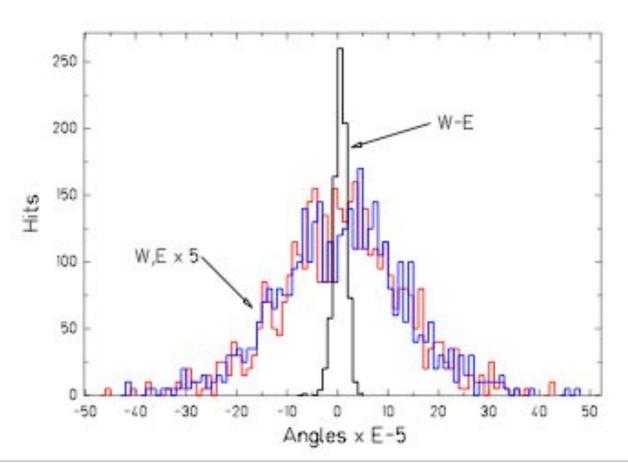


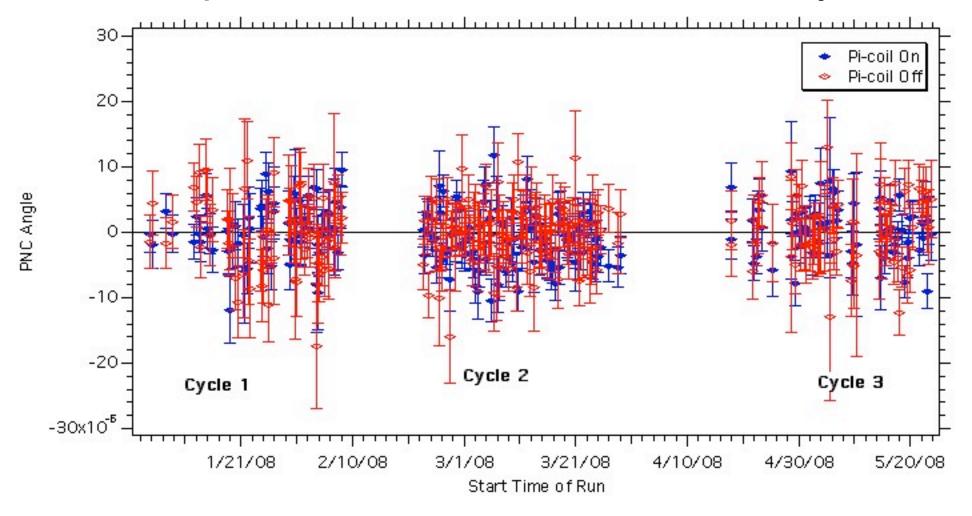
N-4He Spin Rotation Apparatus at NIST



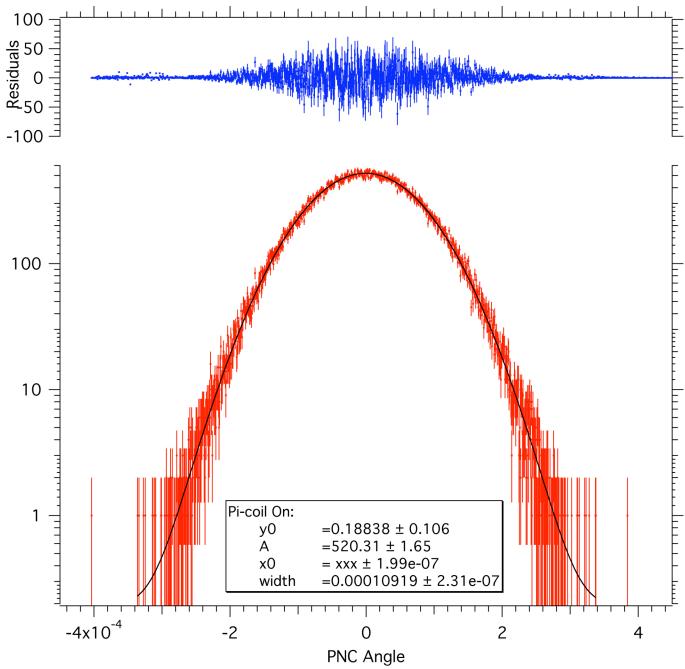

Segmented ³He ionization chamber

- ³He and Ar gas mixture
- Neutrons detected through $n+^3He \rightarrow ^3H+^1H$
- High voltage and grounded charge-collecting plates produce a current proportional to the neutron flux
- 4 Detection Regions along beam axis velocity separation (1/v absorption)

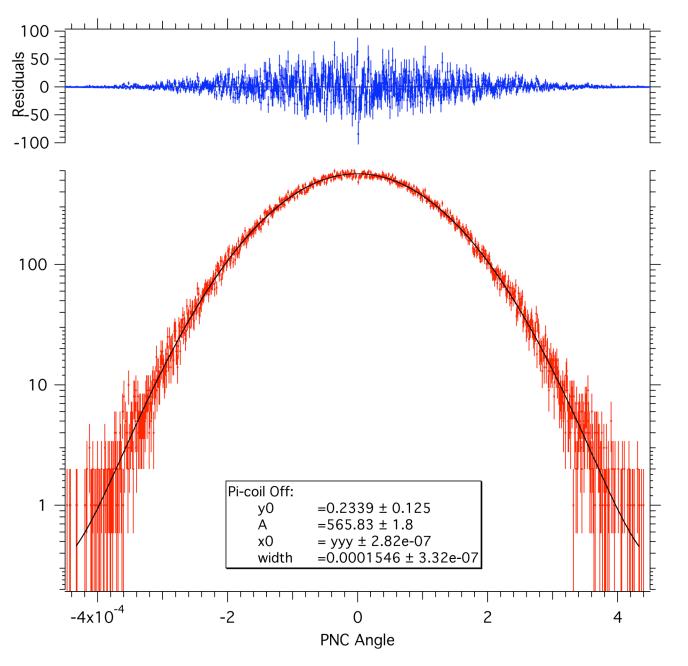

S.D.Penn *et al.* [NIM A457 332-37 (2001)]


charge collection plates are divided into 4 quadrants (3" diam) separated L/R and U/D beam

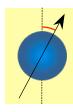
Reduction of Common Mode Noise from Reactor Fluctuations: 4He Target



Large noise from beam intensity fluctuations is suppressed Width of W-E difference of spin rotation angles is $\sim \sqrt{N}$


4He Spin Rotation data from NIST vs cycle

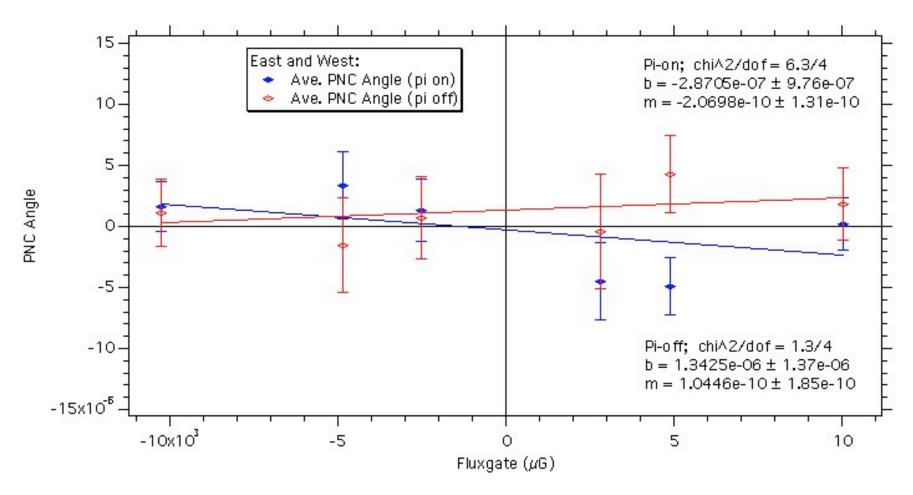
Distribution of Raw Asymmetries, pi-coil on



Distribution of Raw Asymmetries, Pi-coil off

For pi-coil off, no oscillation of PV signal, asymmetry should be zero

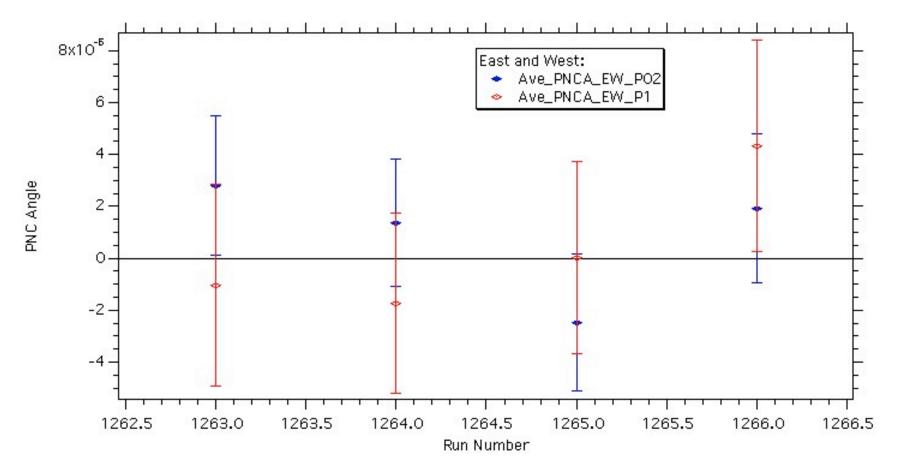
Width larger by factor of sqrt(2) as expected from +,-,0 pi-coil sequence


Upper Bounds on 4He Systematic Effects

Background rotations cancel if liquid motion does not change spin rotation from internal B fields

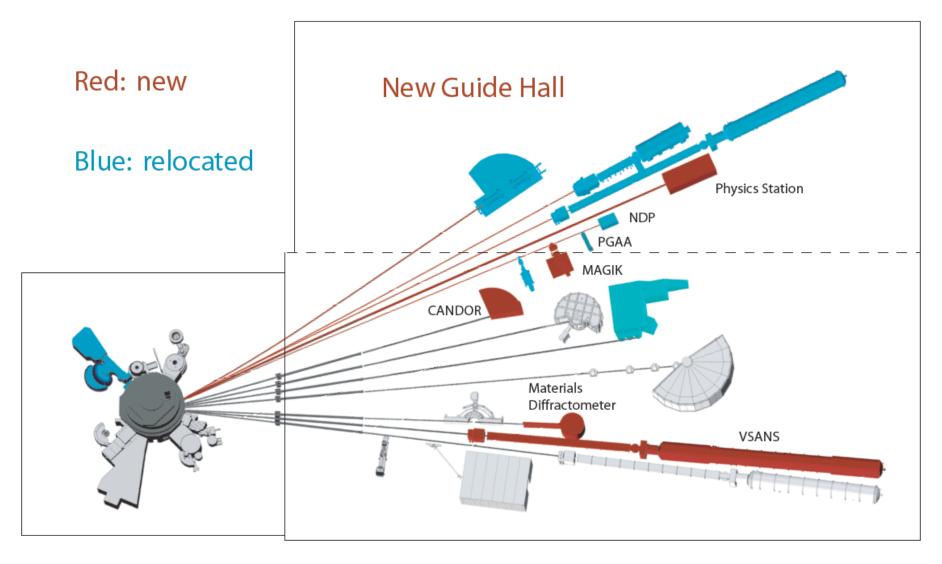
- Measurement noise above \sqrt{N}
 - reactor noise (use right-left chambers to suppress common-mode noise)
 - ion chamber current-mode measurement method
- Systematics associated with residual B-fields (100 µG level)

 - Diamagnetism of liquid helium
 → ΔB/B ≈ 6E-8
 → 2E-9 rad/m
 Optical potential of liquid helium
 → 10 neV
 → 2E-8 rad/m
 - Shift in neutron energy spectrum → $\Delta L \approx 0.01$ mm → 4E-8 rad/m
 - Small angle scattering \rightarrow <5E-8 rad/m
 - Change in neutron paths due to refraction \rightarrow <5E-8 rad/m
 - Change in neutron phase space from target reflections → <5E-8 rad/m
 - Phase space non-uniformity in analyzing power of ASM → <4E-8 rad/m
 - Time-dependence of internal magnetic field IN PROGRESS
 - Time-dependence of density fluctuations IN PROGRESS


Systematics from Internal B Field

Generate internal B larger than expt. conditions by 2 orders of magnitude

Limit on systematic <5E-8 rad/m


Systematics from Internal B Field Gradient

Generate internal gradient larger than expt. conditions by >2 orders of magnitude

Limit on systematic <4E-8 rad/m

More neutrons soon: NIST Guide Hall Expansion Project

X20 increase in polarized slow neutron flux(!) done~late 2010 Spin rotation statistical precision of 1E-7 rad/5 week cycle possible

Neutron Spin Rotation in Few-Body Systems: Expected size of Effects

$\varphi(n\alpha)$ liquid helium

DDH range gives $\sim \pm 1.5E-6$ rad/m L ~ 0.5 m- $> \frac{7E-7}{100}$ rad

$\varphi(np)$ parahydrogen

calculations in DDH framework (Schiavilla et al) gives \sim 5E-7 rad/m for DDH best values. L \sim 20 cm ->1E-7 rad

$\varphi(nD)$ orthodeuterium

calculations in DDH framework(Schiavilla et al) give \sim 5E-6 rad/m for the DDH best value, larger than n-p by an order of magnitude, dominated by weak pion exchange. L \sim 5 cm ->2.5E-7 rad

Conclusions

Our result (analysis nearing completion) will be the most sensitive neutron spin rotation measurement performed to date.

With NIST upgrade, can reach 1E-7 rad statistical accuracy/5 week cycle in n-p, n-D, and n-4He neutron spin rotation

In combination with SNS measurements in inelastic processes (NPDGamma, NDTGamma, n-3He), make real progress in NN weak interaction

Continued work in effective field theory description of weak NN interaction is in progress